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Abstract
This article reports a comparative study of artificial neural network (ANN) and adaptive neuro-fuzzy inference system 
(ANFIS) models for better prediction of wire electro-discharge machining (WEDM) responses like material removal rate 
and surface roughness of a Nitinol alloy. Pulse on time (Ton), pulse off time (Toff), peak current (Ipeak) and gap voltage 
(V) were selected as input attributes. Experimental results were performed to verify the results from ANN and ANFIS 
models. ANN model, back-propagation with three different algorithms Levenberg–Marquardt (LM), Elman regression 
neural network and generalized regression neural network and ANFIS model, were developed using the same input 
variables. The most suitable algorithm and neuron number in the hidden layer were found as LM with 10 neurons for 
ANN models whereas the most suitable membership functions and number of membership functions are found to be 
gauss and two, respectively. The statistical validation measures such as root mean square error, mean square error and 
mean absolute percentage error are obtained through ANN and ANFIS models. The statistical values are given in the 
tables. As per the statistical measures perspective, the ANFIS model will have better accuracy for anticipation of WEDM 
attributes of a Nitinol alloy.
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1  Introduction

Aerospace industry is looking at developing novel materi-
als by incorporating features like superior strength-to-
weight ratio, superior mechanical strength, excellent cor-
rosion resistance, etc. in alloys. Nickel titanium (Nitinol) 
alloy is one of the upcoming novel materials with proper-
ties such as better strength-to-weight ratio, high ductility, 
more resistance to wear and corrosion, excellent biocom-
patibility, etc. [1]. The addition of a ternary alloying ele-
ment like copper leads to increase in transformation tem-
peratures, quick actuating response, fatigue and damping 
properties [2]. In addition to this, this material also acquires 
two outstanding distinct properties like shape memory 

and super elasticity, leading to several applications in 
automotive and medical industries. Nitinol alloy belongs 
to difficult-to-cut materials due to low thermal conductiv-
ity and modulus of elasticity, high strain hardening and is 
exceptionally hard to machine using regular machining 
forms like turning, boring, milling and so on, to avoid 
extreme tool wear as well as chips adhering to the tool, etc. 
[3] researchers are looking at non-traditional machining 
processes such as electro-chemical machining (ECM), 
electro-discharge machining (EDM), abrasive jet machin-
ing (AJM) wire electro-discharge machining (WEDM), laser 
machining, hybrid machining processes, etc. wire electro-
discharge machining is a standout process amongst the 
most versatile un-traditional machining procedures to 
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machine hard metals and combinations of metals like 
nickel-based alloys, titanium-based alloys, shape memory 
alloys, strain hardened materials, etc. In WEDM, metal 
expulsion is influenced by start disintegration, since the 
wire is bolstered through work piece [4] where ordinarily 
used wires are made of copper, brass, aluminium, molyb-
denum and graphite. The use of copper as wire leads to 
increase in surface hardness because of the development 
of titanium carbide. Graphite has high melting point due 
to which its material removal rate is greater while alumin-
ium gives good surface finish [5, 6]. Worked on WEDM 
characteristics of input attributes on MRR and SR of 
Ti50Ni42.4Cu7.6 shape memory alloys. Conjunction of small 
peak current with little Ton is more advantageous to maxi-
mize MRR while minimizing SR high Ton with small current 
is essential [7] and reports the impact of WEDM process 
attributes on machined surface of Ti50Ni49Co1 shape mem-
ory alloy. Indigent surface quality was noticed at greater 
Ton while superior surface roughness was obtained at 
higher Servo Voltage [8]. Suggested a fuzzy adaptive con-
troller and used a fuzzy imperialist competitive algorithm 
to handle the complexity in resolving typical optimization 
problems in manufacturing. Artificial neural network along 
with genetic algorithm was applied for improving surface 
texturing properties of EN 31 steel during WEDM process 
[9]. Responses like MRR and surface roughness are pre-
dicted and analysed parametrically using ANFIS modelling 
during turning of 202 stainless steel [10, 11]. It is proposed 
that comparative analytical models rely on neural network 
back-propagation along with ANFIS and RSM for predict-
ing MRR and SR all along with helium-assisted electro-
discharge machining of die steel. An ANFIS modified sys-
tem was proposed to optimize the active parameters and 
grinding effectiveness in bearing manufacturing to 
achieve better productivity compared with other practices 
[12, 13]. Determined the impact of WEDM attributes on 
performance attributes to enhance the efficiency with 
superior quality of titanium alloy (Ti–6Al–4V) utilizing 
ANFIS and grey relation analysis (GRA) approach. Artificial 
intelligence techniques like ANFIS and artificial neural net-
works are implemented to anticipate tool wear during 
conventional milling of aluminium alloy composites [14]. 
ANFIS combined with Gaussian regression function and 
Taguchi analysis was adopted for online prophecy of SR 
and grinding wheel wear all through the grinding of 
Ti–6Al–4V [15]. Neural networks and fuzzy inference sys-
tem (FIS) optimized models were evolved for determining 
ultimate tensile strength of friction stir welded aluminium 
alloy joints [16]. ANN models were developed for predict-
ing WEDM responses of aluminium-based metal matrix 
composites [17]. Hybrid techniques of artificial neuro-
fuzzy and ANN were adopted for the prediction of machin-
ing characteristics of Ti–6Al–4V alloy [18, 19] attempted 

