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Abstract
The instability in a composite nanofluid layer has been examined when the layer is heated from below. Two different 
types of suspended nano-particles are considered in the same base fluid. The study is performed within the scheme of 
linear stability approach and the normal mode procedure is applied to investigate stability criterion. The critical value of 
the Rayleigh number for the commencement of instability is achieved numerically and the effect of a range of physical 
variables on the stability criterion is studied. We also derive the conditions for the non-occurrence of over-stability. The 
most stable case is found when both types of nano-particles are in the same proportion.
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1  Introduction

There are various modern materials which play an 
extremely vital role in the improvement of our way of 
life. Some of these materials are used in modern cars and 
airplanes to make them lighter, safer and more fuel-effi-
cient than their predecessors. Nano-composites materi-
als are one of those modern materials. A nano-composite 
substance is consisting of a matrix or curing phase and 
nano-particles in powder form/suspension/dispersion to 
develop the characteristics of the basic material.

The addition of nanoparticles to a polymer medium 
can advance its performance. The strategy of adding 
nano-particles into another mixture is very valuable in 
cropping high-performance composites. Various nano-
particles like carbon nanotubes, graphene, molybdenum 
disulfide, etc. are being frequently applied as reinforcing 
materials to fabricate strong eco-friendly nanocomposites 
for cartilage tissue. The inclusion of such types of nano-
particles in the polymer at a very low concentration shows 
a significant development in the compressive properties 
of nanocomposites.

The nanofluid character to transfer convective heat 
mainly depends on the thermal and physical parameters 
of the base fluid and suspended nanoparticles, the shape, 
and the dimension of nanoparticles, the volume ratio 
of suspended nanoparticles and the flow structure. The 
above properties make nanofluid very useful in various 
real-life applications such as residential, commercial, trans-
portation and industrial sectors. Thermal stability in a nano 
liquid layer consistently heated below was considered by 
Tzou [1, 2]. He has used the transport equations derived 
by Buongiorno [3] and found that the joint performance 
of thermophoresis of nanoparticles and the Brownian 
movement has destabilizing effect. Nield and Kuznetsov 
[4] revisited the thermal stability in a horizontal nano-fluid 
layer by introducing various dimensionless numbers. The 
Rayleigh–Benard stability in a nano-liquid layer was con-
sidered by Dhananjay et al. [5].

The effect of various parameters on thermal instabil-
ity in the nanofluid layer was studied by various authors 
in the literature. Yadav et al. [6] measured the rotation 
effect on the stability of a nano-liquid layer. They showed 
that the rotation stabilizes the system for a specific col-
lection of values of various nanofluid parameters. The 
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thermal stability in a nano-liquid porous layer was con-
sidered by Nield and Kuznetsov [7]. In this problem, they 
have used Darcy’s model. They (Kuznetsov and Nield 
[8]) extended this problem by taking Brinkman’s model. 
The impact of the porous medium on the convection of 
nanofluid was solved by Bhadauria and Agarwal [9, 10]. 
The outcome of the double-diffusive phenomenon on 
the thermal instability in a nano-liquid layer was per-
formed by Nield and Kuznetsov [11]. They were using 
a Galerkin approach up to one-term and obtained that 
the stability boundaries. The consequence of swirl on the 
thermal stability in a horizontal porous layer of nano-liq-
uid was considered by Chand and Rana [12] and showed 
that porosity and has destabilizing nature in the case 
of stationary convection. Sheikholeslami et al. [13] have 
studied the problem of heat transfer of nanoparticles 
employing innovative turbulator considering entropy 
generation. Also the problem of heat transfer of nano-
particles employing innovative turbulator considering 
entropy generation is considered by Sheikholeslami 
et al. [14]. Shankar et al. [15] have discussed the MHD 
instability of pressure-driven fow of a non-Newtonian 
fluid. Faraz et al. [16] also considered MHD impacts on 
an axisymmetric Casson nanofluid and studied the heat 
transfer over a sheet. Sheu [17] considered the linear 
thermal stability in a viscoelastic nanofluid layer. Kumar 
and Awasthi [18] performed triple-diffusive phenome-
non on the stability of a nano-liquid layer. Awasthi et al. 
[19] considered the impact of triple-diffusive phenom-
enon on the Maxwell fluid layer when heat source was 
present.

