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Abstract
This paper aims to apply the nonlocal Donnell shell theory to study the buckling of double-walled carbon nanotubes 
(DWCNTs) under axial compression taking into account the effects of internal small length scale and the Van der Waals 
interactions between layers. The DWCNTs is modeled as nonlocal double circular cylindrical elastic shells. On the basis 
of nonlocal elasticity theory, governing equations for buckling of Donnell shells are obtained taking into account the 
Van der Waals force. The nonlocal buckling load of DWCNT is derived without any assumption on radius tubes. However, 
it is a very difficult task to obtain the analytical solution of nonlocal critical buckling load. In this paper, we develop an 
approach for prediction of the nonlocal critical buckling load of DWCNTs.

Keywords Buckling · Double-walled carbon nanotubes · Van der Waals interaction · Axial compression · Small scale 
effect · Nonlocal elasticity theory · Donnell shell theory

1 Introduction

Nanostructures are increasingly used in the micro/nano-
scale and systems such as the biosensor, atomic force 
microscope, micro-electro-mechanical, and nano-electro-
mechanical systems due to their superior electronic and 
mechanical properties. In such applications, the effects are 
experimentally observed in a small scale, these effects are 
important and must be considered when studying their 
behavior.

Thin-shell theories are applied successfully basing 
on continuum mechanics for single-walled and double-
walled carbon nanotubes (SWCNTs, DWCNTs) to predict 
several mechanical properties. For SWCNTs and DWC-
NTs models, the elastic Donnell shell has been chosen in 
these references [14, 35–39, 44, 48, 53]. These conventional 

models of shell based on classical continuous medium the-
ories are not able to describe the effects due to the lack of 
small scale parameters of the material. In classical theory 
of local elasticity, the stresses tensor at a structure point 
is a function of the strain tensor of this point. However, 
Eringen [10, 12] pointed out that when we examine a small 
scale structure, the medium can no longer be considered 
as continuous and the internal characteristic lengths, such 
as the carbon-carbon bond in the carbon nanotube, must 
be considered. This motivation is a powerful incentive for 
Eringen to develop a nonlocal elasticity theory. This theory 
initiated by Eringen [10], is one of the promising theories 
that takes into account the size of small scales. The nonlo-
cal elasticity theory implies that the stresses tensor at a 
point is estimated as a function of the strain tensor in the 
considered point and strain tensors at all other structure 
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points. In this way, the small scale effects are understood 
through the use of the governing behavior laws which are 
based on the nonlocal elasticity theory. The nonlocal effect 
in the analysis is determinate by a constant appropriate 
to each material as defined by Eringen [10–12], this con-
stant is called the nonlocal parameter as well as denoted 
by e0 . There are several works in the literature based on the 
nonlocal continuum theory of Eringen. Kiani [18] studied 
the axial buckling of a set of SWCNTs aligned vertically in 
two orthogonal directions. The same researcher Kiani [20] 
calculated the axial buckling load of the nanosystem using 
Euler-Bernoulli beam theory, then by implementing Galer-
kin approach and assumed mode methodology. Hussain 
et al. [16] indicated that the nonlocal theory play an impor-
tant role in predicting SWCNT frequencies. The nonlocal 
Eringen theory is still used by the researchers in recent 
years [6, 16, 20, 42, 43]. Another group of non-classical 
theories, which have attracted the researcher’s attention, 
is the strain gradient and couple stress theories [24–27, 
30–33].

The static, buckling and vibration behaviors of nano-
systems are of great interest and special attention by the 
applied mechanics community as shown these recent 
works [9, 21–23, 45]. In this context, on the basis of the 
nonlocal elasticity theory, we propose use the nonlocal 
Donnell shell theory to study the buckling of DWCNTs sub-
jected to an axial pressure taking into account the effects 
of internal small length scale and the interactions of Van 
der Waals between layers. Through this work, a novel 
approach for the nonlocal critical buckling load of DWCNT 
is developed.