back-propagation neural network model for anticipation 
of SR during the turning of mild steel work pieces. A multi-
stage decision algorithm was designed based on ANN and 
ANFIS models for detection and diagnosis of bearing faults 
[20]. Prediction of machining responses like tool wear and 
SR was done during the turning of steel under minimum 
quantity of lubrication using artificial neural network [21]. 
Various neural network models on MRR were compared 
during electrical discharge machining process and it was 
concluded that ANFIS with bell-shaped function gives the 
best predicted model [22]. For obtaining greater produc-
tivity and good product quality during industrial automa-
tion, tool wear prediction was made through a combina-
tion of radial basis functions and neural fuzzy function 
[23]. Experimental investigations was carried out to exam-
ine the effect of input attributes on SR and cutting force 
components during hard turning of American Iron and 
Steel Institute (AISI) 420, which also predicted machining 
responses using RSM and ANN [24]. Laser cutting rough-
ness is predicted using ANFIS intelligent model which 
combines adaptive learning ability with FIS for improving 
the quality of laser cutting [25]. A hybrid method of 
orthogonal-based ANN and multi-genetic algorithm is 
adopted for optimization during wire electro-discharge 
machining of Ti-48Al intermetallic alloy [26, 27] compared 
ANN and ANFIS models for estimating the performance of 
solar-assisted ground source heat pump system [28] dem-
onstrated the usefulness of adaptive neuro-fuzzy inference 
system, especially hybrid learning algorithm used for mod-
elling the ground coupled heat pump system more accu-
rately [29] has made a comparative study of ANN and 
ANFIS models for modelling and predicting a ground cou-
pled heat pump system [30] used ANN with statistical 
weighted preprocessing technique for predicting and 
improving the performance of ground source heat pump 
systems. Application of artificial neural networks was 
adopted for predicting the horizontal ground coupled 
heat pump systems [31]. Performance of a ground source 
heat pump prediction based on ANFIS with a fuzzy 
weighted preprocessing technique was adopted. Finally, 
based on the results, the proposed fuzzy weighted pre-
processing-based ANFIS gives better accuracy than stand-
ard ANFIS results [32, 33]. A modelling study of solar air 
heater using ANN and wavelet neural network modelling 
approaches for evaluating the performance of a new solar 
air heater is reported. Application of ANN model with three 
different learning algorithms, Levenberg–Marquardt (LM), 
Scaled Conjugate Gradient (SCG) and Pola–Ribiere Conju-
gate Gradient (CGP) algorithms and ANFIS model were 
developed using the same input variables for predicting 
the performance of vertical ground source heat pump [34, 
35] developed ANN model for prediction of surface rough-
ness in WEDM of Inconel 825 aerospace alloy. The 
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performance of solar chimney power plants were identi-
fied and modelled by using ANN and ANFIS models [36]. 
ANN and ANFIS models were compared for predicting 
surface roughness of assisted electrical discharge machin-
ing of D3 steel [37]. Application of artificial neural network 
computing technique was adopted for predicting the 
depth and surface roughness in laser milling of poly-
methyl-methacrylate [38]. Hence, it is apparent from ear-
lier studies that only limited studies on the prediction of 
WEDM output attributes of a Nitinol alloy through artificial 
intelligent techniques have beencarried out. The present 
article is therefore an attempt to predict WEDM response 
attributes like MRR and SR of Nitinol alloy while comparing 
two models based on statistical errors and accuracy. In this 
study, experiments were designed using central compos-
ite face-centred design by considering pulse on time (Ton), 
pulse off time (Toff), peak current (Ipeak) and gap voltage (V) 
as input attributes, while SR and MRR were output attrib-
utes for WEDM of a Nitinol alloy. Two artificial adaptive 
models-neural networks and adaptive neuro-fuzzy infer-
ence system are explored to predict output attributes of a 
work piece for a variety of input attributes.

2 � Materials and methods

Nitinol alloy (nickel titanium alloy) is commercially avail-
able and is supplied by Kellogg’s Research Labs, United 
States of America (USA), and was used as work piece 
material for machining. It has a melting point of around 
1300 ± 50 °C and density of 6.45 gm/cm3.

