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Abstract
Ewaso Nyiro basin covers an area of about 210,226 km2, 36.3%, of Kenya drainage area and bears 5.8% of Kenya water 
potential with an annual yield of 1469 million m3. The river is the principal source of domestic and irrigation water to 
the arid north of Kenya. To determine metal and nutrient concentration of Ewaso Nyiro River surface water, a total of 30 
water samples, 15 samples each for dry (February) and wet (August) seasons of 2019, were collected. Chromium, lead, 
iron, manganese, cobalt, cadmium, mercury, selenium, molybdenum, boron, copper, zinc, arsenic, nickel, aluminum, total 
phosphorus and nitrate were analyzed in the two seasons. Ecological risk assessment was determined by calculating 
contamination factor, pollution load index and ecological risk index. Multivariate statistical analysis was used to infer 
pollutants association and identify their potential sources. Cadmium, arsenic, lead, molybdenum, mercury, selenium 
and nickel were not detected in both seasons, while manganese, iron and aluminum were the main pollutants identi-
fied. Ewaso Nyiro irrigation water had a manganese contamination factor of 9.17, implying it was very contaminated. 
Twenty-seven and 40% of sampled sites in dry and wet seasons, respectively, had more than 0.3 mg/L of iron that is 
recommended by USEPA in drinking water. Herbicides, leached fertilizer and fuel leaking into the river water were the 
primary sources of anthropogenic pollution.
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1 Introduction

Water is an indispensable resource. It is used in agricultural 
production, domestic use and industrial activities since it is 
a universal solvent. Global freshwater distribution is une-
ven with some regions facing severe scarcity while others 
enjoying surplus [16]. It is estimated 4 billion people, more 
than half of global population, face severe water shortage 
at least one month in a year [4]. Water scarcity has resulted 
in regional and local conflicts [25, 29]. Kenya is a case in 
point. Over a hundred people perished due to conflicts 
between herders and farmers in 2012 [1]. Water scarcity is 

a consequence of rapid population growth and changing 
weather patterns that are associated with erratic precipita-
tion and prolonged droughts [5, 18].

Immense pressure on water resources has resulted in 
pollution, jeopardizing human health [37]. Contaminated 
water causes over 5 million annual deaths worldwide [36].

Polluted water-related health complications are wide-
spread and are not confined to developing countries, due 
to bioaccumulation and biomagnification in the food 
chain [2]. Incidences of ecological risk caused by zinc have 
been observed in Japan [30]. Irrigation water polluted with 
heavy metals contaminates crops under cultivation and 
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poses risk to human health. Similarly, consumption of fish 
from polluted aquatic ecosystems may be a health threat 
[10].

High concentration of iron in drinking water has been 
reported to cause muscle crumps, severe constipation, 
headache, gastric ulcers, malignant tumor and even rapid 
heart pulses in some instances [9, 33].

Kenya is classified as a water scarce country with 80% 
of land mass being arid and semiarid [33]. Majority of the 
population is concentrated in areas with adequate rain-
fall for agriculture, and vast areas are sparsely populated 
with nomadic pastoralists. Meager water resources that 
are available are heavily polluted with potentially toxic ele-
ments. High concentration of As, Hg, Ni, Cu and Cd was 
detected in lakes Bogoria and Elementaita [48]. Similarly, 
high levels of Mn, Fe and Al have been reported in Tana 
River [31].

Majority of Kenyan population is poor with limited 
access to improved drinking water [12]. Domestic use of 
polluted water is thus highly likely, and this may predis-
pose innocent and poor people to deleterious effects of 
potentially toxic elements.

Regular monitoring of water sources used for domes-
tic purposes is therefore paramount to safeguard human 
health. Previous documented studies of Ewaso Nyiro were 
based on water management, scarcity and conflicts [22, 
41]. The current study was conducted to (1) determine 
heavy metal and nutrient concentration in surface water 
of Ewaso Nyiro River, (2) assess probable sources of heavy 
metals and nutrients pollution, (3) evaluate whether 
Ewaso Nyiro River is under ecological risk and (4) deter-
mine whether domestic, irrigation and livestock use of 
Ewaso Nyiro River surface water poses any health risk to 
consumers.