2  Donnell shell model based 
on the nonlocal elasticity theory.

In the Donnell shell model [8], the induced stresses are 
given in the median surface of the shell and the terms of 
the order 1

n2
 are neglected, where n is the circumferential 

half wavenumber. So in this paper, the assumption 1
n2

≪ 1 
has been used where the value of n must be greater than 

4. On the other hand the thin shell assumption 
(

h

R

)2

≪ 1 

has been used in the derivation, then transverse-shear and 
rotary-inertia effects have been neglected. In addition, the 
shear deformation effect is more significant in the low 
aspect ratio length/radius ( = L

R
 ) of nanotubes. So the other 

assumption L
R
≥ 10 has been used in this paper.

2.1  Equilibrium equations

Consider a thin-walled circular cylindrical shell of length L, 
wall thickness h and a middle surface of radius R with h ≪ R 

(see Fig. 1). The shell is made of an elastic homogeneous 
isotopic material of Young modulus E and Poisson ratio �.

The middle surface of the shell is referred to cylindrical 
coordinates x, � and z. The distance from the middle surface 
is measured by the coordinate z. We note by ux , u� and uz the 
displacement components in the axial (x), circumferential 
(�) and radial (z) directions respectively. We assume that the 
shell is subjected to an external pressure p = p(x, �) . Using 
theory of the first shear deformation, the displacements are 
given by:

where u, v and w are the reference surface displacements.
The kinematic relations for normal strain �xx and ��� and 

shear strain �x� are expressed by:

The Donnell nonlinear equilibrium equations of the thin-
walled circular cylindrical shell are given by [17]:

where Nx and N� are the normal forces, Nx� is the internal 
shear force, Mx and M� are the bending moments and Mx� 
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Fig. 1  Thin-walled circular cylindrical shell
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is the twisting moment, which are related to internal stress 
�x , �� and �x� by the following integrals:

2.2  Nonlocal elasticity theory and Donnell shell 
theory

To take small scale effects into consideration in the buckling 
analysis of the Donnell cylindrical shell, we apply the non-
local elasticity theory introduced by Eringen [10, 12]. This 
is a semi-empirical theory based on the atomic theory and 
experimental observations. It assumes that the stress tensor 
at each point of the continuum body depends on the strain 
tensor at that point and also the strains at all neighboring 
points of the body. However, in the macroscopic (local) elas-
ticity theory, the stress at each point depends only on the 
strain at that point. To express the nonlocal stress at each 
point x for homogeneous isotropic material, Eringen pro-
posed the following constitutive equation :

where �nl
ij

 is the nonlocal stress tensor, |x� − x| is the Euclid-
ian distance, Cijkl is the elastic modulus, �kl is the strain ten-
sor, �(|x� − x|, �) is the kernel function having the length 
dimension and expresses the nonlocal modulus into the 
constitutive equation, � =

e0a

�
 with a is an internal charac-

teristic length (carbon-carbon bonds lengths, granular 
distance... etc.), � is an external characteristic length (rup-
ture length, wavelength... etc.) and e0 is an appropriate 
constant depends on the considered material. Conse-
quently, another characteristic length e0 influences on 
predictions in nonlocal elasticity theory. It is often difficult 
to find an explicit expression of the kernel function 
�(|x� − x|, �) and calculate the triple integral of Eq. (5). In 
1983, Eringen [11] has developed more practical differen-
tial forms. The kernel function is determined by matching 
the lattice dynamics with nonlocal elasticity of Eringen and 
given by the following form:

(4)

Nx =∫
h∕2

−h∕2

�xxdz, N� = ∫
h∕2

−h∕2

���dz,

Nx� = ∫
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l

)

where K0 is the modified Bessel function which represents 
the integral constitutive relation in an equivalent differen-
tial form as follows:

The nonlocal Hooke’s law for the stress and strain relation 
is expressed by:

