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Abstract
This research study aims to introduce chaos theory into the Manta Ray Foraging Optimization (MRFO) Algorithm and 
optimize a real-world design problem through the chaos-enhanced versions of this method. Manta Ray Foraging Opti-
mization algorithm is a bio-inspired swarm intelligence-based metaheuristic algorithm simulating the distinctive food 
search behaviors of the manta rays. However, MRFO suffers from some intrinsic algorithmic inefficiencies such as slow 
and premature convergence and unexpected entrapment to the local optimum points in the search domain like most 
of the metaheuristic algorithms in the literature. Recently, random numbers generated by chaos theory have been 
incorporated into the metaheuristic algorithms to solve these problems. More than twenty chaotic maps are applied to 
the base algorithm and ten best performing methods are considered for performance evaluation on high-dimensional 
optimization test problems. Forty test problems comprising unimodal and multimodal functions have been solved by 
chaotic variants of MRFO and extensive statistical analysis is performed. Furthermore, thermo-economic design optimiza-
tion of an air-fin cooler is maintained by the chaotic MRFO variants to assess their optimization capabilities over complex 
engineering design problems. Ten decisive design variables of an air fin cooler are optimized in terms of total annual cost 
rates and optimum solutions obtained by five best chaotic MRFO algorithms are compared to the preliminary design. A 
significant improvement is observed in the objective function values when MRFO with chaotic operators is applied to 
this considered thermal design problem.
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1  Introduction

Optimization is a tedious iterative process based on a com-
prehensive search among the trial solution alternatives 
to obtain the optimum solution for a particular problem. 
Selected optimum solution vector can minimize or maxi-
mize the considered objective to provide the optimal solu-
tion to the problem. Literature optimization approaches 
can be generally categorized into two main branches: 
Deterministic and stochastic algorithms [1]. Determinis-
tic methods converge to the optimal solutions in a finite 
time and can guarantee the global optimum solution 

with a negligible predefined error tolerance. Algorithms 
belonging to deterministic optimization methods are fre-
quently used when locating the global best answer to the 
problem is a necessity or in extreme cases when it is very 
time-consuming and exhaustive to find a feasible solution. 
However, these types of algorithms can be unproductive 
and become useless in finding the exact solutions to NP 
(Non Polynomial)-hard multidimensional problems. In 
these cases, stochastic optimizers can be favorable alter-
natives, which benefit from the randomness while prob-
ing the search space with a superficial exploration. It is 
nearly impossible to obtain the same optimal result in the 
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successive algorithm runs for stochastic algorithms as their 
search mechanism relies on non-repeating random-walks 
[2]. Such algorithms can provide very efficient results with-
out any guarantee of finding the global optimum solution. 
Metaheuristic algorithms are prominent members of sto-
chastic algorithms and able to yield robust and accurate 
predictive results for multidimensional nonlinear optimi-
zation problems. They do not impose preconditions to the 
solution domain such as differentiability and continuity 
which eases their successful applications to various design 
problems [3].

Metaheuristic algorithms prove their effectivity in solv-
ing complex optimization cases and therefore draw signifi-
cant interest from the research community in their appli-
cations to various design problems [4–6]. Particle Swarm 
Optimization [7], Differential Evolution [8], and Harmony 
Search [9] algorithms are the prevalent examples of the 
metaheuristic optimizers. Despite their different structural 
characteristics, all metaheuristic algorithms commence 
with randomly generated trial solutions within the allow-
able bounds. Then, candidate solutions are evolved by the 
algorithm-specific manipulation equations until the prede-
fined termination condition is satisfied. Solution improve-
ment varies according to the nature of the optimization 
algorithm. For instance, the Particle Swarm Optimization 
method uses social flocking birds whereas Crow Search 
[10] algorithm utilizes the characteristic pilfering behav-
iors of the intelligent crows. Literature also comprises 
recently emerged metaheuristic methods such as Barna-
cles Mating Optimization [11], Harris Hawks Optimization 
[12], Seagull Optimization [13], Slime Mould Optimization 
[14], Farmland Fertility Optimization [15], and Levy Flight 
Distribution [16] algorithms whose successful engineer-
ing applications have not been sufficiently investigated 
yet. There is also a new emerged metaheuristic algorithm 
called Heat Transfer Search [17] which is inspired form the 
basic principles of thermodynamics and heat transfer. The 
proposed optimization method is based on the molecu-
lar interactions of the systems to attain a thermal equilib-
rium with the surroundings. This metaheuristic optimizer 
is applied to thermal design optimization of a fin and tube 
heat exchanger with a view to minimize the total weight 
and total annual cost of the device [18]. Patel et al. [19] 
present a multi-objective thermal design optimization of 
a Stirling heat engine taking into account of four different 
optimization objectives including thermal and exergy effi-
ciency, power output, and ecological function using Heat 
Transfer Search algorithm.

Metaheuristic optimizers perform the iterative calcula-
tions by dividing the search domain into two main phases 
to increase the possibility of finding the global optimum 
solution of the problem. These two conflicting but com-
plementary search mechanisms are diversification and 

intensification. The diversification process is concerned 
with maintaining an extensive global search mostly 
through randomization within the search range to elimi-
nate the possibilities of the local minima entrapment. 
Intensification generally occurs in the neighborhood of 
the successful samples to evaluate the beneficial solution 
information stored in the population memory. This pro-
cess can be also considered as an intensive local search 
mechanism to exploit the fertile and promising regions 
in the vicinity of the current best solution. A successful 
metaheuristic optimizer should maintain a plausible bal-
ance between these two commanding search phases to 
reach favorable solutions. However, achieving harmony 
between these probing mechanisms maybe sometimes 
troublesome due to the randomized natures of the sto-
chastic optimization algorithms. An algorithm developer 
should be aware that too much emphasis on one phase 
would weaken the intensity of the other one, which may 
lead to poor estimations resulted from the stagnation in 
the solution convergence or inefficient exploration of the 
search domain. There are available options discussed in 
the literature to improve the effectiveness of these mecha-
nisms. Random walks [20] can be alternatively employed 
to diversify the search space to some extent whereas local 
search methods [21, 22] are exemplified as popular strate-
gies for the exploitation which allows for intensification on 
the fertile areas obtained through the iterative process. 
Creating a synergy between two or more metaheuristic 
algorithms [23, 24] can also improve the solution accu-
racy, but this kind of hybridization burdens a significant 
amount of computational cost which entails evident 
problems in ill-defined expensive optimization problems. 
Apart from these alternative strategies, literature studies 
suggest incorporating the essentials of the chaos theory 
into the metaheuristic algorithms to improve the explo-
ration and exploitation phases. Chaotic sequences have 
been previously employed on the tunable parameters of 
metaheuristic optimizers such as Krill Herd Algorithm [1], 
Big Bang–Big Crunch Algorithm [25], Bat Algorithm [26], 
Firefly Algorithm [27], Grasshopper Optimization algo-
rithm [28], Artificial Immune System Optimization Algo-
rithm [29], Imperialist Competitive Algorithm [30], Crow 
Search Algorithm [31], Atom Search Optimization [32], 
Salp Swarm Algorithm [33], Dragonfly Algorithm [34], 
and Gravitational Search Algorithm [35]. Integration with 
chaos theory shows a promise and can be applied if the 
appropriate set of chaotic maps among the alternatives 
is utilized. The numerical analysis made on the predic-
tive results of the above-mentioned chaotic metaheuris-
tic algorithms reveals that using chaotic numbers rather 
than a uniformly distributed Gaussian random number 
or fixed algorithm parameter greatly enhances the solu-
tion diversity. For this reason, this research study aims to 
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introduce chaotic random numbers into a recently devel-
oped metaheuristic of the Manta Ray Foraging Optimiza-
tion (MRFO) algorithm [36]. This is the first time in litera-
ture that a set of chaotic variables is applied to base the 
MRFO algorithm to enhance the solution effectivity and 
quality. This algorithm mimics the intrinsic food search 
behaviors of the manta-rays including cyclone foraging, 
chain foraging, and somersault foraging mechanisms 
to reach the optimal solution of the problem. There is a 
limited research study in the literature investigating the 
optimization efficiency of MRFO due to its recent emer-
gence. Calasan et al. [37] identified the unknown model 
parameters of single-phase transfer through a chaotic 
Logistic map based MRFO. Fathy et al. [38] used the MRFO 
algorithm for extracting the global maximum power point 
from the Triple-junction solar-based array running under 
shadow conditions. Selem et al. [39] extracted the uniden-
tified model parameters of PEMFC using MRFO. Three case 
studies regarding different PEMFC stacks were solved and 
comparative results were verified. El-Hameed et al. [40] uti-
lized the MRFO algorithm to estimate three-diode model 
parameters of solar panels. The objective function consid-
ered as the cumulative root mean square error between 
the experimental data and the governing mathematical 
model is minimized to obtain nine design variables char-
acterizing the I-V polarization curves of generating units. 
It is seen from the limited literature survey that no clear 
improvement has been made on the search equations of 
MRFO to boost up the solution accuracy and efficiency, 
except the research study covering experimental and the-
oretical analysis on single-phase transformers performed 
by Calasan et al. [37] in which optimization performance 
is enhanced by hybridizing chaotic numbers produced by 
Logistic map with manipulation equations of MRFO.