2  Materials and methods

2.1  Study area

Ewaso Nyiro basin constitutes 36.3% of Kenya drainage 
basin and originates from Aberdare Ranges and Mount 
Kenya [34]. The basin covers 210,226 km2, bearing 5.8% 
of Kenya water potential, and has an average annual rain-
fall of 411 mm and 1469 million m3 annual yield [19, 49]. 
Main tributaries draining into Ewaso Nyiro include, Nany-
uki, Timau, Rongai, Burguret, Segera, Naromoru, Engare, 
Moyak, Ewaso Narok, Pesi and Ngobit rivers [21]. Ewaso 
Nyiro River and its tributaries traverse Nyeri, Nyandarua 
and Laikipia counties before draining into Lorian Swamp, 
2918 km2, at Merti in Isiolo County.

Ewaso Nyiro drainage basin population has increased 
rapidly in recent past. For instance, Laikipia County 

population has tripled over the last three decades from 
134,524 in 1979 to 399,227 in 2009 [22]. The upper reach 
has a population density of 100 people per  km2 and about 
10 in the lower reaches that are arid and semiarid [8].

Water resources in the upper reach of the basin have 
been under immense pressure resulting in intermittent 
flow of Ewaso Nyiro below Archers Post [20].

Main economic activities in Ewaso Nyiro basin include 
large- and small-scale horticulture crops production in the 
upper reaches and livestock rearing downstream of the 
basin. The main challenges undermining Ewaso Nyiro eco-
system are catchment degradation, increased irrigation 
demand and groundwater salinity and saline intrusion [6].

Water sampling sites were distributed around the 
catchment and middle reaches up to Archers post since 
lower reaches had dried during the dry season. Sampling 
sites selection was based on land use pattern, economic 
activities and areas suspected to experience point source 
pollution.

2.2  Water sampling

A total of 30 samples were collected during wet and dry 
seasons, as shown in Fig. 1, 15 samples for each season. 
Sampling in dry season was conducted in late February, 
while wet season samples were collected in August of 
2019. Ewaso Nyiro River is shallow with homogeneous 
vertical water column. Sampling was done 15 cm below 
water surface using precleaned one-liter polyethylene bot-
tles. Samples were later taken to the laboratory where they 
were filtered using 0.45-µm cellulose acetate membrane 
filter, acidified with nitric acid to pH > 2 and refrigerated at 
4 °C before commencement of the analysis.

2.3  Sample analysis and quality assurance

Analysis to determine concentration of heavy met-
als in water was determined using inductively coupled 
plasma–optical emission spectrometry, ICP-OES (5100, 
Agilent Technologies), while nitrate  (NO3

−) was deter-
mined by calorimetric method. Total phosphorus (TP) and 
iron (Fe) were determined by spectrometric method (UV-
1700, Pharmaspec, Shimadzu) at an absorbance of 880 and 
515 nm, respectively.

To ensure analytical integrity and quality of the results 
were of acceptable level, blanks and sample replicates 
were randomly analyzed and had to tally to validate 
results. Standard reference material (CROP-1-REV1 
obtained from Inorganic Ventures, USA) was used for 
quality control (one blank and one standard sample for 
each 20 samples). Method efficiency was determined by 
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the use of recovery rates that ranged between 89 and 
104%. Relative standard deviation from seven samples 
was applied to generate minimum detection limits (MDL) 
that were as follows: Cd = 0.002 mg/L, Cr = 0.004 mg/L, 
Pb = 0.009  mg/L, As = 0.007  mg/L, Ni = 0.003  mg/L, 
Hg = 0.001  mg/L, B = 0.01  mg/L, Cu = 0.01  mg/L, 
Se = 0.02  mg/L, Al = 1.5  mg/L,  NO3

−  = 0.01  mg/L and 
P = 0.1 mg/L.

Data were analyzed using SPSS (version 21), while 
map was prepared using Google maps.

