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Abstract
A one-step procedure has been developed for the synthesis of new Hantzsch 1,4-dihydropyridines (1,4-DHPs) with high 
yields from four-component reaction of 4-hydroxybenzaldehyde, acetylacetone, various primary amine and barbituric 
acid in EtOH in the presence of 3-methyl-1-sulfonic acid imidazolium chloride {[Msim]Cl} as an acidic ionic liquid. In this 
work {[Msim]Cl} acts as a more efficient and green catalyst in the multicomponent reaction, leading to a simple proce-
dure of synthesis, short reaction times, less pollution, high yields of the products, low cost of chemicals and uses less 
toxic solvents.

Keywords  Multi-component reaction · One-pot · Green chemistry · 3-Methyl-1-sulfonic acid imidazolium chloride · 
1,4-Dihydropyridines

1  Introduction

1,4-Dihydropyridines (1,4-DHPs) are one of N-heterocyclic, 
biologically active compounds and naturally occurring 
molecules [1, 2]. 1,4-DHPs are also considered as key start-
ing materials to synthesize various classes of biologically 
and pharmacologically active compounds [3, 4]. They are 
used as calcium channel blockers [5], anti-inflammatory 
[6, 7], antiviral [8], antitumor [9], anticancer [10], analge-
sic activities [11]. In additions, 1,4-DHP derivatives are 
employed as heptatoprotective and antidiabetic agents 
for the treatment of cardiovascular diseases such as hyper-
tension [12–14].

Some methods for the synthesis of 1,4-DHP derivatives 
have been reported in the literature. Nevertheless, these 
methods generally call for harsh reaction conditions, high 
temperature, using of expensive reagents, create wastes,  

long reaction time, needing strongly acidic condition, 
using multi-steps, need a complex synthetic route and 
no agreement with the green chemistry strategies [15], 
Therefore, facile and highly efficient synthetic methods to 
1,4-DHP derivatives are highly desirable [16].

One method to address this challenge includes employ-
ing multicomponent reactions (MCRs). MCRs strategy offer 
a significant importance over linear-strategy synthesis due 
to their flexible, convergent, atomic efficient nature and 
provide a maximum structural complexity with a minimum 
number of synthetic steps [17]. Reportedly, in MCRs a wide 
range of catalysts has been explored in the synthesis of 
1,4-DHP derivatives including l-proline [18, 19], aspartic 
acid [20], p-toluenesulfonic acid monohydrate [21–23], 
TiO2 nano wires [24], phosphootungstic acid (H3PW12O40) 
[25], silica-coated nano-Fe3O4 [26], cellulose sulfuric acid 
[27], chitosan supported copper(II)sulfate (CSCS) [28], 
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porcine pancreatic lipase [29], Magnetic dextrin nanobio-
material [30], SO3H‐functionalized nano‐MGO‐D‐NH2 [31], 
guanidinylated chitosan magnetic nano catalyst [32], and 
pyrimidine-2,4-diamine (PDA)-functionalized silica-coated 
magnetic nanocatalyst (Fe3O4/SiO2-PDA) [33]. Therefore, 
the discovery of new and efficient catalysts in combina-
tion with an operationally simple work up and eco-friendly 
conditions is highly desirable [15].

Ionic liquids have fascinated a considerable attention in 
the past few decades due to they have unique properties 
including an inexpensive, easy to prepare, environmental 
friendly, non-toxic catalyst for various organic synthesis, 
high thermal, non-hazardous, non-volatility, a simple and 
rapid to handle, economically viable, non-flammability, 
recyclability, provide a high selectivity, and can be used 
to dissolve a wide range of materials [34–37]. In addition, 
ionic liquids are used as catalyst and media in multicom-
ponent reactions such as triethylamine-bonded sulfonic 
acid {[Et3N–SO3H]Cl} [38], [Bmim]PF6 [39], and sulfamic 
acid (H2NSO3H) [40].

As a part of our interest with green chemistry, herein 
we aim to expand the application of ionic liquids in mul-
ticomponent reactions. Therefore, 3-methyl-1-sulfonic 
acid imidazolium chloride {[Msim]Cl}3 was synthesized 
as Bronsted acidic ionic liquid (Scheme 1) and employed 
as an efficient catalyst for the synthesis of new 1,4-DHP 
derivatives 8a–8i (Scheme 2). 