In recent years, nano-composites materials have 
gained a lot of interest because of their use in research, 
industry and the community. The polymer nanocompos-
ites are a mixture of an organic polymer and inorganic 
nano-particle. These composites have achieved much 
more attention because of their exceptional properties 
emerging from the mixture of organic and inorganic 
hybrid materials. If we combine the functionalities of 
both components, and the nanostructure of the par-
ticles, nano-composites are anticipated to show new 
and enhanced properties. The resultant nano-compos-
ites have various potential applications in automotive, 
optoelectronics, biomedical, sensors, etc. Various papers 
on experimental analysis on nano-composite material 
are available in the literature. This is the first attempt 
to study the mathematical stability analysis of nano-
composite materials.

The thermal stability in a composite horizontal nano-
liquid layer is not examined yet to the best of our knowl-
edge. Therefore an effort has been made to explore the 
onset of thermal convection in a composite nano-liquid 
layer heated from below. The following assumptions have 

been taken for the mathematical treatment of the consid-
ered problem.

1.	 The nano-liquid is taken as Newtonian as well as 
incompressible and the laminar flow is considered.

2.	 The surface charge technology is used to suspend the 
nanoparticles in the base liquid.

3.	 The liquid and the nanoparticles are not reacting 
chemically during the thermal convection.

4.	 There is no force between both the nano-particles sus-
pensions.

5.	 The density in each term of the nanofluid momentum 
equation is considered to be invariable except in the 
external force term while other thermophysical param-
eters of nano-liquid (viscosity, specific heat, thermal 
conductivity, etc.) are assumed to be constant (Bouss-
inesq hypothesis).

6.	 Both types of nanoparticles and the base fluid phase 
are assumed to be in thermal balance state.

7.	 In this study, the spherical nano-particles are meas-
ured.

8.	 The effect of radioactive heat transport between the 
sides of the rigid boundary is neglected as it is excep-
tionally small.

2 � Problem formulation

In this study, the dimensional parameters are represented 
adding asterisks; meanwhile, the non-dimensional varia-
bles are with no asterisks. Here z-axis is taken as vertically 
upward and therefore, the gravitational force will be −gk̂ . 
A horizontal layer of composite nano-fluid (a base fluid 
suspended with two different types of nano-particles) 
restricted between the perfectly insulating planes z∗ = d 

Y

X

Z

Nano-particle

Nano-particle

d

Fig. 1   Schematic diagram of the problem
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and z∗ = 0 (Fig. 1). The temperature at the plane z∗ = d is 
assumed to be T ∗

0
 ; meanwhile, the temperature at z∗ = 0 

is T ∗
0
+ ΔT ∗ and ΔT ∗ ≪ T ∗

0
 . The composite nano-fluid mix-

ture is considered to be homogeneous and will be in the 
local thermal equilibrium state. The Oberbeck–Boussinesq 
approximation will be used to linearize the equations.

The flow of composite nano-fluid layer is governed by 
Tzou [2] and Buongiorno [3].

H e r e  t h e  n a n o f l u i d  v e l o c i t y  i s  t a k e n  a s 
u∗(m∕s) = (u∗, v∗, w∗) ; t∗(s) is the time; T ∗(0K ) is the tem-
perature of nanofluid; �T (0K−1) is the thermal volumetric 
coefficient; �∗

1
, �∗

2
 are the nano-particle volume fractions; 

�(N s∕m2) is the viscosity; DB1
, DB2

(m2∕s) are the Brown-
ian diffusion coefficients; DT1

, DT2
(m2∕s) are the thermo-

phoretic diffusion coefficients; �p1 , �p2(Kg∕m
3) are the 

nano-particles mass density; �(W∕mK ) is the thermal 
conductivity of the nanofluid. Also, we assumed that the 
nano-particles volume fractions are invariable on both the 
boundaries. The conditions on the boundary are defined 
as;

where d is the dimensional layer depth while �1 and �2 
are the parameters which acquire the value zero for rigid 
boundary and infinity for a free boundary.