2.4  Determination of pollution and ecological risk 
indicators

2.4.1  Contamination factor (CF)

Contamination factor is used to express the level of 
concentration of an element in a sample compared to 
preindustrial reference value. The current research has 
employed recommended concentration in human and 
livestock drinking and irrigation water as reference val-
ues. Contamination factor is used as a measure of poten-
tial toxicity, as shown in Eq. 1 [27].

The CF values were classified into six categories, as 
given in Table 1, as recommended by Hakanson [40].

2.4.2  Pollution load index (PLI)

The PLI which is an integrated tool for determining pol-
lution of a certain group of pollutants (metals) was also 
applied, as indicated in Eq. 2 [43].

where CF is the contamination factor for individual metals 
and n is the number of pollutants (metals). The PLI values 
are classified into four categories, as given in Table 1.

2.4.3  Ecological risk (ER)

The ER is used to assess degree of environmental dam-
age or probability of ecosystems experiencing detrimental 
ecological effects from pollutants [51].

Ecological risk was determined as recommended by 
Hakanson, as given in Eq. 3 [23].

(1)CF = Cmetal∕Creference.

(2)PLI =
(

CF1X CF2X CF3X … X CF
n

)

1∕n

Fig. 1  Map of the sampling points
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where Ti is the potential ecological risk coefficient. Poten-
tial ecological risk coefficient for Cu, Zn, As, Cd, Cr, Pb, Ni, 
Hg, Mn and Co is 5, 1, 10, 30, 2, 5, 5, 40, 1 and 5, respectively 

(3)ER = T
i
× CF

[46]. The ER values are grouped into six categories as 
shown in Table 1.

Table 1  Risk assessment Risk assessment Level Values Assessment index

Contamination factor 1 CF < 1 Low contamination factor
2 1 ≤ CF < 3 Moderate contamination factor
3 3 ≤ CF < 6 Considerable contamination factor
4 CF ≥ 6 Very high contamination factor

Pollution load index 1 PLI ≤ 1 Uncontaminated by heavy meals
2 PLI > 1 Contaminated by heavy metals

Ecological risk 1 < 10 No damage
2 10–40 Mild damage
3 40–80 Moderate damage
4 80–160 High damage
5 160–320 Serious damage
6 > 320 Extreme damage

Risk index 1 < 50 No risk
2 50–100 Mild risk
3 150–300 Moderate risk
4 300–600 High risk
5 600–1200 Serious risk
6 > 1200 Extreme risk

Table 2  Descriptive statistics of potentially toxic elements and nutrients in Ewaso Nyiro River water against WHO drinking water guidelines 
(mg/L)

Reference: [13]

Potentially toxic ele-
ments and nutrients

Wet season Dry season

Min Max Mean Med Std. deviation Min Max Mean Med Std. deviation WHO

NO3
− 0 2.23 0.53 0.27 0.72 0 1.96 0.29 0.1 0.5 50

TP 0 0.46 0.13 0 0.18 0 0.29 0.07 0 0.09 0
B 0 0.04 0.01 0 0.01 0 0.05 0.01 0 0.02 0.5
Cu 0 0.04 0 0 0.01 0 0.01 0 0 0 2
Zn 0 0.1 0.02 0 0.03 0 0.07 0.01 0 0.02 3
As – – – – – – – – – – 0.01
Cd – – – – – – – – – – 0.003
Cr 0 0.017 0 0 0 – – – – – 0.05
Pb – – – – – 0 0.05 0 0 0.01 0.001
Ni – – – – – – – – – – 0.07
Hg – – – – – – – – – – 0.006
Se – – – – – – – – – – 0.01
Al 0.11 22.5 3.88 0.51 7.33 0.14 16.9 1.96 0.43 4.16 0.2
Fe 0.17 16.1 3.34 0.85 4.5 0.2 15.6 2.69 0.94 4.27 0
Mn 0.01 4.5 0.79 0.24 1.32 0.02 2.04 0.35 0.14 0.67 0.4
Mo – – – – – – – – – – 0.07
Co 0 0.04 0 0 0.01 – – – – – 0.05
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3  Results and discussion