2 � Results and discussion

The optimized conditions of a model reaction were car-
ried out from the reaction of 4-hydroxybenzaldehyde 4 
(2.0  mmol), acetylacetone 5 (2.0  mmol), 4-aminomor-
pholine 6a (2.0 mmol) and barbituric acid 7 (2.0 mmol) 

in EtOH (20 mL) in the presence of {[Msim]Cl} 3 as a cata-
lyst at room temperature. In these optimized conditions, 
EtOH was found to be an excellent solvent for this reaction 
(Table 1, entry 5).

To evaluate the efficiency of {[Msim]Cl} 3 in compari-
son with the reported catalysts, the model reaction was 
screened in some of these catalysts including l-proline, 
DABCO, copper, DAHP and ZnCl2. Interestingly, as shown 
in Table 2, an efficient activity of catalysis {[Msim]Cl} 3 was 
observed and the desired product was collected in higher 
yield with a shorter reaction time.

The effect of catalytic concentration was investigated 
on the model reaction in EtOH. Initially, at the catalytic 
concentration of {[Msim]Cl} 3 (5 mol%), the reaction was 
carried out under the same reaction time and afforded 
product 8a 76% in yield (Table 2, entry 7). By increasing 
the amount of catalysis {[Msim]Cl} 3 from 5 to 10 mol%, 
the highest yield of the corresponding product 8a was 
obtained (Table 2, entry 8). Increasing the catalyst loading 
to 15 mol%, no a significant yield was obtained at this con-
centration (Table 2, entry 9). As a result, 10 mol% of cata-
lyst {[Msim]Cl} 3 was chosen in EtOH as the most appropri-
ate conditions for the one-pot synthesis of novel 1,4-DHP 
derivatives 8a–8i at room temperature. To evaluate the 
significance of {[Msim]Cl} 3 as catalyst, the model reaction 
was tested in the absence of {[Msim]Cl} 3 and found that 
no yield of corresponding product 8a was obtained after 
24 h (Table 2, entry 1).

Scheme 1   Synthesis of {[Msim]Cl}3 

Scheme 2   Synthetic route of 
new 1,4-DHP derivatives 8a–8i 

Table 1   Effect of various organic solvents for the synthesis of 1,4-
DHP derivative 8a 

Reaction conditions: 4-hydroxybenzaldehyde 4 (2.0  mmol), acety-
lacetone 5 (2.0 mmol), 4-aminomorpholine 6a (2.0 mmol) and bar-
bituric acid 7 (2.0 mmol), {[Msim]Cl} 3 (10 mol%)

Entry Catalysis Solvent Temperature Time (h) Yield (%)

1 [Msim]Cl Acetonitrile r.t 10 30
2 [Msim]Cl Methanol r.t 2 45
3 [Msim]Cl Methanol 50 °C 2 55
4 [Msim]Cl Dioxane r.t 2 22
5 [Msim]Cl Ethanol r.t 2 90
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The 1H and 13C NMR, FT-IR and Mass spectra data of all 
synthesized compounds are consistent with the expected 
structures. The 1H NMR spectra of 1,4-DHP derivatives 
8a–8i show a broad singlet at the lowest field for NH 
groups, two singles at 1.82–2.14 ppm for two CH3 groups 
and a one singlet at 4.95–5.24 ppm for fused pyridine 
proton (CH group) at the expected region. In the 13C NMR 
spectra of all synthesized compounds, the appearance 
of signals at the lowest field is due to carbon resonance 
of the C=O group. The other chemical shifts of 13C NMR 
spectra were displayed in the expected regions. Also, the 
appearance of absorption band at 3437–3109 cm−1 in the 
FT-IR spectra of synthetic compounds (8a–8i), the char-
acteristic of the NH groups is a good evidence in support 
of the expected compounds. The all synthesized 1,4-DHP 
derivatives 8a–8i are illustrated in Table 3.

The plausible mechanism of the reaction in the pres-
ence of catalyst {[Msim]Cl} 3 is shown in Scheme 3. Ini-
tially, a nucleophilic addition of barbituric acid A to 
activated 4-hydroxybenzaldehyde B in the presence of 
catalyst {[Msim]Cl} 3 led to intermediate C which becomes 
involved in the addition reaction with acetylacetone D and 
a subsequent addition of primary amine to adduct E led to 
intermediate F by via losing water molecule. Ultimately, a 
further intramolecular cyclization of intermediate F led to 
desired compounds.