2.1 � Energy‑dispersive X‑ray fluorescence (EDXRF) 
of a Nitinol alloy

The chemical constitution of the workpiece is provided 
by the supplier and confirmed by energy-dispersive X-ray 
fluorescence (EDXRF) analyser (VEGA 3LMU.TESCAN, Czech 
Republic) shown in Table 1, as illustrated in Fig. 1. It shows 
the presence of different chemical elements such as car-
bon (C), oxygen (O), aluminium (Al), silicon (Si), sulphur 
(S) and iron (Fe).

2.2 � Microstructure of Nitinol alloy

Figure 2 shows the microstructure of Nitinol alloy. In this 
technique, the surface of the specimen should be cleaned 

with polishing techniques to obtain mirror surface. Etch-
ants were finally adopted for Nitinol alloy to obtain different 
phases of crystal structure. From this analysis, it is observed 
that the dark phase is identified as nickel titanium (NiTi) and 
bright phase as Ti2Ni and copper and Fe atoms were also 
present in the matrix of both phases.

Table 1   Chemical constitution 
of Nitinol alloy

Element Ni Ti Cu C O Al Si S Fe

Weight (%) 45.10 43.72 6.35 2.95 1.45 0.16 0.16 0.03 0.08
Atomic (%) 36.04 42.83 4.69 11.51 4.27 0.27 0.26 0.05 0.06

Fig. 1   EDXRF analysis for Nitinol alloy

Fig. 2   Microstructure of Nitinol alloy before machining
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2.3 � Differential scanning calorimetry (DSC) 
of a Nitinol alloy

Differential scanning calorimetry (DSC) analysis is the 
most commonly adopted thermal analysis technique for 
measuring transformation temperatures. It measures the 
amount of energy absorbed or released by a sample when 
it is heated or cooled. DSC curve was observed for Nitinol 
alloy and the transformation temperatures were analysed 
using tangent method as shown in Fig. 3.

From DSC Curve, we analyse the transformation tem-
peratures using tangent method. Martensite start tem-
perature (Ms) = 42.64 °C; martensite finish temperature 
(Mf) = 13.97 °C; austenite start temperature (As) = 49.126 °C; 
austenite finish temperature (Af ) = 78.21 °C.

2.4 � Artificial neural networks

Artificial neural network is the most extensively adopted 
model for addressing complex and nonlinear problems. 
It is the preferred model to explain complex behaviour 
between input and output in WEDM process. It has been 
used extensively in numerous fields such as process mod-
elling, robotics, pattern recognition, forecasting, etc. [39, 
40]. A basic model of ANN comprises three layers: input, 

hidden and output. The pairs of input–output patterns 
are stocked in input and output layers, the hidden layer 
relates to the distinguished strength of data from the 
input to output patterns, through so-called weights. The 
weights are altered in the learning process in which all 
the layers of input–output are presented in the learning 
phase frequently. For training multi-layer network, a lot 
of algorithms are available, the most commonly accepted 
learning algorithm being back-propagation algorithm. 
The general architecture of back-propagation neural 
network constitutes input, hidden and output layers, as 
shown in Fig. 4. The input layer takes data from exterior 
sources and advances this data to the network for process-
ing. The hidden layer takes data from the input layer, and 
does whole data processing, and the output layer takes 
treated data from the network, and transmit the results 
out to an exterior receptor. Cluster type of superintend 
learning has been used in the current case, where, whole 
input–output pattern sets are furnished to the neural 
network step by step, and again modified using average 
gradient data. During training, the evaluated output is 
correlated with the target output, and the mean square 
error is determined. If the mean square error is greater 
than the recommended restricting value of the error, it 
is back-propagated to change the concatenation weights 

Fig. 3   DSC curve of a Nitinol alloy

Fig. 4   Multi-layer neural 
network architecture for both 
MRR and SR

Input layer                                                   Hidden layer                                        output layer

Ton

Toff

Ipeak

 V
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and the process continues until the recommended error 
rein is arrived.

Mean square error, E, is calculated by Eq. (1)

where p = number of pattern, n = number of node in out-
put layer, dk

p = desired output of kth node of pth pattern, cp 
k = calculated output of kth node of pth pattern.

Figure 5 shows the framework of ANN model.

(1)E =
1

P

P∑

1

n∑

k=1

(
d
p

k
− c

p

k

)2

To accomplish ANN model for prediction of MRR and SR, 
the following points are followed in the sequence below

1.	 Collect experimental data.
2.	 Divide the experimental data into training and testing 

data sets.
3.	 Create a network by giving training and testing sam-

ple.
4.	 Configure the network by choosing the number of hid-

den layers and required training, transfer and learning 
functions.

Collect the Data

Divide the data as training and testing data

Create Network

Configure Network

Reselect training 
data or collect more 

data

Increase the no of 
neuron or Change 

Weights

Train Network

MSE goal met 

Yes

Done

No No

Fig. 5   Framework of ANN model
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5.	 Train the ANN model by giving it the required param-
eters to achieve MSE goal.