From equations (2) and (8), the nonlocal constitutive rela-
tions of Donnell shell become:

and

where C and D are extensional and bending stiffness rigidi-
ties of the shell given by:

Multiplying the operator (1 − (e0a)
2∇2) by the third equa-

tion of system (3), we obtain:

which leads to:

where k2 = D∕Eh , � = 1∕R is the curvature.
To investigate the possible existence of an adjacent 

equilibrium configurations, we use the adjacent equilib-
rium criterion [4]. We examine the two adjacent configura-
tions represented by the displacements before and after 
increments as in the reference [43]. We consider that the 
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indices 0 and b indicate respectively the pre-buckling and 
post-buckling quantities. According to the shell theory, the 
membrane forces Nxb , N�b and Nx�b are connected to the 
stress function �

(
Nx =

Eh

R2
�2�

��2
,N� = Eh

�2�

�x2
,Nx� =

Eh

R

�2�

�x��

)
 . 

Neglecting the terms of second order in index b, we obtain 
the following equation:

The stress function �(x, �) verifies the following compat-
ibility condition :

If the shear membrane forces are neglected Nx�0 = 0 , the 
axial compression is Nx0 = P and the circumferential mem-
brane force is N�0 = F , the system (14)–(15) giving the Don-
nell equations becomes:

where � =
P

Eh
 is the load parameter.

Note that when e0 = 0 , the system of coupled equa-
tions (14) reduces to the classical (local) Donnell equilib-
rium equations in which the effect of small length scale is 
neglected.

2.3  Discussion on the nonlocal parameter e
0
 

of the nonlocal theory

The characteristic length e0 , of nonlocal continuum 
mechanics for modeling carbon nanotubes, identifies the 
nonlocal effect in the analysis. It is determined by experi-
ence or by the intersection of dispersion curves for the 
planes wave with those of lattice dynamics. Eringen [11] 
defines e0 as a constant appropriate to each material 
and finds e0 = 0.39 , for some materials, by a comparison 
between the results of lattice dynamics and the nonlo-
cal elasticity theory. Zhang et al. [54] estimated the value 
of the nonlocal parameter, using the curve fitting of the 
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results of nonlocal elasticity theory to those of molecular 
mechanics simulations, for the critical buckling strain of 
SWCNTs under axial compression. Sears and Batra [41] 
compared their molecular mechanics results to these 
of nonlocal cylindrical shell model based on the Don-
nell shell theory to show that e0 = 0.82 . Zhang et al. [55] 
determined that the values of e0 varied between 0.546 
and 1.043 for different chiral angles using the curve fitting 
of the molecular dynamics simulation results and those 
of nonlocal cylindrical shell model based on the Donnell 
shell theory. Wang and Hu [47] obtained the value of e0 
by comparing of the gradient method with atomic lat-
tice dynamics of a one-dimensional lattice. Figure 2 [51] 
shows the dispersion of a crystal for the one-dimensional 
lattice where c0 is the equivalent sound velocity in the 
crystal, c is the phase velocity in the lattice and k is the 
lattice wavenumber.

The results of the gradient method are in excellent 
agreement with the dispersion curves obtained via the 
Born-Karman model of lattice dynamics particularly at 
smaller values of ka. There is an other work on the esti-
mated of the parameter e0 [41, 47, 49, 50, 54, 55]. Different 
values of the non-local parameter are used in literature. 
Hussain et al. [16] discussed the nonlocal effect on the 
vibration of armchair and zigzag SWCNTs with different 
values of the nonlocal parameter e0 = 0.5 , 1, 1.5 and 2. The 
same values are used by Amara et al. [3] for the buckling 
studies of MWCNTs under temperature field. Kiani [18–20] 
showed his results using different small scale parameters 
e0a between 0 and 2nm.

Fig. 2  Dispersion curves of one-dimensional lattice [51]
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3  Multiple Donnell shells continuum 
approach

Consider a multi-walled carbon nanotube (MWCNT), con-
sisting of N tubes of radius Rj(j = 1;2;...;N) , length L, same 
thickness h and Young’s modulus E. It subjected to an 
axial compression P. The walls of adjacent tubes interact 
through Van der Waals forces as shown in Fig. 3.