3 � Experimental

All solvents and chemicals were purchased from Sigma-
Aldrich. All reactions were carried out under an atmos-
phere of air. Melting points were recorded using a Gallen-
kamp melting point apparatus in capillary tubes. 1H and 
13C NMR spectra were recorded on a Bruker AV-400 (1H: 
400 MHz) and AV-400 (13C: 100.5 Hz) spectrometer (Shef-
field, UK) at room temperature in deuterated dimethyl 
sulfoxide and chloroform as solvent (1H NMR: DMSO-d6: δ 
2.50 ppm; 13C NMR: DMSO-d6: δ 39.52 ppm, 1H NMR: CDCl3: 
δ 7.26 ppm; 13C NMR: δ 77.16 ppm). For 1H NMR, the com-
pleted protons of decoupling J are evaluated by Hz unite. 
Fourier Transform infrared (FT-IR) spectra were recorded 
on a Perkin Elmer Paragon 100 FT-IR spectrophotometer 
(Sheffield, UK), the recording absorbance were taken 
between 4000–750 cm−1. High-resolution mass spectrum 
(HRMS) was performed by using a Micro Mass LCT operat-
ing in Electrospray mode (ES) (Sheffield, UK). All synthe-
sized compounds were purified by flash chromatography 
with silica gel 60 Å (230–400 mesh). Analytical properties 
of TLC were performed by using plates precoated with 
silica gel 60 UV 255 (Merck). UV light and an alkaline aque-
ous solution of potassium permanganate (KMnO4) were 
utilized to visualize all synthesized compounds.

Table 2   The optimized conditions for the synthesis of 1,4-DHP derivative 8a

a  Isolated pure compound

Entry Catalysis Amount (mol%) Temperature Time (h) Yield (%)a

1 – – r.t 24 –
2 L-proline 10 r.t 2 55
3 DABCO 10 r.t 2 70
4 Copper 10 r.t 2 40
5 DAHP 10 r.t 2 75
6 ZnCl2 10 r.t 2 67
7 [Msim]Cl 5 r.t 2 76
8 [Msim]Cl 10 r.t 2 90
9 [Msim]Cl 15 r.t 2 72
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Table 3   The synthesis of 1,4-
DHP derivatives 8a–8i in the 
presence {[Msim]Cl} 3 

Compound R
Molecular 

formula
M.p (ºC) Yield (%)

C20H22N4O5 203–204 90

C23H27N3O4 197–198 85

C20H23N3O4 180–181 93

C19H19N3O4 177–178 90

C26H22N4O4 256–257 80
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Synthesis of  ionic liquid {[Msim]Cl} (3)  To a solution of 
1-methylimidazole (1.64  g, 20  mmol) dissolved in dry 
DCM (100 mL) in a round-bottomed flask (200 mL), chlo-
rosulfonic acid (2.42 g, 20.8 mmol) was added. The reac-
tion mixture was stirred for 30 min, halted for 10 min and 
the DCM was decanted. The resulting mixture was washed 
with (3 × 100 mL) DCM and dried under vacuum to afford 
1.5 g (90%) {[Msim]Cl} 3 as a viscous colorless oil; 1H NMR 
(400 MHz, DMSO-d6, δ, ppm): 3.87 (s, 3H, CH3), 7.67 (d, 
J = 2.36 Hz, 1H, CH), 7.70 (d, J = 2.5 Hz, 1H, CH), 9.06 (s, 1H, 
CH), 14.22 (s, 1H, SO3H). 13C NMR (100 MHz, DMSO-d6, δ, 
ppm): 35.6 (CH3), 120.8 (CH), 123.5 (CH), 137.5 (CH).