3.1  Heavy metals and nutrient concentration 
in water

There was a significant difference in concentration of 
pollutants in different sites and seasons as indicated in 
Table 2. Mean concentration of all detected pollutants, 
with exception of B, was higher in wet season compared 
to dry season. Only Al, Fe and Mn were detected in all 
sampled sites in the two seasons. As, Cd, Hg, Pb, Ni and 
Se were below detection limit in all sites in both seasons. 
Aluminum recorded the highest concentration in both 
seasons recording 22.5 and 16.90 mg/L in wet and dry 
seasons, respectively. Although World Health Organiza-
tion (WHO) has not given maximum concentration of Al 
in drinking water, concentration above 0.2 mg/L is not 
acceptable to most consumers [13]. Eighty-seven percent 
and 67% of all sampled sites had more than 0.2 mg/L of 

Al in wet and dry seasons, respectively. Cobalt, Mn and Fe 
above WHO recommended drinking water guidelines were 
detected in one site for Co, three sites for Mn and six sites 
for Fe in wet season. Similarly, exceedingly high concentra-
tion of Mn and Fe was registered in three sites for Mn and 
four sites for Fe in the dry season. Median concentration 
of Fe in the two seasons was above, 0.3 mg/L, which may 
stain laundry and plumbing fixtures besides exceeding 
USEPA drinking water guideline [13], Njuguna et al. [33]. 
Majority of the sampled sites had relatively low concentra-
tion of  NO3

− registering a median of 0.27 and 0.10 mg/L, 
in wet and dry seasons, respectively. Although TP maxi-
mum concentration in both seasons was above 0.2 mg/L 
and likely to cause eutrophication, median concentration 
was below detection limit. High concentration of Al, Fe 
and Mn has been recorded in other water bodies in Kenya. 
Aluminum and Mn concentrations of 8.96 and 1.11 mg/L, 
respectively, were detected in Tana River surface water in 
2018 [31]. Similarly, Fe and Mn, 3.26 and 0.98 mg/L, respec-
tively, were registered in Sasumua reservoir that supplies 

Table 3  Potentially toxic 
elements concentration, 
contamination factor (CF), 
ecological risk (ER), pollution 
load index (PLI) and risk index 
(RI) for human and livestock 
drinking and irrigation use 
(mg/L)

Bold: high concentration

Njuguna et al. [33] and US Environmental Protection Agency [44]

Mean Human 
drinking 
water

CF ER Livestock 
drinking 
water

CF ER Irrigation water CF

Dry season
B 0.000 0.500 0.000 0.000 5.000 0.000 0.000 0.750 0.000
Cu 0.001 2.000 0.000 0.002 0.500 0.000 0.002 0.200 0.004
Zn 0.006 3.000 0.002 0.002 24.000 0.000 0.143 2.000 0.003
As 0.000 0.010 0.000 0.000 0.200 0.000 0.000 0.100 0.000
Al 0.000 0.200 0.000 0.000 5.000 0.000 0.000 5.000 0.000
Pb 0.003 0.010 0.294 0.015 0.100 0.000 0.001 5.000 0.001
Fe 0.000 0.300 0.000 0.000 – 0.000 0.000 5.000 0.000
Ni 0.000 0.070 0.000 0.000 1.000 0.000 0.000 0.200 0.000
Mn 0.35 0.400 0.86 0.86 0.050 0.092 0.092 0.200 9.167
Co 0.000 0.050 0.000 0.000 1.000 0.000 0.000 0.050 0.000
PLI 0.250 0.070
RI 4.602 0.238
Wet season
B 0.009 0.500 0.018 0.000 5.000 0.002 0.000 0.750 0.012
Cu 0.005 2.000 0.002 0.012 0.500 0.009 0.047 0.200 0.023
Zn 0.017 3.000 0.006 0.000 24.000 0.001 0.001 2.000 0.008
As 0.000 0.010 0.000 0.000 0.200 0.000 0.000 0.100 0.000
Al 3.877 0.200 19.387 0.000 5.000 0.775 0.000 5.000 0.775
Pb 0.000 0.010 0.000 0.000 0.100 0.000 0.000 5.000 0.000
Fe 3.343 0.300 11.142 0.000 1.000 3.343 0.000 5.000 0.669
Ni 0.000 0.070 0.000 0.000 1.000 0.000 0.000 0.200 0.000
Mn 0.791 0.400 1.978 1.978 0.050 15.823 15.823 0.200 3.956
Co 0.003 0.500 0.005 0.027 1.000 0.003 0.013 0.050 0.053
PLI 0.240 0.130
RI 2.020 15.880
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water to Kenya’s capital, Nairobi, besides 2.82 mg/L of Mn 
in Lake Elementaita [28, 35]. Andisol soils that are preva-
lent in Kenya highlands are rich in Al, Fe and Mn [33].