6.	 If the attempt results in failure, go back to change the 
hidden layers or weights and generate the network 
again and repeat the cycle until the required goal is 
achieved.

2.5 � Adaptive neuro‑fuzzy inference system

ANFIS is a hybrid conjecturing model which combines 
neural network and fuzzy logic to develop mapping con-
nection between inputs and outputs [41]. In the hybrid 
approach, the neural network is trained by data while 
fuzzy logic is based on linguistic rules called If–then rules. 
If–then rules are incorporated along with trained data and 
are called inference of fuzzy inference system. Fuzzy sys-
tems and neural networks are amongst the most impor-
tant soft computing methods. The connection between 
neural networks and linguistic knowledge-based system is 
bidirectional and has been discussed extensively [42]. The 
ANFIS model gives overall behaviour of Input or output 
obtained by a collection of variables [43]. The goal of ANN 
and fuzzy systems are to follow the actions of an expert 
for resolving a complex problem through instruction or 
learning. If one has data instruction or can learn from 
simulation or real problem, ANN is highly suitable. If one 
gains learning from knowledge expressed in the form of 
linguistic rules, one can build a fuzzy system. The advan-
tages of both fuzzy and ANN systems are combined in a 
neuro-fuzzy approach called ANFIS [44].

The goal is to establish an adaptive neuro-fuzzy infer-
ence model to correlate the inputs to the output attributes 
perfectly. They are assessed on the basis of testing accom-
plishment. An ANFIS model is developed for predicting the 
wire electro-discharge machining responses like material 
removal rate and SR. In this research, a total of 100 data 
patterns were used for the prediction of ANFIS model. In 
general, total data instances are divided into training and 
testing data sets. The training data set is mainly adopted 
for building ANFIS model as long as the testing data sets 
are used for validating the predicted model.

ANFIS structure is categorized into five layers in which 
each layer is erected by various nodes as in a neural net-
work. (1) Input data fuzzification, (2) fuzzy database struc-
ture, (3) structure of fuzzy rule base, (4) preparation for 
decision and (5) output defuzzification [45]-simplified 
ANFIS illustration are shown in Fig. 6.

To illustrate this model clearly, the five layers of ANFIS 
network contain two inputs (x and y) with two fuzzy rules 
and output attribute f. The inputs of individual layers in 
the structure are acquired by the nodes from prior layer. 
ANFIS rule base constitutes If–then rules of the fuzzy Sug-
eno type. For a first-order Sugeno fuzzy inference system 
(FIS), two rules may be given as

Rule 1 If x is A1 and y is B1, then f is f1 (x, y)
Rule 2 If x is A2 and y is B2, then f is f2 (x, y),

x, y are ANFIS inputs, Ai, Bi are the fuzzy sets, f1 (x, y) are the 
output of the first-order Sugeno FIS. The simplified ANFIS 
structure is shown in Fig. 6. The attributes sets that are flex-
ible in these nodes are given by adoptive nodes indicated 
by squares, while firm nodes are indicated by circles [46].

ANFIS model for both MRR and SR comprises five lay-
ers of adaptive network which consists of four inputs 
with eight fuzzy rules with one output Inference system 
is assembled by five layers, where every layer constitutes 
various nodes characterized by node function. The current 
layer inputs are obtained from earlier layers. The ANFIS rule 
base generally contains If–then rules of Sugeno type [48].

Primary layer is the fuzzy layer, which gives information 
about adaptive nodes with node functions i. The member-
ship connection between the output and input functions 
of this layer are given by:

Q1i and Q1ij stand as output functions and µAi and µBj 
are designates of membership functions. There are various 
membership functions such as trigonometric, triangular, 
trapezoidal, bell mf, gauss mf types, which are generally 

(2)Q1,i = �Ai(x) (i = 1, 2)

(3)Q1ij = �Bi(y) (i = 3, 4)

Fig. 6   Simplified ANFIS struc-
ture [47]
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adopted. Amongst all types gauss membership function 
is preferred to show the linguistic labels because the con-
nection between processing time and make span is non-
linear and this gives a smooth transition.

It may be written as.
Initial parameter membership function

Layer 2 consists of fixed nodes indicated by a circle. A 
node function multiplied by input gives output. For each 
node, this type of layer is called rule node. It evaluates the 
firing strength of the correlated rule.

here Q2,i denotes the output of the second layer.
In the third layer, every node i is considered firm node 

and is indicated by circles and labelled N which gives the 
normalization of the firing levels. Its purpose is to normal-
ize the weight function in the following process:

where Q3,i signifies the output of the third layer
Layer 4 is called de-fuzzy layer, whose node i is adaptive 

and indicated by a square. If the output equation is w̄ , the 
de-fuzzy connection between the input and output of this 
layer may be defined as:

where Q4, i signifies the output of the fourth layer, where 
f1 and f2 are the fuzzy If–then rules are as follows

Rule 1 If x is A1 and y is B1, then f1 = p1x + q1y + r1
Rule 2 If x is A2 and y is B2, then f2 = p2x + q2y + r2

where wi  is firing strength of the earlier normalized layer 
and pi qi ri are the resultant attribute sets.