General method for synthesis of 1,4‑DHP derivatives 8a (–
8i)  In a round-bottom flask (50 mL), 4-hydroxybenzalde-
hyde 4 (0.24 g, 2 mmol), acetylacetone 5 (0.2 g, 2 mmol), 
various primary amine 6a–6i (2 mmol) and barbituric acid 
7 (0.24 g, 2 mmol) in EtOH (20 mL) were mixed and stirred 
at room temperature. Ionic liquid {[Msim]Cl} 3 (0.04 g, 

10 mol%) was added and the mixture was stirred at room 
temperature for an appropriate time 2 h. After the comple-
tion of the reaction (indicated by TLC, petroleum ether: 
ethyl acetate: 6:4), the resulting mixture was diluted with 
water (20 mL) and extracted with ethyl acetate (3 × 20 mL). 
The combined organic layers were dried over anhydrous 
MgSO4, filtered and concentrated. The cured products 
were purified by flash chromatography to afford the titled 
barbituric acid derivatives.

6‑Acetyl‑5‑(4‑hydroxyphenyl)‑7‑methyl‑8‑morpholino‑5,8‑di‑
hydropyrido [2,3‑d pyrimidine‑2,4(1H, 3H)‑dione (8a)  Follow 
general method, using 4-hydroxybenzaldehyde 4 (0.24 g, 
2.0 mmol), acetylacetone 5 (0.2 g, 2.0 mmol), 4-aminomor-
pholine 6a (0.2 g, 2.0 mmol) and barbituric acid 7 (0.24 g, 
2.0 mmol) for 2 h. The crude compound was purified by 
flash chromatography (petroleum ether: ethyl acetate: 6: 
4, Rf = 0.3) to give 0.18 g (90%) 8a as a yellow solid; m.p 
203–204 °C; 1H NMR (400 MHz, CDCl3, δ, ppm): 12.31 (s, 

Table 3   (continued)

C26H22N4O4S 267–268 82

C22H21N3O5 200–201 85

C24H23N3O4 197–198 90

C25H25N3O6 223–224 93

Reaction conditions: 4-hydroxybenzaldehyde 4 (2.0  mmol), acetylacetone 5 (2.0  mmol), various pri-
mary amine 6a–6i (2.0 mmol) and barbituric acid 7 (2.0 mmol), {[Msim]Cl} 3 (10 mol%), EtOH (20 mL), 
room temperature
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1H, NH), 7.85 (d, J = 8.8 Hz, 2H, Ar–H), 7.00 (d, J = 8.9 Hz, 2H, 
Ar–H), 5.13 (s, 1H, CH), 3.83–3.79 (m, 4H, 2CH2), 3.12–3.01 
(m, 4H, 2CH2), 2.06 (s, 3H, CH3), 1.90 (s, 3H, CH3). 13C NMR 
(100 MHz, CDCl3, δ, ppm): 17.2 (CH3), 25.0 (CH3), 28.3 (CH), 
49.2 (CH2), 58.8 (CH2), 100 (C, Ar), 114.6 (C, Ar), 124.6 (CH, 
Ar), 130.9 (CH, Ar), 149.3 (C=O), 160.7 (C=O), 195.2 (C=O). 
FT-IR (KBr, cm−1): 3437 (N–H), 3037 (C–H, Ar), 2965 (C–H), 
2856 (C–H), 1609 (C=O), 1568 (C=C, Ar). HR-MS (ESI+): m/z 
Cald for C20H22N4O5 ([M + H+]) 398.1600, found 398.1594.

6‑Acetyl‑8‑(cyclohexylmethyl)‑5‑(4‑hydroxyphenyl)‑7‑me‑
thyl‑5,8‑dihydro pyrido [2,3‑d] pyrimidine‑2,4(1H,3H)‑dione 
(8b)  Follow general method, using 4-hydroxybenza-
ldehyde 4 (0.24  g, 2.0  mmol), acetylacetone 5 (0.2  g, 
2.0 mmol), cyclohexanemethylamine 6b (0.22 g, 2.0 mmol) 
and barbituric acid 7 (0.24 g, 2.0 mmol) for 2 h. The crude 
compound was purified by flash chromatography (petro-
leum ether: ethyl acetate: 6: 4, Rf = 0.4) to give 0.16 g (85%) 
8b as a white solid; m.p 197–198 °C; 1H NMR (400 MHz, 
CDCl3, δ, ppm): 11.02 (s, 1H, NH), 7.77 (d, J = 8.9 Hz, 2H, 
Ar–H), 7.01 (d, J = 8.5 Hz, 2H, Ar–H), 4.99 (s, 1H, CH), 3.11 
(d, J = 6.5 Hz, 2H, CH2), 2.04 (s, 3H, CH3), 1.95 (s, 3H, CH3), 