One of the major concerns in this study is to diversify 
the available literature by incorporating the merits of the 
chaos theory into MRFO and observe the improvements 
in solution accuracies acquired through various chaotic 
variants. Previous approaches to chaotic metaheuris-
tic algorithms suggest that different chaotic maps lead 
to different algorithm characteristics, which eventually 
leads to different solution outcomes. Extensive numeri-
cal experiments made by the author on MRFO through 
high dimensional test problems with various functional 
features indicate that this algorithm may suffer from pre-
mature convergence for a set of benchmark cases with 
different characteristics. To overcome this drawback, 
twenty-four different chaotic maps have been replaced 
with uniformly distributed numbers maintaining randomi-
zation for the algorithm. Optimization efficiencies of the 
ten best performing chaotic maps between them are com-
pared employing the forty multidimensional optimization 
unconstrained benchmark problems comprising unimodal 

and multimodal test functions. One novelty proposed in 
this research study is to integrate the generated chaotic 
numbers into the baseline MRFO algorithm, which has 
not been considered before in any published literature 
work. Furthermore, thermo-economic design optimiza-
tion of an air fin cooler will be performed by the chaotic 
variants of MRFO to assess their optimization capabilities 
on a complex real word constrained design problem. A set 
of ten decision variables of the heat exchanging unit will 
be optimized by the proposed chaotic optimization meth-
ods to retain the minimum annual capital cost of a heat 
exchanger. Another impactful contribution to the litera-
ture is that this is the first application of MRFO algorithm 
to heat exchanger design problems.

Several theoretical attempts have been made by dif-
ferent researchers for thermal design optimization of air 
plate-fin coolers in the literature. Doodman et al. [41] 
utilized a metaheuristic based thermo-economic design 
optimization of air-cooled heat exchangers utilizing the 
favorable merits of global sensitivity analysis and harmony 
search algorithm. Global sensitivity analysis is performed 
to reduce the number of design variables by identifying 
the non-influential operating parameters. Then, the Har-
mony search algorithm is applied to the influential design 
parameters to reach the optimal value of the considered 
problem objective. Salimpour and Bahrami [42] inves-
tigated the influences of different tube geometries and 
flow configurations over the thermal performance of the 
heat exchanger. A parametric optimization study was con-
ducted to obtain the optimal values of total entropy gen-
eration which is the considered problem objective for this 
research study. Moreover, a novel correlation was devel-
oped to obtain optimal values of Reynolds number based 
on the optimized decision parameters. Gonzalez et al.[43] 
applied the Successive Quadratic Programming nonlinear 
optimization method to obtain the minimum cost of an 
air-cooled heat exchanger, subjected to various several 
geometric and thermohydraulic constraints. Kashani et al. 
[44] put into practice NSGA-II to concurrently minimize 
two conflicting design objectives of an air-cooled heat 
exchanger namely the temperature approach and total 
annual cost considering ten different design variables. 
Karami et al. [45] proposed using the Imperialist Competi-
tive Algorithm to optimize the amount of the heat transfer 
that occurred in an air-cooled heat exchanger equipped 
with classic twisted tape inserts. Manassaldi et al. [46] used 
a branch-and-bound optimization method to accomplish 
an optimal design of an air-cooled heat exchanger corre-
sponding to three different optimization criteria which are 
minimum total annual cost, minimum heat transfer area, 
and minimum fan power consumption. Carvalho et al. 
[47] presented a design optimization case of an air cooler 
taking into account the limiting fan calculations which 
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enables using mass flow rate of the process air as a deci-
sion variable. Three different optimization methodologies 
were applied to this design problem and their predictive 
performances were compared. Despite the plenty of con-
tributive efforts regarding the design optimization of air 
fin coolers, neither of them considers the effects of various 
types of fin resistances over total heat transfer rates as well 
as total annual cost values. It is important to evaluate the 
contributions of all these resistances to the mathemati-
cal model that governs the heat exchange mechanism 
between the process air and in-tube fluid. Furthermore, 
neither of these abovementioned approaches perform a 
complete analysis as to the variational influences of deci-
sion variables on the considered design objective. This 
research study will take into account most of the missing 
discussions overlooked by the past studies and propose 
a more reliable and robust mathematical procedure for 
the thermo-economic design of an air fin cooler. The rest 
of the paper is organized as follows. Section 2 provides 
the essentials of the Manta Ray Optimization algorithm 
along with its detailed algorithmic procedure. Section 3 
gives a brief description of the characteristic formula-
tions of chaotic maps, presents the chaos-based Manta-
Ray Foraging Optimization, and performs a comparative 
statistical analysis retained from the individual successive 
runs of these chaotic algorithms for each benchmark func-
tion. Section 4 provides the fundamental thermal design 
principles of air-fin coolers, defines the objective function, 
and describes the imposed design constraints. Section 5 
reports the optimum operating parameters that minimize 
the annual capital cost of an air-fin cooler, and performs 
parametric analysis. Section 6 concludes this research 
study through remarkable comments along with some 
useful future works.

2 � A brief overview of the manta ray foraging 
optimization algorithm

Manta Ray Foraging Optimization (MRFO) algorithm [36] 
is a bio-inspired swarm intelligence optimizer simulating 
the food search proclivities of manta rays such as chain 
foraging, cyclone foraging, and somersault foraging. Chain 
foraging simulates the intrinsic food search activity in 
which foraging manta-rays line up in an orderly fashion 
to catch the missing preys overlooked or undetected by 
the previous manta ray in the chain [48]. This interactive 
cooperation between the competing manta rays elimi-
nates the possible loss of prey in their eyesight to some 
degree and improves the food rewards. Cyclone foraging 
takes place when the concentration amount of the prey 
(plankton) is significant. The tail end of the manta ray con-
nects with its head forming a spiral to produce a vertex in 

the eye of a cyclone, therefore the filtered water moves 
towards the surface. This rather complex process enables 
the prey plankton to be easily caught by the predator 
manta ray [49]. The last foraging strategy is somersault 
foraging which is considered to be one of the most splen-
did natural activities performed by a living creature [50]. 
Manta rays make backward spin moves and circle around 
the prey planktons draws them into their open mouths. 
These three different foraging mechanisms form the fun-
damental search schemes of the MRFO. Next sections will 
briefly describe the mathematical models inspired by the 
governing foraging behaviors of the manta rays.

2.1 � Chain foraging

As mentioned in the above section, manta-rays line up in 
an orderly head-to-tail fashion to form a solid chain for 
catching prey planktons. MRFO makes an assumption 
that the best solution obtained so far is the plankton with 
higher concentration, which is the target prey for the 
manta ray chain to be consumed. Algorithm updates the 
current position of the population individuals based on 
the target prey considered as the best solution and the 
manta ray in front of the current manta ray with using the 
below-given formulation

where xt
i,j

 is the position of the ith manta ray in the jth 
dimension at iteration t; ri(0, 1) i = 1, 2, 3, 4 are random 
numbers defined in the range [0, 1] which are also differ-
ent from each other; � is the weight coefficient, and xt

best
 is 

the plankton prey with the highest concentration. One can 
easily see that position update mechanism in chain forag-
ing is determined by the previous manta ray in the chain 
and the spatial position of the best plankton.