We admit that in a number of contexts, the selection 
of boundary conditions forced on �∗

1
 and �∗

2
 is somewhat 

subjective. It might be claimed that on the boundaries, zero 

(1)∇ ⋅ u
∗ = 0,

(2)�

(
�u∗

�t∗
+ (u∗ ⋅ ∇∗)u∗

)
= �∇∗2u∗ − ∇∗p∗ +

[
�∗
1
�p1 + �∗

2
�p2 + (1 − �∗

1
− �∗

2
)�(

1 − �T (T
∗ − T ∗

0
)
)

]
,

(3)
�c
(
�T ∗

�t∗
+ (u∗

⋅ ∇∗)T ∗
)
= �∇∗2T ∗ + (�c)p1

[
DB1

∇∗�∗
1
⋅ ∇∗T ∗ +

(
DT1

∕T ∗
0

)
∇∗T ∗

⋅ ∇∗T ∗
]

+ (�c)p2

[
DB2

∇∗�∗
2
⋅ ∇∗T ∗ +

(
DT2

∕T ∗
0

)
∇∗T ∗

⋅ ∇∗T ∗
] ,

(4)
��∗

1

�t∗
+ (u∗

⋅ ∇∗)�∗
1
= DB1

∇∗2�∗
1
+
(
DT1

∕T ∗
0

)
∇∗2T ∗.

(5)
��∗

2

�t∗
+ (u∗

⋅ ∇∗)�∗
2
= DB2

∇∗2�∗
1
+
(
DT2

∕T ∗
0

)
∇∗2T ∗.

(6)w∗ = 0,
�w∗

�z∗
+ �1d

�2w∗

�z∗2
= 0, T ∗ = T ∗

0
+ ΔT ∗,�∗

1
= �∗

10
,�∗

2
= �∗

20

}
at z∗ = 0

(7)w∗ = 0,
�w∗

�z∗
− �2d

�2w∗

�z∗2
= 0, T ∗ = T ∗

0
,�∗

1
= �∗

11
,�∗

2
= �∗

21

}
at z∗ = d

particle flux is more practical, but then someone may not 
found the steady solution for base state heat equations (we 
have calculated and got a contradiction) and hence, to find 
the analytical solution for considered problem it is essential 
to restrict the base state profile for �∗

1
, �∗

2
 and so our prefer-

ence of conditions is fairly realistic.
Now, we introduce the non-dimensional vari-

ables (u, v,w), (x, y, z), t, p, �1, �2, T  is defined as 
(u, v,w) = (u∗, v∗,w∗)d∕�f , (x, y, z) = (x∗, y∗, z∗)∕d   , 
t = t∗�f∕d

2 , p = p∗d2∕��f  , �1 =
(
�∗
1
− �∗

10

)
∕
(
�∗
11
− �∗

10

)
 , 

�2 =
(
�∗
2
− �∗

20

)
∕
(
�∗
21
− �∗

20

)
 , T =

(
T ∗ − T ∗

0

)
∕ΔT ∗ , where 

�f = �∕�c is the nanofluid thermal diffusivity 
(
m2∕s

)
 . The 

non-dimensional form of the Eqs. (1)–(5) can be stated that

The dimensionless conditions will be

(8)∇ ⋅ u = 0,

(9)

1

Pr

(
𝜕u

𝜕t
+ (u ⋅ ∇)u

)
= RaT êz − Rn1𝜙1êz − Rn2𝜙2êz

− Rmêz − ∇p + ∇2
u,

(10)