1.81–1.69 (m, 4H, CH2), 1.27–1.16 (m, 4H, CH2), 1.03–0.95 
(m, 2H, CH2). 13C NMR (100 MHz, CDCl3, δ, ppm): 21.0 (CH3), 
27.2 (CH2), 27.3 (CH3), 29.2 (CH2), 30.8 (CH2), 40.2 (CH), 49.4 
(CH2), 95.6 (C), 117.9 (C, Ar), 126.8 (CH, Ar), 131.4 (CH, Ar), 
163.7 (C=O), 193.3 (C=O). FT-IR (KBr, cm−1): 3231 (N–H), 
3010 (C–H, Ar), 2928 (C–H), 2856 (C–H), 1683 (C=O), 1546 
(C=C, Ar). HR-MS (ESI+): m/z Cald for C23H27N3O4 ([M + H+]) 
410.1456, found 410.1452.

6‑Acetyl‑8‑butyl‑5‑(4‑hydroxyphenyl)‑7‑methyl‑5,8‑dihydro 
pyrido [2,3‑d] pyrimidine‑2,4(1H,3H)‑dione (8c)  Follow gen-
eral method, using 4-hydroxybenzaldehyde 4 (0.24  g, 
2.0  mmol), acetylacetone 5 (0.2  g, 2.0  mmol), butyl-
amine 6c (0.14 g, 2.0 mmol) and barbituric acid 7 (0.24 g, 
2.0 mmol) for 2 h. The crude compound was purified by 
flash chromatography (petroleum ether: ethyl acetate: 6: 
4, Rf = 0.5) to give 0.13 g (93%) 8c as a white solid; m.p 
180–181 °C; 1H NMR (400 MHz, CDCl3, δ, ppm): 10.92 (s, 
1H, NH), 7.80 (d, J = 3.7 Hz, 2H, Ar–H); 7.02 (d, J = 8.6 Hz, 2H, 
Ar–H), 5.02 (s, 1H, CH), 3.29 (m, 2H, CH2), 2.06 (s, 3H, CH3), 
1.91 (s, 3H, CH3), 1.61–1.56 (m, 2H, CH2), 1.45–14.3 (m, 2H, 
CH2), 0.94 (t, J = 7.3 Hz, 3H, CH3). 13C NMR (100 MHz, CDCl3, 

Scheme 3   Suggested mecha-
nism for the synthesis of new 
1,4-DHP derivatives 8a–8i 
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δ, ppm): 13.7 (CH3), 17.2 (CH3), 19.9 (CH3), 28.1 (CH2), 31.9 
(CH), 42.9 (CH2), 58.8 (C), 95.3 (C, Ar), 116.2 (CH, Ar), 128.8 
(CH, Ar), 132.4 (C), 163.7 (C, Ar), 164.8 (C=O), 191.1 (C=O), 
194.4 (C=O). FT-IR (KBr, cm−1): 3242 (N–H), 2862 (C–H, Ar), 
2931 (C–H), 2875 (C–H), 1679 (C=O), 1592 (C=C, Ar). HR-MS 
(ESI+): m/z Cald for C20H23N3O4 ([M + H+]) 370.1350, found 
370.1345.

6‑Acetyl‑8‑cyclopropyl‑5‑(4‑hydroxyphenyl)‑7‑methyl‑5,8‑di‑
hydropyrido [2,3‑d] pyrimidine‑2,4(1H, 3H)‑dione (8d)  Follow 
general method, using 4-hydroxybenzaldehyde 4 (0.24 g, 
2.0 mmol), acetylacetone 5 (0.2 g, 2.0 mmol), cyclopro-
pylamine 6d (0.1 g, 2.0 mmol) and barbituric acid 7 (0.24 g, 
2.0 mmol) for 2 h. The crude compound was purified by 
flash chromatography (petroleum ether: ethyl acetate: 6: 
4, Rf = 0.5) to give 0.1 g (90%) 8d as a yellow solid; m.p 177–
178 °C; 1H NMR (400 MHz, CDCl3, δ, ppm): 10.71 (s, 1H, NH), 
7.81 (d, J = 8.7 Hz, 2H, Ar–H), 7.08 (d, J = 4.3 Hz, 2H, Ar–H), 
5.06 (s, 1H, CH), 2.67–2.65 (m, 1H, CH), 2.13 (s, 3H, CH3), 
2.05 (s, 3H, CH3), 0.85 (dd, J = 6.7, 2.2 Hz, 2H, CH2), 0.67 (dd, 
J = 5.3, 1.6 Hz, 2H, CH2). 13C NMR (100 MHz, CDCl3, δ, ppm): 
11.2 (CH3), 15.1 (CH2), 20.3 (CH3), 25.9 (CH2), 30.6 (CH), 40.4 
(CH), 93.6 (CH, Ar), 112.8 (CH, Ar), 122.3 (C), 131.2 (C, Ar), 
163.7 (C=O), 194.3 (C=O). FT-IR (KBr, cm−1): 3090 (N–H), 
3008 (C–H, Ar), 2921 (C–H), 2813 (C–H), 1683 (C=O), 1604 
(C=C, Ar). HR-MS (ESI+): m/z Cald for C19H19N3O4 ([M + H+]) 
354.1789, found 354.1785.