2.2 � Cyclone foraging

Manta ray group forms a foraging chain and makes spiral 
movements while approaching the food source when they 
recognize the position of a school of plankton in the deep 
water. Flocked manta rays in the cyclone foraging phase 
not only follow the manta ray in front of the previous one 
to ensure the consistency of the formed chain but also 
chase a spiral pathway to move towards the target prey. 
This characteristic spiral shape movement of the manta ray 
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chain is mathematically modeled in D dimensional search 
space by the following formulation

where � is the weight coefficient; maxiter and iter respec-
tively represent the maximum number of iteration and 
the current iteration; and ri(0, 1) i = 5, 6, 7, 8 are different 
random numbers defined in the range between 0 and 
1. The cyclone foraging phase of the algorithm plays an 
important role in performing two different main driv-
ing mechanisms of metaheuristic algorithms including 
exploitation and exploration. Utilizing the best plankton 
as a reference point in this foraging phase paves the way 
for intensifying the fertile regions around the current best 
solution and gives rise to exploitation capabilities of the 
algorithm. Cyclone foraging also provides a significant 
contribution to the exploration phase by enforcing the 
population individuals to move a random position in the 
search space which should be far away from their current 
position as well as the best prey position. This exploration 
mechanism promotes an extensive diversification on the 
global search space and enables the algorithm to guide 
the population individuals through the unvisited paths of 
the search domain. Mathematical model of the proposed 
exploration mechanism is given below

where xt
rand

 is the random position generated within the 
allowable bounds; lower and upper correspondingly stand 
for the lower and upper bounds of the search space.

2.3 � Somersault foraging

This foraging scheme considers the best prey position as a 
pivot point and each manta-ray in the population probes 
around this point to flip back to a new position residing 
in the search domain. Solution update mechanism in this 
phase is strongly influenced the current best solution 
which guides the formed chain individuals through the 
following mathematical formulation
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Similar to most of the metaheuristic algorithms, the 
MRFO algorithm is initialized with generating the popula-
tion individuals within prescribed allowable boundaries. 
The position update mechanism relies on the manta ray 
individual in front of the current one and the considered 
pivot point. Shifting from exploration to exploitation 
phases is dependent upon the variations in the numeri-
cal value of the iter/maxiter ratio. The exploitation phase 
is enacted when iter/maxiter < r(0,1), in which the current 
best position is considered to be a pivot point and plays 
a dominant role in perturbing the candidate solutions 
nearby the fertile and promising regions in the search 
domain. Algorithm switches to the exploration phase 
when iter/maxiter > r(0,1), where randomly generated 
manta ray individuals within the allowable bounds take 
control and become the leading reference point. Further-
more, the algorithm can also switch between the chain 
foraging and cyclone foraging based on a randomly pro-
duced number. Then, summersault foraging takes action 
to update the current position of individuals through the 
current best solution. These three different foraging mech-
anisms are performed interchangeably to reach the global 
optimum solution of the optimization problem while the 
predefined termination is criterion is satisfied. Figure 1 
provides the main steps of the Manta Ray Foraging Opti-
mization algorithm.

3 � Chaotic maps

Metaheuristic optimization methods benefit from the 
randomized parameters to reach the optimum solution 
of a problem. These parameters used in the algorithms are 
generally either drawn from uniformly distributed random 
numbers [7] or random walks produced by following the 
rules of Levy distribution [51]. Recently, chaotic numbers 
have been successfully embedded into metaheuristic opti-
mizers to iteratively adjust the algorithm-specific param-
eters and improve the randomization effectiveness of the 
related algorithm. Chaos is a random-like deterministic 
method observed in a nonlinear and dynamical system 
[25]. It is a typical phenomenon that is highly sensitive to 
the starting conditions such that any small changes in ini-
tial values may lead to abrupt non-linear changes in the 
future states. A considerable amount of number sequences 
can be generated by only making a small modification on 
initial state values. Quasi-stochastic characteristics of cha-
otic numbers enable them to be replaced with any type of 
random numbers [33]. Ergodic features of the generated 
chaotic numbers ease their successful implementation in 
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Fig. 1   Main algorithmic steps of Manta Ray Foraging Optimization Algorithm
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search conditions where all possible iterative future states 
should be non-repeatedly evaluated. This non-repetitive 
nature of the chaotic numbers not only enhances the 
convergence capabilities but also ameliorate the search 
efficiency of the base algorithm [1, 29]. A combination of 
these characteristic properties of chaotic maps entails a 
significant improvement in the optimization performance 
of metaheuristic algorithms [52].

Some literature studies reported an enhanced solution 
diversity and quick avoidance of the local optimum points 
on the search space by utilizing the merits of the chaotic 
systems [53]. A typical chaotic system with M dimension 
can be expressed by the following equation

Very large and ergodic chaotic sequences can be gen-
erated in the mathematical form of pm

t
, m = 0, 1, 2, ..,M 

by defining an initial state of p0
t
 . Various types of chaotic 

maps are available in the literature. In this study, ten best 

(8)pm+1
t

= f
(
pm
t

)

performing chaotic sequences out of twenty-four non-
invertible chaotic maps with different functional charac-
teristics have been considered. Table 1 reports the math-
ematical formulations of the ten best performing chaotic 
maps where xt (yt) denotes the tth number of member x 
(y) in the chaotic sequence and t represents the current 
index of the chaotic variable in the sequence. To make a 
fair comparison between alternative maps, the initial value 
of all chaotic sequences is set to 0.7 as it was previously 
suggested in [33, 47]. Figure 2 visualizes the sequential 
signals generated by the chaotic maps reported in Table 1.

3.1 � Chaotic manta‑ray foraging optimization 
algorithm

This section will give a brief and concise instruction on 
the proposed chaotic Manta-Ray Foraging Optimization 
Algorithm. Despite a limited useful information is avail-
able in the literature approaches concerning with optimi-
zation performance of this algorithm, extensive numerical 

Table 1   Mathematical 
formulations of the chaotic 
maps
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experiments made on the constrained and unconstrained 
optimization benchmark problems by the author himself 
reveal that premature convergence to the local optimum 
points due to the insufficient exploration and exploita-
tion capabilities is obvious and this algorithmic deficiency 
should be resolved. MRFO has no tunable algorithm 
parameters which eliminate the exhaustive parameter 
tuning process for a specified type of optimization prob-
lem. It is one of the advantages of this metaheuristic algo-
rithm. Most of the literature metaheuristic methods whose 
search equations are enhanced by the chaotic numbers 
either have two options for the possible replacement. 
One option is to replace the chaotic sequences with an 
algorithm-specific fixed tunable parameter, and the other 
one is to utilize chaotic sequences rather than uniformly 
distributed random numbers to improve the solution 
efficiency. It is also known that reducing the number of 
constants or iteratively adjusting parameters improve the 
exploration and exploitation performance [55]. As there 
are no fixed algorithm parameters in MRFO, uniformly 
generated random numbers are only the variables that 
posing a commanding influence on the position update 
mechanism and the balance between the exploration and 
exploitation phases. At the early phases of the iterations, 
it is important to diversify the search space as much as 
possible to explore the unreached regions over the solu-
tion domain which prevents premature convergence. As 
the iterative process proceeds, the algorithm shifts into 

the exploitation phase which focuses on the promising 
regions obtained through the course of iterations. It is 
comprehended from the exhaustive literature survey over 
chaotic metaheuristic algorithms that chaotic sequences 
can maintain a balanced probing mechanism between 
these two phases and improve the overall search efficiency 
in terms of convergence speed and solution accuracy. Rely-
ing on the abovementioned discussions and deductions 
from the previous research studies, chaotic sequences 
generated from different chaotic maps have been replaced 
with the Gaussian random numbers defined in [0,1]. It is 
aimed to obtain different diversification and intensification 
patterns from the chaotic signals with various character-
istics, which eventually entails a solution improvement. 
Table 2 gives the pseudo-code of the proposed chaotic 
Manta-Ray Foraging Optimization algorithm. The below 
given conclusive terms can provide meaningful insights 
on the efficacy of the proposed chaotic variants of MRFO.

•	 Generated chaotic signals enable the algorithm to 
focus on the exploration at first steps then gradually 
switch into the exploitation phase with an increasing 
number of iterations.

•	 In the case of quick convergence to regional best 
solutions during the optimization process, chaotic 
variables retained from different operators help the 
algorithm to circumvent these unfertile areas on the 
search space.

Fig. 2   Chaotic sequences produced by different chaotic maps
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Table 2   Pseudo-code of the proposed chaotic MRFO algorithm
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•	 Unpredictable chaotic movements over the solution 
domain can also maintain swift shifts between the 
exploration and exploitation phases.