�T

�t
+ (u ⋅ ∇)T = ∇2

T +
N
B1

Ln1

∇�1 ⋅ ∇T +
N
A1
N
B1

Ln1

∇T ⋅

∇T +
N
B2

Ln2

∇�2 ⋅ ∇T +
N
A2
N
B2

Ln2

∇T ⋅ ∇T ,

(11)
��1

�t
+ (u ⋅ ∇)�1 =

1

Ln1
∇2�1 +

NA1

Ln1
∇2T

(12)
��2

�t
+ (u ⋅ ∇)�2 =

1

Ln2
∇2�2 +

NA2

Ln2
∇2T .
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The non-dimensional variables used above are defined as; 
the Prandtl number, Pr = �∕��f ; the thermo-nanofluid Lewis 
numbers, Ln1 = �f∕DB1

 , Ln2 = �f∕DB2
 ; the thermal Rayleigh 

number, Ra =
�g�T d

3ΔT ∗

��f
 ; the basic density Rayleigh number, 

Rm =
[
�p1�

∗
10
+ �p2�

∗
20
+ �

(
1 − �∗

10
− �∗

20

)]
gd3∕��f  ; the 

nano-particle concentration Rayleigh numbers, 
Rn1 =

[(
�p1 − �

)(
�∗
11
− �∗

10

)]
gd3∕��f  a n d 

Rn2 =
[(
�p2 − �

)(
�∗
21
− �∗

20

)]
gd3∕��f  ; the modified diffu-

s i v i t y  rat i o s ,  NA1
= DT1

ΔT ∗∕DB1
T ∗
0

(
�∗
11
− �∗

10

)
 a n d 

NA2
= DT2

ΔT ∗∕DB2
T ∗
0

(
�∗
21
− �∗

20

)
 and the modified particle-

density increments NB1
= (�c)p1

(
�∗
11
− �∗

10

)
∕�c  and 

NB2
= (�c)p2

(
�∗
21
− �∗

20

)
∕�c.

As small thermal gradients in the nano-particles dilute 
suspension are considered, we neglect the terms, which 
are the product of �1 and �2 with T  for linearization of 
Eq.  (9) following the concept of Oberbeck–Boussinesq 
approximation.

3 � Basic state

The base state of a composite nanofluid layer is considered 
to be time-independent and the given by the expressions;

Equations (8)–(14) take the form with the above values

(13)

T = 1,w = 0,�1 = 0,
�w

�z
+ �1d

�2w

�z2
= 0,�2 = 0

}
at z = 0

(14)

T = 0,w = 0,�1 = 1,
�w

�z
− �2d

�2w

�z2
= 0,�2 = 1

}
at z = 1

(15)
u = (0, 0, 0), T = Tb(z), p = pb(z), �1 = �1b(z), �2 = �2b(z).

(16)0 = −
d

dz
pb + RaTb − Rn1�1b − Rn2�2b − Rm,

(17)d2Tb

dz2
+

NB1

Ln1

(
d�1b

dz
.
dTb

dz

)
+

NA1
NB1

Ln1

(
dTb

dz

)2

+
NB2

Ln2

(
d�2b

dz
.
dTb

dz

)
+

NA2
NB2

Ln2

(
dTb

dz

)2

= 0,

(18)
d2�1b

dz2
+ NA1

d2Tb

dz2
= 0.

(19)
d2�2b

dz2
+ NA2

d2Tb

dz2
= 0.

(20)

T
b
(0) = 1, �1b(0) = 0, �2b(0) = 0,

T
b
(1) = 0, �1b(0) = 1 and �1b(0) = 1.

Infrequently cases of nano-fluid layers, Ln1

�∗
11
−�∗

10

 and Ln2

�∗
21
−�∗

20

 

are very large and are of order 105 − 106 (Buongiorno [3]) 
and in addition the nano-particle fraction decrement (
�∗
11
− �∗

10

)
 and 

(
�∗
11
− �∗

10

)
 are characteristically not 

smaller than 10−3 and therefore, we get a conclusion that 
Ln1 and Ln2 are large and is of order 102 − 103 . It can also be 
observed that NA1

 and NA2
 will be lesser than 10.