Using the continuum Donnell concentric multi-shells, 
each tube j(j = 1, 2, .,N) is modeled by an elastic homo-
geneous and isotropic circular cylindrical shell of length L, 
thickness h, radius Rj , Young’s modulus E and Poisson’s ratio 
� . The considered circular cylindrical shells are coupled by 
Van der Waals interaction. We denote by ui(x, �) , vi(x, �) and 
wi(x, �) , the components of displacement vector with x and 
� are the axial and circumferential coordinates respectively. 
According to Sect. 2.2, the transverse displacement wi(x, �) 
and the corresponding stress functions �j(x, �) are solu-
tions of the following nonlocal Donnell shell equilibrium 
equation:

where j = 1, 2, ...,N , �j =
1

Rj
 is the curvature radius of jth 

tube, �2

j
=
(

�2

�x2
+ �2

j

�2

��2

)2

 is the bi-laplacian operator, �j is 

the stress function of jth tube. The Van der Waals force Fvdw
j

 
is expressed by:
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with Fj are the forces by the length unit, prior buckling, in 
the circumferential direction of tube j and pj is the Van der 
Waals interaction between the tubes of MWCNT which is 
written in the form:

with cjk are the Van der Waals coefficients given by :

and Em
jk

 the elliptic integrals expressed as:

with a is the length of the C–C bond, � is the depth of Len-
nard–Jones potential, � is a parameter being determined 
by the equilibrium distance and Kii defined by:

Putting
� = e0a and taking into account of Eqs. (18) and (19) 

can be written as:

where j = 1, 2, ...,N.

4  Buckling analysis of double‑walled carbon 
nanotubes (DWCNTs)

4.1  Buckling load �

The solution of the problem (23) is sought in the follow-
ing form:
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cos(n�) + ccFig. 3  Multi-walled carbone nanotube (MWCNT) under axial com-

pression
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where m and n are respectively the axial and circumferen-
tial half wavenumbers of the jth tube, Aj and aj are arbitrary 
complex constants and cc denotes the complex conjugate. 
As a special case N = 2 (DWCNT), the substitution of Eq. 
(24) in Eq. (23) gives :

and

where p = m�∕L and qj = n∕Rj.
The second equations in systems (25) and (26) lead to:

Inserting (27) in the first equations of the system (25) and 
(26), we obtain the following system:

where �1 = q1∕p and �2 = q2∕p are the aspect ratios, �1 and 
�2 are expressed by:
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The system (28) has non-trivial solution A1 and A2 if its 
determinant is zero. This requirement is the buckling con-
dition which leads to:

where

The solution of (30) gives the expression of the buckling 
load:

This root is obtained by taking the negative sign before the 
square-root. The expression (32) can be written according 
to m and n ( �(m, n) ) and it can also be written according 
to �1 , �2 and p ( �(�1, �2, p) ) in the following compact form:

where

The minimization of the buckling load ( �(m, n) ), by search-
ing numerically the values of m and n, allows to obtain 
the critical buckling load of the double-walled carbon 
nanotubes as in [17, 37]. This method is very expensive 
and does not give a good precision. In the next section, we 
propose a novel approach for determination of the nonlo-
cal critical buckling load of DWCNTs for a fixed aspect ratio 
�1 and �2 and with respect to the wave of axial number p. To 
validate the proposed approach, we compare the results 
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with those obtained by the minimization procedure of the 
buckling load ( �(m, n) ) with respect to the integer num-
bers m and n.