•	 Produced chaotic variables can help the algorithm to 
enhance the intensification process on the promising 
areas in the case of location a favorable solution neigh-
borhood

3.2 � Experimental results for different chaotic 
variants

This section appraises the proposed chaotic variants 
of the MRFO algorithm with regards to the solution 
accuracy and robustness through forty different uncon-
strained optimization benchmark problems. Thirty-
dimensional test problems used for benchmarking the 
search efficiencies of the chaotic algorithms are divided 
into two sub-categories: multimodal and unimodal test 
functions. The former is suitable for assessing the capa-
bilities of the related algorithm for exploration whereas 
the latter is applicable for evaluating the exploitation 
performance [56]. Exact formulations of the multimodal 
and unimodal test functions are correspondingly given 
in Tables 3 and 4. A comprehensive statistical analysis is 
performed for each chaotic variant and optimization effi-
ciency of each chaotic algorithm is compared in terms 
of mean and standard deviation results. A total number 
of 50 successive independent algorithm runs along with 
2000 function evaluations have been performed due to 
the stochastic natures of the chaotic optimizers. Algo-
rithms have been developed in Java environment and 
run on a personal computer with the Intel Core proces-
sor having 6.0 GB RAM at 2.0 GHz CPU. Tables 5 and 6 
report the statistical results for multimodal benchmark 
functions obtained by the chaotic algorithms along with 
recently developed metaheuristics of Barnacles Mating 
Optimizer (BMO) [11], Harris Hawks Optimization (HHO) 
[12], and Seagull Optimization Algorithm (SGULL) [13]. 
CM01 to CM10 respectively stand for Arnold (CM01) 
[57], Chebychev (CM02) [58], Chirikov (CM03) [59], 
Gauss/Mouse (CM04) [60], Kent (CM05) [61], Logistic 
(CM06) [62], Lozi (CM07) [63], Piecewise (CM08) [54], 
Standard (CM09) [64], and Zaslavsky (CM09) [65] cha-
otic operators. CM02 gives the best predictions while 
CM05, CM08, and CM10 are outperformed by MRFO for 
the f1-Levy test function. Prediction performances of 
BMO and HHO algorithms are much better than those 
of the compared chaotic algorithms for this case. Pre-
dictive results obtained by CM03 and CM09 are much 
better than the other methods whereas CM05 reaches 
the optimal solution for each independent run for f2-Ack-
ley function. CM05 outperforms the compared chaotic 
algorithms along with MRFO for f3-Griewank, f4-Rastrigin, 

f5-Zakharov, and f6-Alpine test functions as it reaches 
the global optimum point for each run for these func-
tions. It is also worth to mention the improvements in 
solution qualities by CM03 and CM09 for f6-Alpine. For 
these four test functions, BMO algorithm also obtains 
the global best answer of the mentioned test functions 
in each algorithm run and proves its efficiency for these 
benchmar problems. The global optimum solution is 
obtained neither of the algorithms runs for f7- Penal-
ized1 test function. It is also seen that domination of 
the MRFO algorithm in terms of solution robustness is 
evident in this case. Although estimated solutions are 
far away from global optimum points, CM09 and CM03 
slightly surpass the chaotic algorithms for f8-Quintic 
function. CM05 acquires the global optimum solution 
for each algorithm run for f9-Csendes. Besides, satisfac-
tory estimations are performed by CM03 and CM09 for 
this test function. It is also seen that estimation results 
of BMO and HHO are quite promising and outperform 
most of the chaotic variants in terms of solution accu-
racy. Contrary to the previous cases, predictive results 
obtained for CM05 are inferior to those retained by the 
chaotic variants and literature optimizers for f10-Schaffer. 
Again, CM03 and CM09 outperform the other methods 
for this case. Among them, HHO provides the best pre-
dictions for this benchmark function with a mean devia-
tion of 1.85E-03 and a standard deviation of 9.79E-04. 
The global optimum point of the f11-Inverted cosine 
function is obtained by CM03, CM05, and CM09 for 
each algorithm run. The superiority of CM05 in terms 
of solution persistency and accuracy is evident for f12-
Wavy function. BMO also performs better estimations 
than those of the compared variants for this case. CM05 
reaches the global optimum point of f13-Hyperellipsoid, 
f14-Pathologic, and f15-Salomon in each run and proves 
its superiority for these test functions. Optimization 
efficiencies of CM03 and CM09 algorithms are quite 
satisfactory although they do not get even close to the 
optimum point of f16- AckleyN4. HHO algorithm provides 
the most accurate predictions between the compared 
aoptimizers for this test function. All compared chaotic 
variants along with MRFO perform similar estimations for 
f17-Exponential, however CM03 and CM09 again slightly 
outperform them in solution robustness. BMO and HHO 
can not find a feasible solution even in a single algo-
rithm run for this test function. MRFO produces better 
optimization results for f18-Trid 6 function compared to 
the other chaotic methods. However, predictive results 
found by HHO algorithm in terms of mean and standard 
deviation values are much bettter than the compared 
methods for f18-Trid 6 function. CM03, HHO, CM06, and 
CM09 perform well on f19- Styblinski-Tang test function 
and retain better prediction accuracies in comparison 
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with the remaining chaotic algorithms. Considerable 
performance improvement is observed by CM05 for 
f20-Yang1, f21-Yang2, and f22-Yang4 function as the same 

global optimum solution is found for each algorithm 
runs for these three test functions.

Table 3   Mathematical formulations of the multimodal test functions
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Tables 7 and 8 report the optimum results for unimodal 
test functions. For f23- Sphere function, CM05 shows the 
best predictive performance followed by CM03, BMO, 
CM09, and HHO algorithms. Although most of the com-
pared methods acquire similar results for f24-Rosenbrock 
function, CM03 and CM09 are one step ahead of them 
regarding the solution robustness. Global optimum solu-
tions of f25-Brown, f26-Streched sine wave, and f27-Powell 
singular test functions are obtained for again CM05 cha-
otic algorithm. It is also worthwhile to mention the com-
petitive optimization performance of CM03 and CM09 
algorithms for these test functions. BMO algorithm is not 
able to retain a feasible solution in any algorithm run for 
f25-Brown. Very poor convergence behavior is shown by 
CM05 for f28-Sum of different test function as opposed 
to the previous successful optimization performances. 
CM09 and CM03 again provide the best predictions for 
this benchmark problem. Promising predictions are also 
obtained by BMO and HHO for for f28-Sum of different 
test function. CM05 again becomes the superior chaotic 
algorithm among the contestant variants for f29- Sum of 
squares, f30- Bent cigar, f31-Discus, f32-Different powers 
benchmark problems. CM09 and CM03 respectively hold 
the second and third seats concerning solution accuracy 
for these functions between the chaotic MRFO variants. 
Estimations of BBO and HHO are also promising and sur-
pass most of the chaotic algorithms regarding mean and 
standard deviation rates for these test functions. CM09, 
CM03, and CM05 respectively give the best, the second-
best, and the third-best performance for f33-Dixon-Price 
test function despite the optimum solution are obtained 
neither of the algorithm runs for each chaotic method. 
None of the chaotic algorithms along with MRFO obtain 
a feasible solution for each successive algorithm run for 
f34-Yang 3. Only SGULL algorithm retains feasible during 
the course of algorithm runs. CM05 significantly outper-
forms the compared chaotic algorithms and literature 
optimizers in terms of solution accuracy and robustness 
for f35-Schwefel 2.20, f36-Schwefel 2.21, f37-Schwefel 2.22, 
and f38-Schwefel 2.23 test functions as it shows an inten-
sive persistence on finding the global optimum solutions 
of these test functions for each algorithm run. Statistical 
results provided by CM02 for f39-Schwefel 2.25 benchmark 
function are much better than those obtained by the other 
methods even though neither of them reaches the optimal 
solution in any algorithm run. CM03 and CM09 become 
the dominant chaotic algorithms for f40-Dropwave func-
tion when the statistical results of the optimal solutions 
are evaluated. However, literature optimizers of HHO and 
BMO provide slightly more accurate predictions than the 
chaotic algorithms for f40-Dropwave test function.