Using the above approximation, the base solution can 
be written as follows;

4 � Perturbed state

The small perturbations are imposed on the basic state 
of the composite nanofluid layer, the parameters become 
u = u(0, 0, 0) + u(u�, v�,w�) ,  �1 = �1b + ��

1
 ,  p = pb + p� , 

T = Tb + T � and �2 = �2b + ��
2
 . Here prime quantities are 

the quantities in a perturbed state.
The linear stability is analyzed in the present study and 

therefore, the nonlinear terms have been neglected. The 
linear governing equations are as:

(21)Tb(z) = 1 − z, �1b(z) = z and �2b(z) = z.

(22)∇ ⋅ u
� = 0,

(23)

1

Pr

𝜕u�

𝜕t
= − ∇p� + ∇2

u
� + RaT �êz − Rn1𝜙

�
1
êz − Rn2𝜙

�
2
êz ,

(24)

�T �

�t
− w

� = ∇2
T
� +

N
B1

Ln1

(
�T �

�z
−

���
1

�z

)
−

2N
A1
N
B1

Ln1

�T �

�z

+
N
B2

Ln2

(
�T �

�z
−

���
2

�z

)
−

2N
A2
N
B2

Ln2

�T �

�z
,

With conditions at the boundaries;

(25)
��

�

1

�t
+ w� =

1

Ln1
∇2��

1
+

NA1

Ln1
∇2T �.

(26)
���

2

�t
+ w� =

1

Ln2
∇2��

2
+

NA2

Ln2
∇2T �.

(27)

w� = 0,
�w�

�z
+ �1

�2w�

�z2
= 0, T � = 0, ��

1
= 0 and ��

2
= 0 at z = 0
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and

The factor Rm is only an element of the necessary 
static pressure gradient in the above equations. For a 
regular fluid, the numbers Rn , NA1

,NA2
,NB1

 and NB2
 will 

vanish and second term in L.H.S in Eq. (24) is missing 
because d�1b∕dz = 0 and d�2b∕dz = 0.

Taking curl twice on (23), we can eliminate p′ and get

Here ∇2
H

 is the Laplacian operator. Here we get a bound-
ary value problem in the linear form constituted by 
Eqs. (24)–(26), (29) and conditions (27), (28). This boundary 
value problem will be solved by a normal mode procedure. 
Now writing the in the form as follows;

where n which is a complex value, in general, is called fre-
quency of a disturbance. The wavenumbers kx and ky will 
produce the resultant wave number k = (k 2

x
+ k 2

y
) 1∕2 . 

Using Eq. (34) in the Eqs. (33) and (27)–(30), we get

(28)

w� = 0,
�w�

�z
− �2

�2w�

�z2
= 0, T � = 0, ��

1
= 0 and ��

2
= 0 at z = 1.

(29)

1

Pr

�

�t
∇2w� = Ra∇2

H
T � + ∇4w� − Rn1∇

2
H
�

�

1
− Rn2∇

2
H
�

�

2
.

(30)

[
T �,w,�

�

1
,�

�

2

]
=
[
�(z),W(z),�1(z),�2(z)

]
exp{nt} exp{ikxx + ikyy},

(31)

n

Pr

(
D2 − k2

)
W = −Rak2� + Rn1k

2�1 + Rn2k
2�2 +

(
D2 − k2

)2
W ,

(32)W +

(
D2 − k2 − n +

NB1

Ln1
D −

2NA1
NB1

Ln1
D +

NB2

Ln2
D −

2NA2
NB2

Ln2
D

)
� −

NB1

Ln1
D�1 −

NB2

Ln2
D�2 = 0,

(33)

W −

(
1

Ln1

(
D2 − k2

)
− n

)
�1 −

NA1

Ln1

(
D2 − k2

)
� = 0,

(34)

W −

(
1

Ln2

(
D2 − k2

)
− n

)
�2 −

NA2

Ln2

(
D2 − k2

)
� = 0,

Both free boundaries are considered here for stability 
analysis. Therefore the conditions are

The solutions of the Eqs. (35)–(39) taken as

Substituting Eq. (36) into Eqs. (31)–(34) and integrat-
ing from z = 0 and z = 1 , we have the following matrix 
equation

Here �2 = �2 + k2 is the total wave number. The nontrivial 
solution of the homogeneous Eqs. (37) produces

Now, we put n = i� in Eq. (38) and we obtain

Here

and

(35)

W = 0, � = 0, D
2
W = 0, �1 = 0 and

�2 = 0 at z = 0 and z = 1.