3.2  Risk assessment

Human and livestock drinking water contamination fac-
tor was < 1 for all potentially toxic elements and therefore 
was in low contamination factor category in dry season, as 
given in Table 3. However, irrigation water Mn contamina-
tion factor was > 6 and was therefore very contaminated.

River Ewaso Nyiro human drinking water was moder-
ately contaminated with Mn but very contaminated for 
livestock consumption and considerably contaminated 
for irrigation purposes in wet season. Although Al and Fe 
human drinking water was under very high contamina-
tion, only Fe had considerable contamination for livestock 
consumption. Manganese had moderate contamination 
for human drinking, considerable contamination for irriga-
tion and very high contamination for livestock consump-
tion in wet season. Only Mn among all potentially toxic 
elements had potential of causing mild ecological risk.

Pollution load index was < 1 for human and livestock 
drinking and irrigation purposes in both dry and wet sea-
sons, implying the water would be considered generally 
uncontaminated. Highest risk index recorded was 15.88 
in livestock drinking water and was way below 50 that 
can pose mild risk, suggesting there was no risk posed to 
human and livestock.

Although risk index posed by potentially toxic elements 
under investigation was negligible, Al, Fe and Mn con-
tamination was very high. High Mn in drinking and food 
stuff has been confirmed to cause health complications. 
High Mn in drinking water lowers children IQ. A study 
conducted in Bangladesh indicated children drinking 
water with high Mn, above 400 μg/L, scored 6.4% lower 
in mathematics compared to those whose drinking water 
had lower or no Mn [17]. Manganese has been noted to 
replace metabolic role of calcium and may accumulate in 
bone tissue weakening the bones besides causing adverse 
effects to the lung, liver and cardiovascular system [3, 9]. 
Aluminum concentration above 0.2 mg/L is not accept-
able to most consumers, based on aesthetic considera-
tions, besides increased number of studies associating 
high concentration Al in drinking water with Parkinson 
and Alzheimer’s disease [9, 13]. High concentration of Fe in 
drinking water on the other hand is associated with malig-
nant tumor and causes persistence of hepatitis B and C 
besides being linked to kidney, lung, liver and stomach 
cancers [18]. Cancer is the third leading cause of death 
in Kenya after infectious and cardiovascular diseases [26].

Numerous incidences of high Fe in Kenyan drinking 
water have been reported. Athi River that serves over four 

million Kenyans with drinking water recorded a mean of 
2.5 mg/L against USEPA recommended concentration of 
0.3 mg/L [33]. The use of polluted water for livestock and 
irrigation purposes is unsafe due to bioaccumulation and 
biomagnification effect in the food chain. Consequently, 
the use of Ewaso Nyiro River water for livestock and irriga-
tion purposes should be done with caution due to consid-
erable Fe and very high Mn contamination.

3.3  Multivariate analysis

Principal component analysis, hierarchical cluster analysis 
and Pearson correlation were employed to infer pollutants 
associations and identify their sources.