Figures 3, 4, 5, 6 visualize the convergence character-
istics of the chaotic variants of the MRFO algorithm for 

multimodal test functions from f1-Levy to f22-Yang4. It 
can be understood from the figures that different con-
vergence behaviors are observed for chaotic variants 
for multi-modal test functions. One distinctive behavior 
shown by the chaotic methods is performing short and 
gradual decreases until the end of iterations after the early 
stagnation period at the initial phases. The other conver-
gence behavior is only observed for CM05 (Kent) whose 
characteristics involve sharp and abrupt declines gener-
ally at the final phases of the iterations. These sudden 
decreases in objective function values can be attributed 
to the irregular search dynamics that occurred by the quick 
and unpredictable shifts between exploration and exploi-
tation phases. Similar convergence proclivities can also be 
observed for unimodal test functions as shown in Figs. 7, 
8, 9. Table 9 reports the Friedman test with a significance 
level of 5% (α = 0.05) to detect the differences between 
multiple test runs. The p-results demonstrated in Table 9 
show that CM05 outperforms other competing optimizers 
for most of the benchmark objective function optimizing 
tasks. Figures 10 and 11 compare the convergence char-
acteristics of the best performing chaotic algorithm and 
metaheuristic methods of BMO, HHO, and SGULL for some 
of the test functions used for benchmarking capabilities 
of the contestant optimizers. Best performing chaotic 
algorithm outperforms the compared literature optimiz-
ers in terms of convergence speed for most of the cases 
and proves its superiority on solution efficiency and accu-
racy. Table 10 reports the statistical analysis results of the 
compared algorithms for the set of unconstrained test 
problems of the CEC 2017 competition. Optimal solutions 
found by the MRFO algorithm along with the three best 
performing chaotic algorithms of CM03, CM05, and CM09 
are compared with those obtained for EBOwithCMAR [66] 
and JSO [67] algorithms. These two algorithms respectively 
hold the first and second places for this competition and 
considered as pivot algorithms for benchmarking. Chaotic 
variants show similar optimization performances for F1 
and F2 functions. Although the global optimal results are 
not obtained, solution quality is considerably enhanced 
by the chaotic methods compared to those found by 
the base MRFO algorithm for test functions from F3 to 
F5. Three chaotic algorithms outperform the JSO [67] for 
the F6 test function regarding the solution accuracy. No 
feasible solution is obtained for MRFO in neither of the 
algorithm runs for this case. A substantial improvement 
in convergence performance is observed for test functions 
from F7 to F10 by the chaotic algorithms however solution 
qualities are not as good as those obtained for CEC 2017 
winners. CM05 and CM03 algorithms surpass the two best 
performing CEC 2017 contestants for the F11 test function. 
Mean objective function values are greatly improved by 
incorporating the chaotic variables for the remaining test 
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functions and competitive results are obtained as com-
pared to those acquired by EBOwithCMAR [66] and JSO 
[67] algorithms. Based on the numerical outcomes of the 
experimental studies performed in this section, it is fair to 
conclude that convergence speed and solution accuracy 
are both greatly improved by incorporating chaotic ran-
dom numbers in the base optimization algorithm.

4 � Thermal design and optimization of air fin 
coolers

4.1 � Preliminary concepts

Evolving interest on-air fin coolers between the heat 
exchanger research community is raised from the threat-
ening concerns on increasing water costs along with 
water shortages, which have reduced the utilization of 

water-cooled heat exchangers among the industrial 
applications. When the applicable heat regeneration is 
not possible due to the structural limitations within the 
thermal plant, heat rejection to the surrounding environ-
ment occurs which is widely observable in refineries and 
chemical plants using Air Cooled Heat Exchangers (ACHEs). 
These types of heat exchangers are preferable in the appli-
cation regions where special water treatment is required to 
reduce the fouling inside the tubes. ACHEs are composed 
of tube bundles over which cooling air is blown through 
one or more fans to remove the excess heat rejected from 
the tubes. Below described two different types of ACHES 
are widely applied in industrial applications. These are 
forced draft air coolers and induced draft air coolers. Rely-
ing on their economic advantages and versatile mainte-
nance features, the forced draft ACHE is an advantageous, 
practical and the most common air cooler type where axial 
fans are mounted below the tube bundle to circulate the 

Table 4   Mathematical 
formulations of the unimodal 
benchmark functions
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Table 5   Statistical results for 
multimodal test functions from 
f1-Levy to f16-AckleyN4

f1—Levy f2—Ackley f3—Griewank f4—Rastrigin
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

MRFO 1.28E + 00 ± 5.38E01 2.83E-04 ± 2.31E-04 2.27E-02 ± 7.76E-02 7.08E + 01 ± 7.27E + 01
CM01 1.09E + 00 ± 3.86E-01 2.05E-04 ± 1.71E-04 1.54E-02 ± 8.36E-02 3.89E + 01 ± 4.87E + 01
CM02 2.49E-02 ± 1.29E-01 4.12E-02 ± 2.68E-02 8.12E-04 ± 1.10E-03 2.86E + 01 ± 8.76E-01
CM03 9.26E-01 ± 1.54E-01 4.21E-10 ± 4.22E-10 4.81E-04 ± 3.05E-03 3.12E-02 ± 2.16E-01
CM04 1.02E + 00 ± 2.16E-01 3.69E-05 ± 3.90E-05 1.41E-02 ± 4.13E-02 3.32E + 01 ± 5.09E + 01
CM05 1.94E + 00 ± 4.29E-01 4.44E-16 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
CM06 1.03E + 00 ± 1.79E-01 9.32E-04 ± 8.78E-04 9.74E-03 ± 4.18E-02 2.69E + 01 ± 3.58E + 01
CM07 1.10E + 00 ± 2.44E-01 2.73E-05 ± 3.74E-05 1.09E-02 ± 3.20E-02 3.02E + 01 ± 4.07E + 01
CM08 1.37E + 00 ± 3.51E-01 3.37E-04 ± 3.92E-04 2.33E-02 ± 6.49E-02 6.70E + 01 ± 6.51E + 01
CM09 1.00E + 00 ± 2.18E-01 3.26E-11 ± 5.34E-11 7.36E-03 ± 2.96E-02 1.21E-01 ± 8.90E-01
CM10 1.34E + 00 ± 3.93E-01 2.06E-04 ± 1.91E-04 8.24E-03 ± 2.56E-02 5.05E + 01 ± 6.43E + 01
BMO 4.57E-02 ± 1.20E-02 3.48E-10 ± 1.69E-09 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
HHO 7.10E-01 ± 2.38E-01 4.49E-09 ± 1.09E-09 0.00E + 00 ± 0.00E + 00 3.78E-15 ± 1.93E-14
SGULL 4.60E + 02 ± 2.59E + 03 3.99E-01 ± 2.89E + 00 2.05E-02 ± 1.90E-01 4.75E + 02 ± 4.15E + 03

f5—Zakharov f6—Alpine f7—Penalized1 f8—Quintic
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

MRFO 2.44E + 02 ± 1.89E + 02 7.09E-01 ± 1.61E-01 4.78E-03 ± 3.23E-02 5.58E + 01 ± 1.58E + 01
CM01 1.81E + 03 ± 2.35E + 03 8.05E-01 ± 4.62E + 00 8.32E-02 ± 1.22E-01 4.83E + 01 ± 1.71E + 01
CM02 1.23E + 02 ± 3.20E + 00 5.01E-02 ± 2.59E-02 1.12E-01 ± 1.89E-01 2.56E + 01 ± 2.05E + 01
CM03 6.78E + 02 ± 1.17E + 03 4.25E-10 ± 1.83E-09 1.92E-02 ± 1.22E-02 2.13E + 01 ± 5.57E + 00
CM04 1.44E + 03 ± 1.46E + 03 2.64E-01 ± 1.96E + 00 2.80E-02 ± 2.21E-02 4.15E + 01 ± 1.54E + 01
CM05 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 1.98E-01 ± 1.23E-01 6.70E + 01 ± 1.49E + 01
CM06 7.07E + 02 ± 5.60E + 02 1.13E-02 ± 3.36E-02 2.04E-02 ± 1.24E-02 3.64E + 01 ± 1.24E + 01
CM07 8.05E + 02 ± 1.12E + 03 2.87E-01 ± 1.43E + 00 3.80E-02 ± 9.55E-02 3.46E + 01 ± 1.22E + 01
CM08 1.34E + 03 ± 1.42E + 03 9.39E-01 ± 6.03E + 00 1.35E-01 ± 3.58E-01 5.57E + 01 ± 1.83E + 01
CM09 3.40E + 02 ± 7.40E + 02 1.75E-11 ± 5.71E-11 1.79E-02 ± 8.28E-03 2.04E + 01 ± 6.52E + 00
CM10 1.32E + 03 ± 1.28E + 03 1.02E-01 ± 3.28E-01 5.04E-02 ± 4.85E-02 5.35E + 01 ± 1.79E + 01
BMO 1.83E + 03 ± 5.72E + 03 8.59E-11 ± 3.39E-10 2.93E-01 ± 1.79E-01 5.28E + 01 ± 8.73E + 00
HHO 2.95E + 04 ± 1.93E + 04 9.72E-10 ± 1.77E-09 2.97E-02 ± 1.61E-02 2.20E + 01 ± 4.37E + 00
SGULL 1.19E + 06 ± 1.58E + 07 7.22E-04 ± 1.93E-03 1.57E + 07 ± 1.36E + 08 1.21E + 07 ± 9.85E + 07

f9—Csendes f10—Schaffer f11—Inverted cosine f12—Wavy
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