(36)
W = W0Sin�z, � = �0Sin�z, �1 = �10Sin�z, �2 = �20Sin�z.

(37)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�4 +
n

Pr
�2 −Rak2 Rn1k

2
Rn2k

2

1 −
�
�2 + n

�
0 0

1
N
A1

Ln1

�2 n +
�2

Ln1

0

1
N
A2

Ln2

�2 0 n +
�2

Ln2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

W0

�0

�1

�2

⎤⎥⎥⎥⎥⎦
= 0.

(38)

Ra =

(
n + �2

)
k2

(
�4 +

n�2

Pr

)
−

(
Ln1

(
n + �2

)
+ �2N

A1

)
Rn1

(nLn1 + �2)

−

(
Ln2

(
n + �2

)
+ �2N

A2

)
Rn2

(nLn2 + �2)
,

(39)Ra = Δ1 + i�Δ2.

(40)

Δ1 =
�2

k2

(
�4 −

�2

Pr

)
−

(
�4
(
Ln1 + NA1

)
+ �2Ln2

1

)
Rn1

(�4 + �2Ln2
1
)

−

(
�4
(
Ln2 + NA2

)
+ �2Ln2

2

)
Rn2

(�4 + �2Ln2
2
)

,

(41)Δ2 = �2

[
�2

k2

(
1 +

1

Pr

)
+

(
Ln2

1
+ Ln1

(
NA1

− 1
))
Rn1

(�4 + �2Ln2
1
)

+

(
Ln2

2
+ Ln2

(
NA2

− 1
))
Rn2

(�4 + �2Ln2
2
)

]
,



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:380 | https://doi.org/10.1007/s42452-020-2028-5

The Rayleigh number Ra should be real. Therefore, it can 
be concluded from the Eq. (39) that either � = 0 (steady-
state, exchange of stabilities) or Δ2 = 0 ( � ≠ 0, overstability 
or oscillatory onset).

5 � Stationary convection

Stationary onset refers to � = 0 and Rayleigh number will be

The size of critical cell for the onset of thermal instability 
is achieved from �

�k
Ra = 0.

Thus, for steady onset, the consequent critical thermal 
Rayleigh number will become

For Rn2 = 0 , Eq. (44) become

This equation is same as the equation given by Sheu 
(2011). Also, It should be noted that Eq. (42) is not a func-
tion of Prandtl number.

6 � Oscillatory convection

For oscillatory onset, Δ2 = 0 and � ≠ 0 , which gives the 
expression

Here

If Eq. (46) does not admit the positive value of �2 , oscil-
latory instability is not possible.

In other words, we can say Oscillatory convection is pos-
sible only when Le1, Le2 > 1.

(42)Rast =
�6

k2
−
(
Ln1 + NA1

)
Rn1 −

(
Ln2 + NA2

)
Rn2,

(43)kc = �∕
√
2,

(44)Rast =
27�4

4
−
(
Ln1 + NA1

)
Rn1 −

(
Ln2 + NA2

)
Rn2,

(45)Rast =
27�4

4
−
(
Ln1 + NA1

)
Rn1.

(46)b2(�
2)2 + b1(�

2) + b0 = 0.

b2 = �2Ln2
1
Ln2

2
(1 + Pr),

b1 = �6(Ln2
1
+ Ln2

2
)(1 + Pr) + k2Ln2

1
Ln2

2
Pr

(
Rn1 + Rn2

)
+ k2Ln1Ln

2
2
Pr(NA1

− 1)Rn1

+ k2Ln2
1
Ln2 Pr(NA2

− 1)Rn2,

b0 = �10(1 + Pr) + k2�4 Pr
(
Ln2

1
Rn1 + Ln2

2
Rn2

)
+ k2�4Ln1 Pr(NA1

− 1)Rn1

+ k2�4Ln2 Pr(NA2
− 1)Rn2.