Layer 5 is gross output layer, whose node is marked as 
Σ. In this layer we have only one node called fixed node, 
indicated by a circle, which gives inclusive output by add-
ing up all approaching signals

In ANFIS simplified diagram, the first and fourth layers 
with two adaptive nodes are very crucial. There are two 
flexible premise attributes [ai, bi] in the first layer which 

(4)�Ai(x) = exp

[
− 0.5

((
x − ai1

)

bi1

)
2

]

(5)�Bi(y) = exp

[
− 0.5

(
x − ai2

bi2

)
2

]

(6)Q2,i = wi = �Ai(x)�Bi(y)

(7)Q3,i = w̄
wi∑
wi

(i = 1, 2)

(8)Q4, i = w̄i × fi (i = 1, 2)

(9)Q5, i = fout = 𝛴w̄i × fi .

connect two membership functions. In layer 4, we observe 
three flexible consequent attributes [pi qi ri] belonging to 
a single-order polynomial. Figure 7 gives the framework 
of ANFIS model

To accomplish adaptive neuro-fuzzy inference system 
model for prediction of MRR and SR, the following points 
are taken into consideration:

1.	 Initial training data is defined.
2.	 Attributes for input and output membership function 

are set.
3.	 Membership function structure is defined.
4.	 ANFIS model is trained to extract data.
5.	 Testing data is defined.
6.	 ANFIS model is tested.

Start

Training data is 
defined

Setting of the attributes for input and output membership functions

Membership function structure is defined

To Train ANFIS model 

To Test an ANFIS model 

To predict the model output

Testing data is 
defined

Determining the coefficient of determination (R2) for output

Plotting of ANFIS diagram for actual and predicted outputs

Stop

Fig. 7   Framework of the ANFIS model
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3 � Experimental details

In this study, all experiments were conducted on a Com-
puter Numerical Control (CNC) WEDM (“Ezeecut plus” man-
ufactured by Ratnapar-khi Electronics) as shown in Fig. 8. A 
molybdenum wire of 0.18 mm diameter was used as wire 
electrode material as it is more advantageous in terms of 
greater melting point and larger tensile strength, which is 
very helpful during machining of intricate shapes, espe-
cially in aerospace and missile components compared with 
other wire materials. During this process, the diameter of 
the wire and the pressure of de ionized water as dielectric 
fluid (2.6 kg/cm2) were kept constant.

Table 2 demonstrates the four processing input attrib-
utes used for ANFIS modelling for training and testing.

3.1 � Measurement of MRR and SR

The performance of WEDM machine depends mainly on 
MRR and SR [49]

volume of material removed = length of cut (mm) × width 
of cut (mm) × thickness of the sample, where width of cut 
(mm) = 2 × clearance + diameter of the wire.

Machining time is obtained by means of stop watch for 
each trial if time is measured with a stop watch. Surface 
roughness is measured using surface roughness tester 
(Taylor Hobson, Sutronic-3+) expressed in micrometres. 
Surface roughness is measured at three distinct areas of 

(10)MRR
(
mm3∕min

)
=

volume of material removed

machining time

the work surface and the average value of surface rough-
ness is then calculated. Table 3 shows the experimental 
design for WEDM of Nitinol alloy developed by response 
surface methodology (RSM) face-centred central compos-
ite design (CCD).

4 � Data analysis: prediction‑modelling 
for material removal rate and SR using 
artificial neural networks and adaptive 
neuro‑fuzzy inference system

4.1 � Artificial neural network modelling

Neural network modelling is commonly adopted soft 
computing technique to solve intricate nonlinear prob-
lems. The neural network constitutes extensive interre-
lated neural computing elements. In this research arti-
cle, MATLAB software was employed for designing ANN 
architecture. The input layer related to Ton, Toff, Ipeak and 
Gap voltage whereas the output layer related to mate-
rial removal rate or surface roughness. In this model, the 
input layer is interrelated with a hidden layer of neuron 

Fig. 8   Schematic diagram of 
WEDM process of a Nitinol 
alloy

Servo Control
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WEDM Control 
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Table 2   Input attributes used in training and testing

S. no. Parameters Values

1 Pulse on time (Ton) (µs) 30–50
2 Pulse off time (Toff) (µs) 10–14
3 Peak current (I) (A) 2–4
4 Voltage (V) (V) 40–50
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and the hidden layer is related to output layers. After 
thorough trials and from operating the network, ANN 
models for material removal rate and the surface rough-
ness were developed.