MRFO 4.25E-01 ± 1.76E + 00 3.05E-02 ± 1.41E-02 6.37E-06 ± 1.59E-05 3.12E-01 ± 1.63E-01
CM01 2.27E-02 ± 1.44E-01 3.02E-02 ± 1.71E-02 1.56E-06 ± 2.31E-06 3.21E-01 ± 1.93E-01
CM02 7.52E-08 ± 4.56E-07 5.26E-03 ± 1.38E-02 4.84E-02 ± 6.77E-02 2.77E-01 ± 2.62E-01
CM03 5.99E-33 ± 2.50E-32 3.81E-03 ± 2.09E-03 0.00E + 00 ± 0.00E + 00 9.91E-02 ± 1.48E-01
CM04 2.71E-05 ± 1.16E-04 1.94E-02 ± 1.21E-02 3.99E-08 ± 8.25E-08 3.23E-01 ± 2.01E-01
CM05 0.00E + 00 ± 0.00E + 00 1.71E-01 ± 1.02E-01 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
CM06 8.19E-07 ± 2.94E-06 1.25E-02 ± 5.86E-03 1.66E-05 ± 3.27E-05 2.52E-01 ± 1.12E-01
CM07 2.98E-08 ± 1.53E-07 1.39E-02 ± 7.81E-03 9.22E-09 ± 2.22E-08 2.52E-01 ± 2.04E-01
CM08 3.00E-01 ± 2.41E + 00 3.01E-02 ± 1.75E-02 4.18E-06 ± 1.56E-05 3.45E-01 ± 1.98E-01
CM09 8.12E-40 ± 3.46E-39 2.75E-03 ± 1.16E-03 0.00E + 00 ± 0.00E + 00 6.81E-02 ± 1.44E-01
CM10 3.73E-02 ± 1.88E-01 2.84E-02 ± 1.60E-02 2.41E-06 ± 7.44E-06 3.17E-01 ± 1.93E-01
BMO 1.81E-46 ± 1.46E-45 2.05E-03 ± 1.33E-03 5.55E-17 ± 2.54E-16 8.55E-15 ± 6.72E-14
HHO 3.90E-47 ± 2.47E-46 1.95E-03 ± 9.79E-04 8.95E-16 ± 3.45E-15 8.18E-04 ± 6.22E-03
SGULL 2.82E-12 ± 2.74E-11 1.21E-02 ± 4.46E-02 4.56E + 02 ± 2.96E + 03 1.94E-01 ± 3.53E-01

f13- Hyperellipsoid f14- Pathologic f15- Salomon f16- AckleyN4
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

MRFO 8.07E-05 ± 1.83E-04 5.39E + 00 ± 3.14E-01 3.51E-01 ± 1.03E-01  − 3.65E + 01 ± 1.58E + 01
CM01 2.13E-05 ± 7.21E-05 5.35E + 00 ± 2.96E-01 2.93E-01 ± 8.90E-02  − 2.97E + 01 ± 1.60E + 01
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Table 5   (continued) f1—Levy f2—Ackley f3—Griewank f4—Rastrigin
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

CM02 1.78E + 00 ± 4.65E + 00 4.17E + 00 ± 1.91E + 00 1.82E-01 ± 9.28E-02  − 1.18E + 01 ± 3.88E + 01
CM03 9.53E-17 ± 2.72E-16 5.37E + 00 ± 3.21E-01 1.02E-01 ± 1.58E-02  − 5.86E + 01 ± 9.01E + 00
CM04 3.70E-07 ± 7.64E-07 5.38E + 00 ± 2.75E-01 2.36E-01 ± 6.57E-02  − 5.24E + 01 ± 1.23E + 01
CM05 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00  − 1.78E + 01 ± 1.17E + 01
CM06 1.46E-04 ± 2.44E-04 5.20E + 00 ± 2.95E-01 2.17E-01 ± 6.43E-02  − 5.42E + 01 ± 8.39E + 00
CM07 7.95E-08 ± 1.58E-07 5.36E + 00 ± 3.46E-01 2.24E-02 ± 6.05E-02  − 5.30E + 01 ± 1.35E + 01
CM08 3.75E-05 ± 7.96E-05 5.40E + 00 ± 3.82E-01 3.12E-01 ± 9.51E-02  − 3.54E + 01 ± 1.71E + 01
CM09 4.58E-19 ± 1.09E-19 5.17E + 00 ± 3.67E-01 1.02E-01 ± 1.49E-02  − 6.37E + 01 ± 7.23E + 00
CM10 2.57E-05 ± 5.24E-05 5.46E + 00 ± 3.36E-01 3.07E-01 ± 1.05E-01  − 3.84E + 01 ± 1.68E + 01
BMO 1.32E-15 ± 7.07E-15 5.63E + 00 ± 4.32E-01 1.01E-01 ± 6.27E-03  − 1.47E + 01 ± 1.73E + 01
HHO 2.13E-14 ± 7.84E-14 4.88E + 00 ± 6.29E-01 9.98E-02 ± 1.72E-16  − 6.58E + 01 ± 1.02E + 01
SGULL 2.62E + 04 ± 2.68E + 05 3.39E + 02 ± 1.92E + 00 7.37E-01 ± 4.29E + 00 1.09E + 02 ± 3.26E + 02

Table 6   Mean and standard 
deviation results for chaotic 
algorithms for multimodal test 
functions

f17- Exponential f18- Trid 6 f19- Styblinski-Tang
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

MRFO  − 9.99E-01 ± 1.24E-06  − 2.15E + 02 ± 6.14E + 01  − 8.50E + 02 ± 6.12E + 01
CM01  − 9.99E-01 ± 1.42E-07 1.49E + 03 ± 6.14E + 03  − 8.20E + 02 ± 5.77E + 01
CM02  − 9.99E-01 ± 8.45E-03  − 8.05E + 02 ± 1.29E + 02  − 6.21E + 02 ± 4.74E + 01
CM03  − 1.00E + 00 ± 5.01E-17  − 2.11E + 02 ± 7.43E + 01  − 9.24E + 02 ± 4.08E + 01
CM04  − 9.99E-01 ± 1.71E-08 3.17E + 03 ± 1.23E + 04  − 8.76E + 02 ± 4.76E + 01
CM05  − 9.99E-01 ± 9.17E-10  − 9.45E + 01 ± 3.93E + 01  − 7.56E + 02 ± 5.64E + 01
CM06  − 9.99E-01 ± 1.12E-06 1.20E + 03 ± 5.54E + 03  − 9.18E + 02 ± 4.51E + 01
CM07  − 9.99E-01 ± 1.48E-08 8.08E + 02 ± 3.13E + 03  − 8.66E + 02 ± 6.73E + 01
CM08  − 9.99E-01 ± 1.95E-06 6.28E + 03 ± 1.58E + 04  − 8.20E + 02 ± 6.49E + 01
CM09  − 1.00E + 00 ± 0.00E + 00  − 2.12E + 02 ± 7.10E + 02  − 9.21E + 02 ± 5.41E + 01
CM10  − 9.99E-01 ± 3.44E-07 6.97E + 03 ± 1.35E + 04  − 8.51E + 02 ± 5.86E + 01
BMO N/A  − 2.39E + 01 ± 1.15E + 01  − 5.80E + 02 ± 1.08E + 02
HHO N/A  − 1.89E + 03 ± 3.28E + 02  − 9.24E + 02 ± 9.76E + 01
SGULL  − 9.19E-01 ± 2.72E-01 1.13E + 03 ± 7.63E + 03 2.41E + 06 ± 1.40E + 07

f20- Yang1 f21- Yang2 f22- Yang4
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

MRFO 1.00E + 01 ± 5.19E + 01 2.70E-05 ± 4.66E-05 6.70E-11 ± 1.58E-10
CM01 2.84E + 06 ± 1.58E + 07 7.77E-04 ± 1.47E-04 3.21E-09 ± 2.16E-09
CM02 7.72E-03 ± 1.54E-02 3.80E-06 ± 8.37E-06  − 8.56E-03 ± 4.20E-02
CM03 1.76E-16 ± 4.91E-16 1.51E-05 ± 2.76E-05 1.85E-09 ± 2.49E-09
CM04 2.83E + 02 ± 1.71E + 03 8.14E-05 ± 1.86E-04 3.01E-11 ± 5.98E-11
CM05 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00  − 1.00E + 00 ± 0.00E + 00
CM06 1.33E + 01 ± 4.39E + 01 2.38E-05 ± 4.06E-05 3.46E-11 ± 8.68E-11
CM07 1.99E-01 ± 6.54E-01 6.79E-05 ± 1.30E-04 5.74E-12 ± 1.02E-11
CM08 4.88E + 07 ± 3.30E + 08 4.19E-05 ± 5.95E-05 4.46E-11 ± 7.80E-11
CM09 1.00E-17 ± 5.64E-17 3.75E-05 ± 8.50E-05 3.55E-12 ± 4.89E-12
CM10 2.65E + 05 ± 1.30E + 06 5.39E-05 ± 7.68E-05 4.20E-11 ± 1.59E-10
BMO 1.84E-19 ± 8.33E-19 2.64E-03 ± 4.53E-03 2.42E-09 ± 4.05E-09
HHO 4.04E-05 ± 2.08E-04 1.85E-04 ± 6.02E-04 4.37E-11 ± 5.39E-11
SGULL 1.42E ± 06 ± 8.36E + 06 1.66E-03 ± 3.52E-03  − 6.23E-01 ± 4.73E-01
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Table 7   Statistical performance of the chaotic MRFO algorithms for unimodal test functions

f23—Sphere f24—Rosenbrock f25—Brown f26—Streched sine wave
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