4.2  Proposed approach for the nonlocal critical 
buckling load of the DWCNTs

The numerical experiments show that the relative error 
of the critical buckling load �cr(pcr) , using the equation 
(33), decreases as the axial wave number p increases at the 
beginning. Continuously increasing p, the relative error of 
�cr becomes larger and gives an incorrect result for larger 
p. By considering these remarks as shown in reference [17] 
and in order to find pcr quickly, we propose the following 
algorithm:

(35)

d = 2

S = 100

𝜖 = 0.05

𝜆0
cr
= 0.0001

p = pprediction
error1 = 4

error2 = 3

error3 = 2

error4 = 1

for i = 0 ∶ d

forj = 1 ∶ S

pi
j
= p + j10−i

end

n = 0

while(min(error3, error4) < min(error1, error2))

n = n + 1

𝜆n
cr
= 𝜆(pi

n
) (see Eq.(33))

error(pi
n
) = | 𝜆(n−1)cr −𝜆n

cr

𝜆
(n−1)
cr

|
error1 = error2

error2 = error3

error3 = error4

error4 = error(mi
n
)

end

if (n − 3 > 0)

p = pi
n−3

+ 𝜖

else

p = pi
1
− 10−i

end

end

pcr = p

𝜆cr = 𝜆(pcr) (see Eq.(33))

where d denotes the accuracy of pcr to the mth decimal 
place, � is related to the starting point of the test scope 
and gets a value between 0 and 1.

5  Numerical analysis for the critical buckling 
load of DWCNTs

Numerical results are presented in this section for vali-
dating the proposed approach of the nonlocal criti-
cal buckling load of DWCNTs under axial compression. 
In these numerical tests, data of double Donnell shells 
model are given as follows: the inner diameter R1 = 2 nm , 
the median inter-shell spacing between carbon of 
DWCNTs �R = 0.34 , the aspect ratios (length to radius) 
L∕R1 = 10 , h = 0.066 nm , a = 0.142 nm , E = 5500GPa , 
� = 0.34 , c12 =

−320×10−3

0.16a2
nN∕nm3 , c21 = (R1∕R2)c12 , F1 = 0 , 

e0 = 0.39 [11, 15, 52]. The validation process consists in 
comparing the results of minimizing the buckling load 
( �(m, n) ) and those of the proposed approach (35) with 
fixed values of aspect ratios �1 and �2.

The buckling load �(m, n) , for the nonlocal parameter 
e0 = 0.39 , are plotted in Fig. 4 versus the half-wave num-
bers in the axial and circumferential directions (m, n).

To validate the proposed approach of the nonlocal criti-
cal buckling load, we consider the values of aspect ratios 
�1 = 0.72 and �2 = 0.62 which are equivalent to the criti-
cal values (m = 22, n = 5) as a shown in Fig. 4. The chosen 
parameters of the proposed approach are d = 2 , S = 100 , 
� = 0.01 , pprediction = 0 and �0

cr
= 0.0001 . Using the proposed 

approach (see Eq. (35)), Fig. 5 represent the first estimate 
(i = 0) of the critical wave number pcr in axial direction, by 
plotting the variation of the relative error variation versus 
the wave number p in axial direction, which gives a value 
between 3nm−1 and 4nm−1.

So, in the second estimate (i = 1) , we are looking for 
precision in the interval [3nm−1, 4nm−1] or the accuracy of 
pcr to the first decimal place as shown the Fig. 6.

In the same way in the interval [3.3nm−1, 3.4nm−1] 
as you can see in the Fig. 7, the accuracy of pcr to the 
second decimal place gives the critical wave number 
pcr = 3.38nm−1 which is equivalent to the critical buck-
ling load �cr = 0.01775 with the relative error 10−3% . This 
critical value is equal to the minimum value of the critical 
buckling load of the curve given by minimizing numeri-
cally �(m, n) . We can note that the proposed approach 
allows to determine the critical load according to aspect 
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ratios with good precision and according to the quality 
requested by the user. In the following we will present 
some tests using the proposed approach (see Eq. (35)) to 
show the influence of various parameters on the critical 
load �cr .