ANN model, back-propagation with three different 
learning algorithms Levenberg–Marquardt (LM), Elman 
regression neural network and generalized regression 
neural network (GRNN) were used for predicting WEDM 
attributes. The most suitable algorithm and neuron num-
ber in the hidden layer was found to be Levenberg–Mar-
quardt (LM) with 10 neurons for ANN models. The attrib-
utes chosen for predicting ANN model for MRR and SR are 
shown in Table 4. For swift and superintended learning, 
Levenberg–Marquardt back-propagation neural network 
algorithm was used throughout the time of training the 
network [50–52]. The accomplishment of the network is 

expressed in terms of mean square error (MSE) and aver-
age percentage error (APE). MSE can be calculated as:

Table 3   Experimental matrix 
design and their results

S. no. Pulse on time 
(Ton) (µs)

Pulse off time 
(Toff) (µs)

Peak cur-
rent (I) (A)

Voltage (V) MRR (mm3/min) Surface 
roughness 
(µm)

1 50 14 4 50 2.768 2.52
2 50 14 4 40 2.793 2.54
3 50 14 2 40 2.745 1.6
4 30 10 2 50 3.542 1.91
5 50 14 2 50 2.881 1.58
6 40 12 3 50 2.845 2.4
7 40 12 3 45 2.854 2.44
8 30 14 4 40 3.131 2.72
9 30 10 4 40 3.634 2.75
10 50 12 3 45 2.785 2.23
11 40 14 3 45 2.74 2.32
12 40 10 3 45 2.761 2.42
13 40 12 3 45 2.728 2.44
14 30 12 3 45 2.978 2.45
15 40 12 3 45 2.926 2.54
16 50 10 4 40 2.756 2.45
17 40 12 3 45 3.283 1.76
18 40 12 4 45 2.607 1.68
19 30 10 4 50 2.845 2.44
20 30 10 2 40 3.652 1.88
21 40 12 3 45 2.26 2.64
22 40 12 3 45 2.927 2.46
23 40 12 2 45 2.92 2.68
24 50 10 2 50 3.56 2.73
25 40 12 3 40 3.425 1.98
26 30 14 2 40 2.875 2.44
27 30 14 2 50 3.754 1.85
28 50 10 2 40 2.529 1.74
29 50 10 4 50 2.26 2.62
30 30 14 4 50 3.014 2.71

Table 4   Selected ANN attributes for MRR and SR

Network parameters Values

Network structure 4-10-1
Total number of training/testing data sets 70/30
Network algorithm Feed forward back-

propagation 
(FFBP)

Type of transfer function TRANSIG
Type of training function TRAINLM
Learning function LEARNGDM
Performance function MSE
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where X is the number of output nodes, Y is the total 
number of training data, pj is output of jth neuron and 
qj is the predicted value of jth neuron [53]. In the current 
neural network model for MRR and surface roughness 
throughout simulation, the correlation coefficient (R) val-
ues obtained for MRR and surface roughness are 0.9815 
and 0.9878 as represented in Figs. 9 and 10. From statis-
tical perspective, a network can accurately compare the 
input attributes with output attributes. If the correlation 
of coefficients is close to 1, which exhibits the collation of 
experimental and anticipated values of MRR and surface 
roughness by feed forward back-propagation neural net-
work (FFBP).

(11)MSE =
1

x × y

X∑

i=1

Y∑

j=1

(
pj − qj

) 4.2 � ANFIS modelling

In this section, an ANFIS model with three different mem-
bership functions (gauss mf, gauss2mf, g bell mf ) were 
employed for anticipating both MRR and SR during WEDM 
of Nitinol alloy using MATLAB. The entire experimental 
data set was split into training and testing datasets. Graph-
ical user interface (GUI) was generally adopted for training 
and testing ANFIS model. The training data sets include 
70 observations whereas testing includes 30 observations. 
Testing 30 data sets was considered for predicting WEDM 
responses.

The parameters chosen for predicting and developing 
ANFIS model are illustrated in Table 5. Two Gaussian-type 
membership functions (gauss mf ) have been preferred 
for input variables while constant-type membership 
function (MF) has been used for MRR and SR as shown 
in Fig. 11. Grid partition method is generally applied 
for generating an fuzzy inference system (FIS) when we 
test for fewer data sets. During training of ANFIS, least 
squares combined with back-propagation were applied 

Fig. 9   Regression analysis 
between the actual and pre-
dicted values by FFBP-neural 
network of a Nitinol alloy for 
training, testing, validation, 
and overall for MRR
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for better trained optimized FIS. It includes Ton, Toff, Ipeak, 
V and MRR, SR. The deviation of actual and predicted 
data sets is illustrated in Fig. 12. The blue dots represent 
experimental output data and pink dots represent ANFIS 
anticipated data. The conspiracy shows distribution of 

data is unity in nature. Figure 13 gives the gauss initial 
membership functions of one of the input attribute (i.e. 
2 2 2 1) with respect to SR, and Fig. 14 gives the FIS rule 
Sugeno-type architecture when Gaussian membership 
is mixed with constant function. Grid partition method 
is generally adopted in ANFIS model structure for both 
MRR and SR as illustrated in Fig. 15. The effect of each 
individual input attributes on WEDM responses is indi-
cated by 3D contour plots as represented in Figs. 16 
and 17. ANFIS architecture with four input attributes and 
one output with 2 2 2 1 gauss membership function, we 
get 8 fuzzy rules as illustrated in Fig. 18. The variation of 
ANFIS-predicted WEDM response attributes with actual 
experimental attributes in the form of error and accu-
racy percentages is given in Table 6. Correlation coeffi-
cient is a statistical process for determining the relation 
between the testing input data sets and the predicted 
WEDM output attributes.