MRFO 9.64E-07 ± 2.59E-06 4.19E + 01 ± 9.01E + 01 1.81E-02 ± 1.02E-01 3.46E-01 ± 1.93E-01
CM01 2.63E-07 ± 7.00E-07 3.51E + 01 ± 5.14E + 01 5.93E-04 ± 2.13E-03 2.24E-01 ± 1.55E-01
CM02 4.01E-03 ± 9.74E-03 2.89E + 01 ± 7.78E-01 4.95E-03 ± 1.59E-03 5.65E + 00 ± 1.44E + 00
CM03 2.06E-17 ± 8.96E-17 2.68E + 01 ± 3.70E-01 3.93E-16 ± 1.12E-15 8.52E-05 ± 6.85E-05
CM04 4.09E-09 ± 6.74E-09 2.80E + 01 ± 8.31E-01 1.68E-04 ± 9.17E-04 9.95E-02 ± 7.45E-02
CM05 0.00E + 00 ± 0.00E + 00 2.89E + 01 ± 4.29E-02 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
CM06 2.91E-02 ± 9.16E-02 2.82E + 01 ± 7.76E-01 3.89E-05 ± 1.00E-04 5.84E-01 ± 3.35E-01
CM07 3.87E-09 ± 1.87E-08 2.78E + 01 ± 4.37E-01 1.72E-08 ± 6.04E-08 1.21E-01 ± 9.69E-02
CM08 4.13E-07 ± 8.01E-07 8.43E + 01 ± 3.64E + 02 1.74E-03 ± 1.05E-02 2.79E-01 ± 2.25E-01
CM09 4.26E-21 ± 8.79E-21 2.66E + 01 ± 5.72E-01 3.87E-19 ± 1.22E-18 1.56E-05 ± 1.42E-05
CM10 9.69E-06 ± 1.23E-05 3.70E + 01 ± 5.81E + 01 7.94E-05 ± 2.49E-04 2.68E-01 ± 1.61E-01
BMO 3.33E-17 ± 2.60E-16 2.86E + 01 ± 2.14E-01 N/A 5.38E-05 ± 7.44E-05
HHO 1.48E-16 ± 4.91E-16 2.85E + 01 ± 2.38E-01 1.25E-16 ± 4.54E-16 5.87E-04 ± 9.21E-04
SGULL 3.58E + 02 ± 3.92E + 03 4.53E + 03 ± 3.76E + 03 5.67E + 04 ± 3.86E + 03 1.15E + 01 ± 5.35E + 01

f27—Powell singular f28—Sum of different powers f29—Sum of squares f30—Bent cigar
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

MRFO 1.27E-02 ± 4.26E-02 1.47E + 04 ± 1.31E + 05 1.11E-05 ± 2.05E-05 2.37E + 00 ± 1.50E + 01
CM01 4.97E-03 ± 2.46E-02 2.17E + 01 ± 1.35E + 02 4.39E-06 ± 1.45E-05 1.19E-01 ± 2.38E-01
CM02 7.25E-01 ± 1.89E + 00 1.23E-02 ± 1.12E-02 1.02E-01 ± 2.57E-01 2.81E + 03 ± 8.00E + 02
CM03 1.04E-08 ± 5.72E-08 2.86E-23 ± 1.42E-22 2.62E-17 ± 5.83E-17 1.01E-12 ± 1.72E-12
CM04 7.17E-05 ± 1.92E-04 3.34E + 00 ± 1.59E + 01 4.62E-08 ± 6.34E-08 4.68E-03 ± 1.24E-02
CM05 0.00E + 00 ± 0.00E + 00 4.62E + 04 ± 1.33E + 05 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
CM06 3.43E-03 ± 7.27E-03 2.13E-03 ± 8.52E-03 5.59E-05 ± 9.55E-05 1.50E + 00 ± 4.23E + 00
CM07 1.06E-05 ± 2.86E-05 9.71E-05 ± 5.83E-04 2.26E-08 ± 5.59E-08 8.00E-04 ± 2.05E-03
CM08 1.16E-02 ± 5.36E-02 6.32E + 01 ± 4.22E + 02 3.64E-06 ± 8.05E-06 2.22E-01 ± 2.99E-01
CM09 2.67E-10 ± 1.42E-09 9.34E-28 ± 5.25E-27 1.33E-19 ± 3.03E-19 2.86E-15 ± 9.24E-15
CM10 4.85E-03 ± 2.61E-02 7.26E + 00 ± 4.21E + 01 2.61E-06 ± 4.45E-06 1.11E-01 ± 1.95E-01
BMO 7.99E-16 ± 5.19E-15 5.51E-22 ± 2.72E-21 3.54E-17 ± 1.91E-16 1.56E-12 ± 7.10E-12
HHO 8.94E-15 ± 5.42E-14 5.40E-15 ± 2.91E-14 1.26E-15 ± 4.64E-15 3.64E-09 ± 3.57E-08
SGULL 2.03E + 03 ± 1.42E + 03 4.57E + 03 ± 2.12E + 02 3.18E + 02 ± 1.56E + 02 5.36E + 03 ± 2.13E + 03

f31—Discus f32 – Different powers f33 – Dixon-Price f34 – Yang 3
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

MRFO 1.13E-06 ± 2.46E-06 1.42E-03 ± 2.59E-03 2.45E + 05 ± 1.53E + 06 N/A
CM01 1.56E-03 ± 3.03E-03 8.05E-04 ± 1.75E-03 4.10E + 03 ± 2.51E + 04 N/A
CM02 5.62E + 05 ± 5.84E + 03 3.71E-02 ± 9.55E-02 1.29E + 03 ± 6.67E + 03 N/A
CM03 2.52E-13 ± 8.51E-13 8.64E-13 ± 3.83E-12 6.66E-01 ± 2.04E-04 N/A
CM04 1.33E-04 ± 4.04E-04 3.62E-05 ± 1.20E-04 1.24E + 01 ± 4.04E + 01 N/A
CM05 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 9.11E-01 ± 1.07E-01 N/A
CM06 6.51E-02 ± 1.49E-01 6.88E-04 ± 1.67E-03 2.07E + 02 ± 6.39E + 02 N/A
CM07 1.37E-05 ± 3.70E-05 1.23E-05 ± 3.25E-05 1.51E + 01 ± 2.83E + 00 N/A
CM08 3.88E-03 ± 1.40E-02 2.12E-03 ± 7.66E-03 2.78E + 03 ± 7.39E + 03 N/A
CM09 5.21E-16 ± 1.61E-15 2.78E-15 ± 4.38E-15 6.66E-01 ± 4.06E-05 N/A
CM10 2.37E-03 ± 4.59E-03 3.77E-04 ± 5.29E-04 1.84E + 03 ± 4.00E + 03 N/A
BMO 1.22E-16 ± 5.92E-16 1.30E-13 ± 6.44E-13 7.20E-01 ± 1.15E-01 N/A
HHO 2.24E-15 ± 5.31E-15 1.40E-11 ± 3.53E-11 6.68E-01 ± 2.03E-03 N/A
SGULL 1.67E + 05 ± 1.73E + 06 3.69E + 03 ± 2.32E + 04 2.32E + 01 ± 1.42E + 00  − 3.07E-01 ± 4.53E-01
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process air which eliminates the direct exposition of the 
mechanical equipment to the flowing hot exhaust air. The 
induced air draft coolers are the second most economical 
of these types after draft coolers in which the axial fans are 
located at the upper side of the entire cooling system to 
pull the process air through the tube bundles. This flowing 
behavior resulted from the location of the axial fans not 
only enables a higher control capability of the hot air but 
also improves the robustness of the tube bundles due to 
the reinforcing structural support equipment. Figure 12 
shows the schematic representation of the forced and 
induced air draft coolers.