3.3.1  Pearson correlation

Pearson correlation analysis was done among and 
between heavy metals and nutrients as displayed in 
Table  4. A strong positive correlation, p > 0.01, was 
observed between Cu and Cr, Cu and Al, in wet season. 
Other significant correlations were between Al–TP, Fe–TP, 
B–Cu, Cu–Fe, Zn–Fe, Zn–Al, Cr–Al, Cr–Co and Al–Fe. Strong 
positive correlation between pollutants indicates a com-
mon source, similar behavior or mutual dependence [24]. 
Aluminum and Fe may have originated from Andisol soils 
that are common in the study area [31]. Cobalt may have 
emanated from agrochemicals since it was only detected 
at site 11, that was under cabbage and garden pea pro-
duction. Glyphosate that is a common herbicide in Kenya 
has been noted to contain Co and Cr that may dissolve 
and contaminated aquatic ecosystems [7]. Strong positive 
correlation observed between Al–Cr and Cr–Co may imply 
Cr was from both natural and anthropogenic sources since 
Al and Cr are widely distributed in earth crust [13]. Man-
ganese may have been from leaking fuel from irrigation 
pumps and motor bikes that were being washed in river 
water since Mn compounds are used as fuel–oil additives 
[45]. The highest concentration of Mn was detected in site 
7 where water had been contaminated with oil and sites 
11 and 15 where motorbikes were being cleaned in the 
river.

3.3.2  Principal component analysis (PCA)

PCA is a data reduction technique that reduces number 
of variables to a smaller set of scores called components 
without losing much of primary data [15]. Varimax rotation 
was employed in current analysis since variables were pre-
sumed to be uncorrelated [33]. Two principal components 
that explained 80.8% of total variance were extracted at 
eigenvalue > 1 in wet season, as given in Table 5. Compo-
nent one explained 66%, while component two explained 
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14.8% of total variance. Al, Cu and Fe were in component 
one and had significant positive loading, > 0.9. Nitrate was 
the only variable in component two and had a high load-
ing of 0.96. Al, Cu and Fe may have emanated from natural 

sources. Cases of these elements emanating from natural 
sources have been reported [39]. Nitrate may have origi-
nated from leached fertilizers from agricultural activities. 

Dry season had two principal components with compo-
nents one and two contributing 71.9% and 14.7% of total 
variance, respectively. Component one significant posi-
tive loading, > 0.9, was from Al, Cu, Zn and Fe. Palaeozoic 
and quaternary sediment that is widespread in Kenya is a 
major source of Zn, Cu, Al and Fe [11]. Nitrate was the only 
variable in component two with a high loading of 0.96 and 
was from leached fertilizers just like in wet season.

3.3.3  Hierarchical cluster analysis (HCA)

HCA which is a cluster analysis technique is often coupled 
with PCA to confirm and validate observed relationships 
[47, 50]. Euclidean interval pattern and ward linkage were 
applied, while potentially toxic element concentrations 
were standardized using Z-score.

There were four clusters in both wet and dry seasons 
as indicated in Figs. 2 and 3. Clusters formed were based 
on element attributes and sources. Cluster A in wet sea-
son dendrogram was composed of Cu, Cr, Al and B. These 

Table 4  Pearson correlation 
matrix of concentration among 
metals and nutrients in water 
of the Ewaso Nyiro River

a Correlation is significant at the 0.01 level
b Correlation is significant at the 0.05 level

TP NO3
− B Cu Zn Cr Al Fe Mn Co Pb

Wet season
TP 1
NO3 .393 1
B .583b − .305 1
Cu .755a − .043 .838a 1
Zn .709a − .109 .695a .833a 1
Cr .729a .006 .785a .978a .744a 1
Al .828a .000 .797a .977a .853a .954a 1
Fe .835a − .074 .769a .839a .851a .753a .895a 1
Mn .581b − .007 .574b .654a .374 .731a .652a .597b 1
Co .515b .127 .495 .725 a .372 .853 a .703 a .384 .776 a 1
Pb  −  −  −  −  −  −  −  −  −  −  − 
Dry season
TP 1
NO3

− .207 1
B .445 − .227 1
Cu .639a .006 .596b 1
Zn .738a − .038 .630a .951 a 1
Cr – − – – –
Al .778a − .047 .638a .958a .991a − 1
Fe .843a − .106 .626a .830a .888a − .929a 1
Mn − .159 − .120 − .134 − .050 − .072 − − .086 − .092 1
Co − − − − – – – – – –
Pb .639a .006 .596* .909a .951a − .958 a .830 a − .050 – 1