Fig. 10   Regression analysis 
between the actual and pre-
dicted values by FFBP-neural 
network of a Nitinol alloy for 
training, testing, validation, 
and overall for SR

Table 5   Selected ANFIS attributes for training of ANFIS model for 
MRR and SR

ANFIS attributes Values

Total number of inputs 04
Total number of outputs 02
Total number of training/testing data sets 70/30
Type of input membership function Gauss
Type of output membership function Constant
Optimization method adopted hybrid
Error tolerance 0
Total number of fuzzy rules 8/output
Number of epochs 500/output
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5 � Results and discussion

ANN models, back-propagation with three different 
algorithms Levenberg–Marquardt (LM), Elman regres-
sion neural network and generalized regression neural 
network (GRNN) were used for anticipating the WEDM 
responses. The statistical measures like MSE, RMSE, MAE 
and standard deviation of all three neural networks are 
illustrated in Table 7. LM back-propagation algorithm 
with 10 neurons gives fewer statistical errors and is 
more accurate than Elman RNN and GRNN. ANFIS mod-
els with three different membership functions (gauss MF, 

Fig. 11   The training of data for both MRR and SR

Fig. 12   Distribution of experimental and predicted data of MRR and SR (testing)

Fig. 13   Membership function for pulse on time (Ton) on SR
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Fig. 14   Sugeno-type structure (FIS) for MRR and SR

Fig. 15   ANFIS model structure 
for MRR and SR
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gauss2MF, gbell MF) were trained and tested for predict-
ing WEDM responses. Statistical errors were fewer com-
pared to the remaining two MF for the same input varia-
bles as shown in Table 8. As per the statistical perspective 
ANFIS model will give more accuracy than ANN models. 
This exhibits variation of experimental responses with 
the predicted responses being a validation of both ANN 
and adaptive neuro-FIS model. Both may then be utilized 
to predict the MRR and surface roughness.

The absolute percentage error (Ei), mean absolute per-
centage error (Eav), root mean square error (RMSE) of both 
MRR and SR are calculated by Eqs. (12)–(14)

where Ei is the % error of the data set i; Eavg is the average 
percentage error; M is the number of datasets

(12)

Ei =
|actual output value − predicted ANFIS output value|

actual output value
× 100

(13)Eavg =
1

M

M∑

i=1

Ei

(14)RMSE =

√
1

M

M∑

I=1

(
xi − yi

)2

where M is the number of testing datasets, xi is the experi-
mental value and yi is the value, anticipated by artificial 
neural networks and adaptive neuro-FIS model.

Figures 19 and 20 show the coefficient of determina-
tion of ANN model (R2) for MRR, and surface roughness was 
0.9491, i.e. 94.91 and 0.9758, i.e. 97.58, respectively, whereas 
for ANFIS-predicted model (R2) for MRR and SR it was 0.9667, 
i.e. 96.67 and 0.9891, i.e. 98.91 percentage of the variance. 
The adjusted R-square value for MRR and SR of ANN model 
is 0.9473 and 0.9749 which is very close to R-square which 
makes our neural networks and adaptive neuro-FIS model 
more accurate. The root mean square error (RMSE) of MRR 
and SR of ANN model is 0.088286 and 0.04369 whereas for 
ANFIS model it is 0.070627 and 0.038525; this is used to 
anticipate the variance between the experimental and pre-
dicted value of the model. From Figs. 21 and 22, we observe 
that output of ANFIS-predicted model for MRR and SR is 
very close to experimental values compared to ANN antici-
pated models. The mean absolute error (MAE) obtained from 
ANFIS-predicted model for MRR and SR is 0.0611 and 0.0285 
which is very low compared to ANN MAE, i.e. 0.0652 and 
0.04086.