8 ‑ ( 4 ‑ ( 1 H ‑ P y r r o l ‑ 1 ‑ y l ) p h e n y l ) ‑ 6 ‑ a c e t y l ‑ 5 ‑ ( 4 ‑ h y d r o x 
yphenyl)‑7‑methyl‑5,8‑dihy dropyrido [2,3‑d] pyrimi‑
dine‑2,4 (1H,3H)‑dione (8e)  Follow general method, using 
4-hydroxybenzaldehyde 4 (0.24 g, 2.0 mmol), acetylac-
etone 5 (0.2 g, 2.0 mmol), 4-pyrrol-1-yl-aniline 6a (0.3 g, 
2.0 mmol) and barbituric acid 7 (0.24 g, 2.0 mmol) for 
2 h. The crude compound was purified by flash chroma-
tography (petroleum ether: ethyl acetate: 6: 4, Rf = 0.3) to 
give 0.16 g (80%) 8e as a yellow solid; m.p 256–257 °C; 
1H NMR (400 MHz, CDCl3, δ, ppm): 12.50 (s, 1H, NH), 7.38 
(d, J = 8.7 Hz, 1H, Ar–H), 7.19 (t, J = 8.4 Hz, 2H, Ar–H), 7.08 
(t, J = 8.4 Hz, 2H, Ar–H), 6.99 (t, J = 2.5 Hz, 1H, CH-pyrrole), 
6.74 (dd, J = 6.5, 2.4 Hz, 1H, CH-pyrrole), 6.38 (t, J = 2.4 Hz, 
1H, CH-pyrrole), 5.24 (s, 1H, CH), 2.14 (s, 3H, CH3), 2.03 (s, 
3H, CH3). 13C NMR (100 MHz, CDCl3, δ, ppm): 20.5 (CH3), 
30.3 (CH3), 41.5 (CH), 97.9 (CH, pyrrole), 109.4 (CH, pyr-
role), 110.3 (C, Ar), 115.2 (C, Ar), 118.4 (CH, Ar), 122.5 (CH, 
Ar), 123.6 (CH, Ar), 125.9 (C, Ar), 149.5 (C=O), 160.8 (C=O), 
197.6 (C=O). FT-IR (KBr, cm−1): 3242 (N–H), 3066 (C–H, Ar), 
2928 (C–H), 2866 (C–H), 1601 (C=O), 1570 (C=C, Ar). HR-MS 
(ESI+): m/z Cald for C26H22N4O4 ([M + H+]) 455.3222, found 
455.3219.

6‑Acetyl‑5‑(4‑hydroxyphenyl)‑7‑methyl‑8‑(4‑(2‑methylthi‑
azol‑4‑yl)phenyl)‑5,8‑dihydro pyrido[2,3‑d] pyrimidine‑2,4 