Thus from Eqs. (39) and (40), oscillatory Rayleigh num-
ber is given by

Here �2 is given by Eq. (46). If no positive value of �2 exist-
ing, no oscillatory convection is achievable. This outcome 
is analogous to Sheu (2011). If we are able to find two posi-
tive values of �2 then the least value of (47) gives the oscil-
latory Rayleigh number for �2 . If there is only one positive 
value of �2 then by substituting this positive value into 
(47), we get the oscillatory Rayleigh number.

7 � Case of overstability

In this section, we check the chance of occurrence of over-
stability. As we are looking to calculate the Rayleigh num-
ber for stability taking pure oscillations and therefore, it is 
acceptable to calculate the situation that the Eq. (46) will 
produce a solution containing real � . The three values of 
�2 ( � being real) will be positive.

The addition of the roots of Eq. (46) will be − (b0∕b2) and 
this will be positive. At the same time, one can observe 
that b2 is always positive; meanwhile, b0 will be positive if 
NA1

> 1 and NA2
> 1 . Hence these inequalities are accept-

able conditions for the non-occurrence of overstability.

8 � Results and discussion

In this section, we describe our results numerically. The sta-
tionary thermal Rayleigh number for composite nanofluid 
is given by Eq. (42) and the oscillatory thermal Rayleigh 

number is achieved analytically using Eq. (47) where �2 
is given by Eq. (46). From Eq. (42), it is obvious that both 
oscillatory Rayleigh number and stationary Rayleigh num-
ber for composite nanofluid do not depend on NB1

 and NB2
 

because the effect of NB1
 and NB2

 in Eq. (32) is eliminated 

(47)

Ra
osc =

�2

k2

(
�4 −

�2

Pr

)
−

(
�4
(
Ln1 + N

A1

)
+ �2Ln

2

1

)
Rn1

(�4 + �2Ln
2

1
)

−

(
�4
(
Ln2 + N

A2

)
+ �2Ln

2

2

)
Rn2

(�4 + �2Ln
2

2
)

,
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due to orthogonal functions. The thermal energy equa-
tions do not contain the impact of Brownian motions and 
thermophoresis. The Brownian motions and thermopho-
resis contribute directly in the expressing the conservation 
of nanoparticles equation. Therefore, the temperature and 
nanoparticle densities are combined in a specific way so 
that the instability is approximately purely an event hap-
pening due to buoyancy and nanoparticle motions.

Figure 2 demonstrates the comparison between the 
Rayleigh numbers of ordinary nanofluid and compos-
ite nanofluid for Ln1 = 100 , Ln2 = 100 , NA1

= 5 , NA2
= 5 , 

Rn1 = 0.5 and Rn2 = 0.5 . Here positive values of Rn1 and 
Rn2 mean that a top-heavy distribution is considered. It 
is noticed that Rayleigh number for composite nanofluid 
is more than the Rayleigh number of ordinary nanofluid. 
This shows that mixture of two different nanoparticles 
more stabilizes the stationary convection as compare of 
the single nanoparticles in case of top-heavy distribution. 
In Fig. 3, the comparison between the Rayleigh numbers of 
ordinary nanofluid and composite nanofluid for Ln1 = 100 , 
Ln2 = 100 , NA1

= 5 , NA2
= 5 , Rn1 = −0.5 and Rn2 = −0.5 is 

made. Here negative values of Rn1 and Rn2 mean that a bot-
tom-heavy distribution is considered. It has been observed 
that Rayleigh number for composite nanofluid is less than 

the Rayleigh number of ordinary nanofluid. This shows 
that mixture of two different nanoparticles destabilizes 
the stationary convection as compare of the single nano-
particles in case of basement-heavy distribution.