The critical buckling load of DWCNTs decreases when 
the nonlocal parameter e0 increase as shown in the Fig. 8 
which shows that we cannot neglect the effect of small 
scales especially for the great values of e0 . Secondly, these 

results demonstrate that the approximation given by 
Ru [37], in which the ratio (R2 − R1)∕R1 is neglected, pro-
vides a higher critical buckling load.

In Fig. 9, we plot the critical buckling load versus the 
aspect ratio for a fixed force F1 = 0 and different nonlocal 
parameters e0 . It is clear that for F1 = 0 and a fixed non-
local parameter, �cr increases with increasing values of 
aspect ratio �1 . We can also notice that for F1 = 0 and a 
fixed aspect ratio �1 , �cr decreases with increasing values 
of nonlocal parameter e0.

Now we are interested to study the effect of the force 
F1 for a fixed nonlocal parameter as shown in Figs. 10 and 
11. These graphs show that, for each value of the nonlocal 
parameter, there is a certain value F of the force F1 such 
that for all force F1 greater than F, the critical buckling load 
parameter in terms of the aspect ratio presents a maxi-
mum and decreases from this aspect ratio corresponding 
to this maximum. Below this value leads to the increas-
ing of �cr with increasing the aspect ratio. Analysis of the 
results shows that the value of F increases with increasing 
values of the nonlocal parameter e0.

In Fig. 12, we draw the critical buckling load of DWC-
NTs versus the aspect ratio (R2 − R1)∕R1 for some nonlocal 

Fig. 4  Buckling loads � versus 
(m, n) for the nonlocal param-
eter e0 = 0.39
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Fig. 5  Relative error variation versus the wave number p in axial direction for the first estimate where (i = 0) and r = 6

Fig. 6  Relative error variation versus the wave number p in axial 
direction for the second estimate where (i = 1) and r = 6
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parameters values e0 = 0.39 , e0 = 0.5 and e0 = 0.7 where 
the force F1 = 0 . This figure indicates that the critical 
buckling load increases with increasing values of the 
ratio (R2 − R1)∕R1 . The same observation remains true 
whatever the value of the force F1 as shown in the Fig. 13.

6  Conclusion

An approach of the nonlocal critical buckling load of 
double-walled carbon naotube (DWCNTs) under axial 
compression for fixed values of aspect ratios has been 
developed. The derivation of the proposed approach is 
performed using the nonlocal multiple Donnell shells 
continuum approach without any assumption over tubes 
radii. This proposed solution approach permits to take 
into consideration the small scale effects using the non-
local elasticity theory of Eringen and the median inter-
shell spacing which their omission leads to an overesti-
mation of the critical buckling load. We can observe in 
the numerical applications that the small scale effect 
becomes very important with increasing the nonlocal 
parameter e0 which leads to a lower critical buckling 
load. On the other hand, this critical buckling load 
increases with increasing of the aspect ratio � =

L∕m�

R∕n
 

Fig. 7  Relative error variation versus the wave number p in axial direction for the third estimate where (i = 2) and r = 8

Fig. 8  Critical buckling load versus the nonlocal parameter e0 for 
equal and different radii

Fig. 9  Critical buckling load 
versus the aspect ratio �1 for a 
fixed force F1 = 0 and different 
nonlocal parameters e0
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Fig. 10  Critical buckling load 
versus the aspect ratio �1 for 
a fixed nonlocal parameter 
e0 = 0.39 and different values 
of the force F1

Fig. 11  Critical buckling load 
versus the aspect ratio �1 for 
a fixed nonlocal parameter 
e0 = 0.5 and different values of 
the force F1



Vol.:(0123456789)

SN Applied Sciences (2020) 2:407 | https://doi.org/10.1007/s42452-020-2182-9 Research Article

(long axial wavelengths/circumferential wavelengths). 
But there is a certain value F of the force F1 from which 
the critical buckling load accept a maximum in terms of 
the aspect ratio � , from the correspond aspect ratio to 
this maximum the critical buckling load decreases.
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