(1H,3H)‑dione (8f)  Follow general method, using 
4-hydroxybenzaldehyde 4 (0.24 g, 2.0 mmol), acetylac-
etone 5 (0.2 g, 2.0 mmol), 4-(2-methyl-1,3-thiazol-4-yl) 
aniline 6f (0.38 g, 2.0 mmol) and barbituric acid 7 (0.24 g, 
2.0 mmol) for 2 h. The crude compound was purified by 
flash chromatography (petroleum ether: ethyl acetate: 6: 
4, Rf = 0.2) to give 0.16 g (82%) 8f as an orange solid; m.p 
267–268 °C; 1H NMR (400 MHz, CDCl3, δ, ppm): 12.55 (s, 
1H, NH), 7.86 (d, J = 8.5 Hz, 2H, Ar–H), 7.69 (d, J = 8.5 Hz, 2H, 
Ar–H), 7.29 (d, J = 4.9 Hz, 2H, Ar–H), 7.16 (d, J = 8.4 Hz, 2H, 
Ar–H), 6.73 (s, 1H, CH-thiazole), 5.22 (s, 1H, CH), 2.78 (s, 3H, 
CH3), 2.12 (s, 3H, CH3), 2.05 (s, 3H, CH3). 13C NMR (100 MHz, 
CDCl3, δ, ppm): 20.3 (CH3), 21.2 (CH3), 31.8 (CH3), 39.4 (CH), 
100.2 (C, thiazole), 112.6 (C, thiazole), 114.2 (CH, Ar), 116.6 
(CH, Ar), 125.3 (CH, Ar), 126.6 (C, Ar), 130.5 (C, Ar), 142.1 
(C=O), 169.8 (C=O), 196.3 (C=O). FT-IR (KBr, cm−1): 3225 
(N–H), 3063 (C–H, Ar), 2921 (C–H), 2870 (C–H), 1606 (C=O), 
1575 (C=C, Ar). HR-MS (ESI+): m/z Cald for C26H22N4O4S 
([M + H+]) 487.4573, found 487.4577.

6‑Acetyl‑5‑(4‑hydroxyphenyl)‑7‑methyl‑8‑((5‑methyl‑
furan‑2‑yl)methyl)‑5,8‑dihy dro pyrido[2,3‑d]pyrimidine‑2,4 
(1H,3H)‑dione (8g)  Follow general method, using 
4-hydroxybenzaldehyde 4 (0.24 g, 2.0 mmol), acetylac-
etone 5 (0.2 g, 2.0 mmol), (5-methylfuran-2-yl) methan-
amine 6g (0.22 g, 2.0 mmol) and barbituric acid 7 (0.24 g, 
2.0 mmol) for 2 h. The crude compound was purified by 
flash chromatography (petroleum ether: ethyl acetate: 6:4, 
Rf = 0.3) to give 0.17 g (85%) 8g as a yellow solid; m.p 200–
201 °C; 1H NMR (400 MHz, CDCl3, δ, ppm): 11.01 (s, 1H, NH), 
7.79 (d, J = 8.7 Hz, 2H, Ar–H), 6.99 (d, J = 8.6 Hz, 2H, Ar–H), 
6.12 (d, J = 3.1 Hz, 1H, furan), 5.91 (dd, J = 4.2, 2.2 Hz, 1H, 
furan), 5.08 (s, 1H, CH), 4.40 (s, 2H, CH2), 2.08 (s, 3H, CH3), 
2.02 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3, δ, ppm): 12.0 
(CH3), 16.2 (CH3), 28.6 (CH2), 40.8 (CH), 100.3 (CH, furan), 
109.2 (CH, furan), 111.8 (CH, Ar), 117.9 (CH, Ar), 130.3 (C, 
Ar), 161.8 (C=O), 194.8 (C=O). FT-IR (KBr, cm−1): 3109 (N–H), 
3003 (C–H, Ar), 2921 (C–H), 2815 (C–H), 1683 (C=O), 1604 
(C=C, Ar). HR-MS (ESI+): m/z Cald for C22H21N3O5 ([M + H+]) 
408.8550, found 408.8545.