Figure 4 displays the neutral curves for various values 
of the first thermo-nanofluid Lewis number Ln1 with fixed 
values of remaining parameters. Note that the station-
ary Rayleigh number decreases with increasing the first 
thermo-nanofluid Lewis number. Thus, the first thermo-
nanofluid Lewis number has destabilizing nature for the 
stationary convection in case of top-heavy distribution 
while it stabilizes the stationary convection in case of 
basement-heavy distribution. Figure 5 exhibits the neutral 
curves for various values of the second thermo-nanofluid 
Lewis number Ln2 with fixed values of remaining param-
eters. It is observed that the stationary Rayleigh number 
decreases with increasing the second thermo-nanofluid 
Lewis number. Thus, the second thermo-nanofluid Lewis 
number destabilizes the stationary convection in case of 
top-heavy distribution while it stabilizes the stationary 
convection in case of basement-heavy distribution.

Figure  6 demonstrates the neutral curves for vari-
ous values of the first modified diffusivity ratio NA1

 with 
fixed values of the remaining parameters. Note that the 

Fig. 2   Neutral stability 
curve for Rayleigh num-
ber Ln1 = 100 , Ln2 = 100 , 
N
A1

= 5 , N
A2

= 5 , Rn1 = 0.5 and 
Rn2 = 0.5

Fig. 3   Neutral stability 
curve for Rayleigh number 
Ln1 = 100 , Ln2 = 100 , N

A1
= 5 , 

N
A2

= 5 , Rn1 = −0.5 and 
Rn2 = −0.5
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stationary Rayleigh number decreases with increasing 
the first modified diffusivity ratio. Thus, the first modified 
diffusivity ratio has destabilizing nature for the stationary 
convection in case of top-heavy distribution while it stabi-
lizes the stationary convection in case of basement-heavy 
distribution. Figure 7 displays the neutral curves for vari-
ous values of the second modified diffusivity ratio NA2

 with 

fixed values of the remaining parameters. Note that the 
stationary Rayleigh number decreases with increasing the 
second modified diffusivity ratio. Thus, second modified 
diffusivity ratio has destabilizing nature for the stationary 
convection in case of top-heavy distribution while it stabi-
lizes the stationary convection in case of basement-heavy 
distribution.

Fig. 5   Neutral stability curve 
for Rayleigh number for 
various values of Ln2 Ln1 = 100 , 
N
A1

= 5 , N
A2

= 5 , Rn1 = 0.5 and 
Rn2 = 0.5

Fig. 6   Neutral stability curve 
for Rayleigh number for 
various values of N

A1
 Ln1 = 100 , 

Ln2 = 100 , N
A2

= 5 , Rn1 = 0.5 
and Rn2 = 0.5

Fig. 4   Neutral stability curve 
for Rayleigh number for 
various values of Ln1 Ln2 = 100 , 
N
A1

= 5 , N
A2

= 5 , Rn1 = 0.5 and 
Rn2 = 0.5
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Note that the stationary convection is achievable for 
both basement-heavy as well as top-heavy distributions 
of nanoparticles. Also, the Rayleigh number is lesser for 
top-heavy distribution than that of the basement-heavy 
distribution of nanoparticles.

9 � Conclusions

Linear stability investigation in a horizontal composite 
nanofluid layer is made for free–free boundaries taking 
normal mode procedure. The key conclusions are:

1.	 Instability is unaffected by Brownian motions and 
thermophoresis. It is merely a phenomenon due to 
the coupling of buoyancy and nano-particles conser-
vation.

2.	 The first and second thermo-nanofluid Lewis numbers 
have destabilizing nature for the stationary convection 
in case of top-heavy distribution while it stabilizes the 
stationary convection in case of basement-heavy dis-
tribution.

3.	 Concentration Rayleigh’s number makes the stationary 
convection destabilize. It is also found that stationary 
convection is achievable for both basement-heavy and 
top-heavy nano-particles distribution.

4.	 The Oscillatory convection is not possible if both first 
and second thermo-nanofluid Lewis numbers ≤ 1.

5.	 The critical Rayleigh number does not change with the 
modified particle-density increment NB1

 and NB2
.

6.	 The acceptable conditions for the non-occurrence of 
over-stability are NA1

> 1 and NA2
> 1.
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