Fig. 16   Exhibits surface contour plot of predicting MRR
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Fig. 17   Exhibits surface contour plot of predicting SR

Fig. 18   A sample set of FIS 
rules for prediction of MRR and 
surface roughness
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Table 7   Statistical values for 
WEDM responses of a Nitinol 
alloy, ANN models

WEDM 
responses

Model MAE MSE RMSE SD

MRR Generalized regression neural network (GRNN) 0.1327 0.02167 0.14723 0.3984
Elman back-propagation neural network 0.0881 0.008160 0.09033 0.3894
Levenberg–Marquardt (LM) 0.0652 0.007794 0.088286 0.3794

SR Generalized regression neural network (GRNN) 0.06431 0.004792 0.06922 0.3905
Elman back-propagation neural network 0.04199 0.001924 0.04386 0.3789
Levenberg–Marquardt (LM) 0.04086 0.001909 0.04369 0.374

Table 8   Statistical values for 
WEDM responses of a Nitinol 
alloy, ANFIS models

WEDM 
responses

Model MAE MSE RMSE SD

MRR Gauss membership function 0.06113 0.004988 0.070627 0.3705
Gauss 2 membership function 0.0621 0.005022 0.070866 0.3720
Gbell membership function 0.0634 0.005048 0.07105 0.3770

SR Gauss membership function 0.0285 0.001484 0.038525 0.3689
Gauss 2 membership function 0.03583 0.001531 0.03912 0.3712
Gbell membership function 0.0378 0.001886 0.04342 0.3714

Fig. 19   Coefficient of determination (R2) of a Nitinol alloy for ANN model. a MRR, b SR
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5.1 � Comparison of the artificial neural networks 
and ANFIS models

A collation of anticipated values of WEDM output 
responses of a Nitinol alloy by ANN and ANFIS models 
is achieved. ANN model, back-propagation with three 
different algorithms Levenberg–Marquardt (LM), Elman 
regression neural network (RNN) and generalized regres-
sion neural network (GRNN) and ANFIS model were devel-
oped using the same input variables. The most suitable 
algorithm and neuron number in the hidden layer were 
found as Levenberg–Marquardt (LM) with 10 neurons 
for ANN models whereas the most suitable membership 
functions and number of membership functions are found 
to be gauss and two, respectively. The precision of antici-
pated models for both artificial neural network and ANFIS 
was determined by using mean square error (MSE), root 
mean square error (RMSE), mean absolute percentage 
error (MAPE), as given in Tables 6 and 7. From these values 
it may be concluded that the adaptive neuro-FIS model 
offers more reliable and accurate prediction in combina-
tion with artificial neural network models. A comparison 
of experimental and predicted values of MRR and surface 

roughness of Nitinol alloy by ANN and ANFIS models is 
represented in Figs. 23 and 24.

6 � Conclusions

This article provides insights into the features of both 
ANN and adaptive neuro-fuzzy inference models for bet-
ter prediction of output attributes as well as a comparison 
of both models during WEDM machining of Nitinol alloy. 
The study is carried initially with the ANN model with three 
different algorithms and the best algorithm has chosen 
according to the statistical validation measures. Similarly 
the ANFIS with three different membership functions and 
the best has chosen with minimum statistical validation 
measures. Then, the ANN model will be compared with 
the ANFIS model and the results obtained will be resumed 
as follows:

1.	 Generalized regression neural network is the slowest 
algorithm in the back-propagation compared with 
remaining two neural networks (LM and Elman RNN). 

Fig. 20   Coefficient of determination (R2) of a Nitinol alloy for ANFIS model, a MRR, b SR



Vol.:(0123456789)

SN Applied Sciences (2020) 2:314 | https://doi.org/10.1007/s42452-020-2083-y	 Research Article

Statistical validation measures like MSE, RMSE, MAE SD 
are more in generalized regression neural network.

2.	 LM training algorithm is the fastest back-propagation 
algorithm compared to the remaining two algorithms. 
LM with 5 neurons appeared to be the best ANN 
model with low statistical validation errors and good 
accuracy.

3.	 Elman regression neural network is another algorithm 
with better accuracy than generalized regression neu-
ral network and low accuracy than LM back-propaga-
tion neural network in terms of statistical measures 
perspective for anticipating WEDM responses.

4.	 ANFIS model with two Gaussian-type membership 
functions (gauss mf ) has been preferred for input 

attributes while constant-type membership function 
(MF) which is used for MRR and SR gives best results 
compared to gauss2mf and gbell MF.

5.	 ANFIS model with two Gaussian MF was the best 
model amongst all neuro-fuzzy inference techniques 
(LM, Elman RNN, GRNN, gauss2MF, gbell MF) which 
was used for comparative purpose for predicting 
WEDM responses of Nitinol alloy.

From this investigation, it was concluded that ANFIS 
model gives more precise and useful soft computing 
approach when compared to ANN model for better pre-
diction of WEDM machining responses like MRR and SR of 
Nitinol alloy.
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Fig. 21   Collation of experimental and predicted values by different FFBP-ANN models of a Nitinol alloy. a Material removal rate, b SR
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Fig. 22   Collation of experimental and predicted values by different ANFIS membership functions of a Nitinol alloy. a Material removal rate, 
b SR

Fig. 23   Experimental and predicted values collation of MRR for ANN and adaptive neuro-FIS models
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