6‑Acetyl‑5‑(4‑hydroxyphenyl)‑7‑methyl‑8‑phenethyl‑5,8‑dihy‑
dropyrido [2,3‑d] pyrimidine‑2,4 (1H, 3H)‑dione (8h)  Follow 
general method, using 4-hydroxybenzaldehyde 4 (0.24 g, 
2.0 mmol), acetylacetone 5 (0.2 g, 2.0 mmol), 2-phenyleth-
ylamine 6h (0.24 g, 2.0 mmol) and barbituric acid 7 (0.24 g, 
2.0 mmol) for 2 h. The crude compound was purified by 
flash chromatography (petroleum ether: ethyl acetate: 
6: 4, Rf = 0.5) to give 0.18 g (90%) 8h a white solid; m.p 
197–198 °C; 1H NMR (400 MHz, CDCl3, δ, ppm): 10.92 (s, 
1H, NH), 7.34–7.21 (m, 9H, Ar–H), 4.95 (s, 1H, CH), 3.49 (t, 
J = 10.3 Hz, 2H, CH2), 2.88 (t, J = 7.3 Hz, 2H, CH2), 2.01 (s, 
3H, CH3), 1.82 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3, δ, 
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ppm): 13.9 (CH2), 16.7 (CH3), 25.9 (CH2), 37.3 (CH2), 45.2 
(CH), 95.8 (CH, Ar), 112.6 (CH, Ar), 124.6 (CH, Ar), 130.0 (C, 
Ar), 132.3 (C, Ar), 150.3 (C=O), 162.5 (C=O), 196.4 (C=O). 
FT-IR (KBr, cm−1): 3230 (N–H), 3063 (C–H, Ar), 2926 (C–H), 
2870 (C–H), 1606 (C=O), 1568 (C=C, Ar). HR-MS (ESI+): m/z 
Cald for C24H23N3O4 ([M + H+]) 418.2674, found 418.2673.

6‑Acetyl‑8‑(3,4‑dimethoxybenzyl)‑5‑(4‑hydroxyphenyl)‑7‑me‑
thyl‑5,8‑dihydropyrido[2,3‑d] pyrimidine‑2,4(1H,3H)‑dione 
(8i)  Follow general method, using 4-hydroxybenza-
ldehyde 4 (0.24  g, 2.0  mmol), acetylacetone 5 (0.2  g, 
2.0  mmol), 2,4-dimethoxybenzylamine 6i (0.32  g, 
2.0 mmol) and barbituric acid 7 (0.24 g, 2.0 mmol) for 
2 h. The crude compound was purified by flash chroma-
tography (petroleum ether: ethyl acetate: 6: 4, Rf = 0.2) 
to give 0.18 g (93%) 8i as a yellow solid; m.p 223–224 °C; 
1H NMR (400 MHz, CDCl3, δ, ppm): 11.14 (s, 1H, NH), 7.74 
(d, J = 8.6 Hz, 1H, Ar–H), 7.09 (d, J = 8.4 Hz, 1H, Ar–H), 6.96 
(d, J = 8.7 Hz, 2H, Ar–H), 6.44 (d, J = 7.2 Hz, 2H, Ar–H), 5.02 
(s, 1H, CH), 4.39 (s, 2H, CH2), 3.81 (s, 3H, OCH3), 3.80 (s, 
3H, OCH3), 2.04 (s, 3H, CH3), 2.02 (s, 3H, CH3). 13C NMR 
(100 MHz, CDCl3, δ, ppm): 21.1 (CH3), 28.3 (CH3), 30.1 (CH2), 
40.3 (CH), 42.8 (OCH3), 55.2 (OCH3), 100.5 (CH, Ar), 106.2 (C, 
Ar), 112.9 (CH, Ar), 114.6 (CH, Ar), 118.6 (C, Ar), 125.4 (CH, 
Ar), 130.2 (C, Ar), 159.7 (C=O), 162.2 (C=O), 196.2 (C=O). 
FT-IR (KBr, cm−1): 3088 (N–H), 3006 (C–H, Ar), 2965 (C–H), 
2834 (C–H), 1683 (C=O), 1548 (C=C, Ar). HR-MS (ESI+): m/z 
Cald for C25H25N3O6 ([M + H+]) 464.1789, found 464.1785.

4 � Conclusion

In summary, a convenient and green method was intro-
duced for the synthesis of new 1,4-DHP derivatives by the 
one-pot, four-component reaction in EtOH in the presence 
of 3-methyl-1-sulfonic acid imidazolium chloride {[Msim]
Cl}as catalyst at room temperature. Interesting properties 
of {[Msim]Cl} include non-toxic nature, easy to remove 
and offer potential advantages over conventional cata-
lyst. This modified strategy gives increased performance 
for the synthesis of new 1,4-DHP derivatives. The delightful 
properties of this protocol include the exploitation of envi-
ronmentally benign catalyst, easy work up and excellent 
yields of desired products. Further studies on evaluating 
the biological activities of these derivatives are in progress.
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