Table 5  Rotational component matrix of potentially toxic elements 
and nutrients in the Ewaso Nyiro River water

Heavy metal and 
nutrients

Wet season Dry season

PC 1 PC 2 PC1 PC 2

Al .981 .992
Cu .969 .952
Fe .916 .937
B .862 .678
Zn .854 .976
TP .836 .815
Mn .739
Co .695
NO3

− .955 .960
Eigenvalue 5.941 1.334 5.754 1.174
Variance % 66.006 14.825 71.924 14.670
Cumulative % 66.006 80.831 71.924 86.594
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pollutants may be from both anthropogenic and natural 
sources. Copper and Cr may be from herbicides, while Al 
and B may be from both natural sources and waste water 
containing Al used in coagulation and B from detergents 
[7, 13, 42]. Custer B was composed of Zn, Fe and TP which 
could be from natural sources. Andisol soils prevalent in 
study area are rich in Fe, while cases of TP and Zn originat-
ing from natural sources have been reported [39]. Cobalt 
and Mn were in cluster C and may have been from herbi-
cides and fuel leaking into the river water. The highest con-
centrations of Mn and Co were detected at site 7 that was 
under agricultural production and was experiencing fuel 
leak that was contaminating river water. Nitrate was the 
only pollutant in cluster D and was from leached fertilizer 
infiltrating into the aquatic ecosystem. Nitrate is readily 
soluble and may seep from agricultural land and pollute 
water bodies [13].

Cluster A in dry season dendrogram was composed of 
Cu, Pb, Zn, Al, Fe and TP and may have originated from 
natural sources. Lake Olbolosat was the only sampling site 
with detectable Pb and also recorded the highest concen-
tration of Zn. Lead is naturally found in soil in low quanti-
ties and may emanate from natural weathering of rocks 
[10, 32], while Zn is relatively mobile and may permeate 
through soil and end up in river water [38]. Only boron 

was in cluster B and may have been from anthropogenic 
sources. The highest concentration of B was detected at 
Archers Post where people were doing laundry and bath-
ing on river banks. Nitrate and Mn were the only pollut-
ants in clusters C and D, respectively. Nitrate may have 
been from leached fertilizers, while Mn may have been 
from leaking fuel since the highest concentration of Mn 
detected was at Rumuruti Swamp where fuel was leaking 
from irrigation pumps. Rumuruti Swamp is rich in Cyperus 
papyrus and other beneficial macrophytes such as Cyperus 
articulatus and Typha latifolia may be introduced to pro-
mote phytoremediation of Al and Fe [14, 33].

4  Conclusion

There was a significant difference in concentration of poten-
tially toxic elements among different sites. Heavy metals and 
nutrients were distributed from the catchment to the mid-
dle reaches without a properly defined pattern. Dry season 
had relatively better water quality compared to wet season 
probably due to river water contamination from runoff. Poor 
agronomic practices such as the use of Co- and Cu-based 
herbicides close to riparian zone may have contributed in 
Ewaso Nyiro River pollution. Leaking irrigation pumps and 

Fig. 2  Hierarchical dendro-
gram of nutrients and metals 
in Ewaso Nyiro River during 
wet season
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cleaning motor bikes on the river banks were observed to 
pollute the river with Mn. Twenty-seven and 40% of sampled 
sites in dry and wet seasons, respectively, had more than 
0.3 mg/L concentration of Fe that is recommended by USEPA 
in drinking water. This is alarming bearing in mind high con-
centration of Fe in drinking water is associated with cancer 
and majority of residents within Ewaso Nyiro ecosystem use 
its water without any form of treatment. Proper agronomic 
practices should be encouraged to curb Mn and Co pollu-
tion besides introduction of macrophytes such as Cyperus 
articulatus and Typha latifolia in Ewaso Nyiro ecosystem for 
Fe and Al phytoremediation, respectively.
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