Practical thermal and structural design of an air-cooled 
heat exchanger should take into account several numbers 
of design factors such as heat transfer capacity of the cool-
ing system, the imposed pressure drops on both cold and 
hot streams, arrangement order and physical size of the 
tubes, flow configuration of the running streams, etc. The 

conventional design process of ACHEs has been depend-
ent upon trial–and—error procedure as it has been also 
practiced for shell and tube heat exchangers until the 
early 2000s. The procedural iterative calculation is initial-
ized with suggesting an initial estimate for a trial overall 
heat transfer coefficient to obtain structural parameters of 
the heat exchanger which also should satisfy the imposed 
design constraints on the heat exchanger system. How-
ever, this solution method is significantly time-consum-
ing and requires an excessive amount of computational 
power particularly when the design optimization of the 
system is considered. Furthermore, an increasing number 
of discrete design variables along with strictly defined 
operational conditions complicates the application of the 
optimization process as there is a correlated link between 
the possible number combinations to be explored over the 
search space and the number of decision parameters to be 
iteratively obtained. The literature survey discussed in the 

Table 8   Statistical comparison 
between different chaotic 
variants for unimodal test 
functions

f35 – Schwefel 2.20 f36 – Schwefel 2.21 f37 – Schwefel 2.22
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

MRFO 3.12E-05 ± 2.98E-05 6.16E-58 ± 5.05E-57 2.99E-05 ± 2.81E-05
CM01 4.66E-05 ± 5.91E-05 4.28E-58 ± 1.66E-57 2.15E-05 ± 2.83E-05
CM02 1.51E + 00 ± 1.06E + 00 1.88E-13 ± 5.73E-13 7.29E-01 ± 7.91E-01
CM03 1.92E-10 ± 2.88E-10 6.37E-66 ± 2.46E-65 3.87E-11 ± 5.02E-11
CM04 9.13E-06 ± 8.51E-06 2.64E-58 ± 6.39E-58 1.93E-06 ± 1.85E-06
CM05 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
CM06 1.77E-03 ± 1.48E-03 6.42E-47 ± 2.88E-46 5.74E-04 ± 8.61E-04
CM07 4.41E-06 ± 7.52E-06 4.26E-69 ± 1.91E-68 6.59E-07 ± 8.32E-07
CM08 7.04E-05 ± 7.49E-05 5.86E-59 ± 2.94E-58 1.57E-05 ± 1.72E-05
CM09 1.22E-11 ± 2.82E-11 1.42E-66 ± 6.29E-66 2.28E-12 ± 3.22E-12
CM10 6.98E-05 ± 9.66E-05 3.06E-59 ± 1.29E-59 9.69E-06 ± 1.23E-05
BMO 3.86E-09 ± 1.83E-09 3.37E-33 ± 2.06E-32 5.23E-10 ± 2.89E-09
HHO 1.09E-08 ± 2.55E-08 2.22E-21 ± 1.73E-20 1.08E-08 ± 3.05E-08
SGULL 2.36E + 00 ± 1.32E + 00 1.67E-09 ± 2.39E-10 5.69E + 00 ± 1.03E + 00

f38 – Schwefel 2.23 f39 – Schwefel 2.25 f40 – Dropwave
Mean ± Std.dev Mean ± Std.dev Mean ± Std.dev

MRFO 9.96E + 03 ± 8.02E + 04 3.78E + 01 ± 8.96E + 01  − 7.55E-01 ± 8.51E-02
CM01 4.78E + 00 ± 1.72E + 01 5.10E + 01 ± 1.55E + 02  − 8.01E-01 ± 8.48E-02
CM02 9.99E-18 ± 1.11E-17 8.87E-02 ± 2.04E-01  − 9.33E-01 ± 3.67E-02
CM03 1.05E-46 ± 3.52E-46 6.55E + 00 ± 1.63E + 00  − 9.35E-01 ± 2.16E-03
CM04 4.01E + 00 ± 2.94E + 01 3.12E + 01 ± 1.17E + 02  − 8.35E-01 ± 7.69E-02
CM05 0.00E + 00 ± 0.00E + 00 2.08E + 01 ± 5.49E + 00  − 8.43E-01 ± 8.21E-02
CM06 1.10E-05 ± 5.68E-05 1.32E + 01 ± 2.67E + 01  − 8.47E-01 ± 7.73E-02
CM07 7.49E-06 ± 5.74E-05 1.34E + 01 ± 4.20E + 01  − 8.41E-01 ± 7.21E-02
CM08 3.42E + 02 ± 2.14E + 03 4.23E + 01 ± 8.68E + 01  − 7.67E-01 ± 7.41E-02
CM09 1.82E-53 ± 1.15E-53 6.51E + 00 ± 1.31E + 00  − 9.36E-01 ± 4.04E-07
CM10 7.89E + 02 ± 5.61E + 03 2.41E + 01 ± 2.71E + 01  − 7.87E-01 ± 8.64E-02
BMO 9.43E-76 ± 8.36E-75 1.64E + 01 ± 1.23E + 00  − 9.39E-01 ± 1.38E-02
HHO 2.87E-73 ± 2.50E-72 3.58E + 00 ± 1.08E + 00  − 9.36E-01 ± 6.43E-03
SGULL 6.03E + 03 ± 1.05E + 03 7.45E + 03 ± 1.94E + 04  − 9.35E-01 ± 2.35E-01
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introduction section suggests that stochastic algorithms 
can overcome the above-mentioned problem-specific dif-
ficulties faced on the course of the optimization process. 

Relying on the satisfactory optimization success on con-
strained and unconstrained benchmark problems dis-
cussed in the previous section, this study proposes using 

Fig. 3   Convergence curves for multimodal test functions from f1-Levy to f6-Alpine

Fig. 4   Convergence curves for multimodal test functions from f7-Penalized1 to f12-Alpine
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chaotic variants of the MRFO algorithm to find optimum 
design variables of air-fin coolers. Below sub-sections will 

explain the main steps of the governing mathematical 
model to be utilized for design optimization purposes.

Fig. 5   Convergence curves for multimodal test functions from f13-Hyper-ellipsoid to f16-AckleyN4

Fig. 6   Convergence curves for multimodal test functions from f17-Exponential to f22-Yang4
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4.2 � Design parameters and assumptions

Design optimization addressed in this research study can 

be summarized by the following statement. Knowing 
the mass flow rate and inlet and outlet temperatures of 
the water to be cooled by the process air, the problem at 

Fig. 7   Convergence curves for unimodal test functions from f23-Sphere to f28-Sum of different powers

Fig. 8   Convergence curves for unimodal test functions from f29-Sum of squares to f33-Dixon-Price
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hand aims to find optimal values of ten decision variables 
including the air cooler length (L), air cooler height (H), 
fin pitch (Pf), tube pitch (Pt), tube inner diameter (di), tube 
outside diameter (do), gap outside diameter (dg), fin inside 
diameter (db), fin outside diameter (da), and fin thickness 
(δ) which minimize the total annual cost of air fin cooler. 
The following design assumptions have been used to 
derive a reliable mathematical model for this optimiza-
tion problem.

•	 Average thermophysical properties have been consid-
ered for the process air and the cooling water

•	 Mass flow rates, inlet and outlet temperatures, and 
maximum allowable pressure drops for both cold and 
hot streams are priorly known

•	 Process air passes over the tube bundle while cooling 
water flowing through the tubes

Considering the above-defined assumptions, the fol-
lowing mathematical model is developed. Heat transfer 
and pressure drop correlations that quantify the respective 
amounts of heat transfer and pressure drop taken place 
inside and outside of the tube banks are taken from Kraus 
et al. [68]

4.3 � Problem formulation

For estimating the thermal efficiency of the air-cooled 
heat exchanger, ε-NTU method is utilized. Thermal avail-
able effectiveness of the heat exchanger with both run-
ning streams unmixed can be predicted by the following 
equation [68]

where � is a parameter calculated by the following 
expression

And NTU is the number of heat transfer unit calculated 
by

where Cmin is the minimum mass capacity ratio between 
the hot and cold streams; AHE is the total heat exchange 
area, and Uo is the overall heat transfer coefficient between 
two streams. The parameter R represents the ratio between 
the lower and higher mass capacitance (R = Cmin/Cmax). The 
required effectiveness can be optionally calculated either 
in two ways. If the mass capacitance of the hot stream is 

(9)�avail = 1 − eNTU
0.22�∕R

(10)� = e−R(NTU)
0.78

− 1

(11)NTU =
Uo × AHE

Cmin

Fig. 9   Convergence curves for unimodal test functions from f35-Schwefel 2.20 to f40-Dropwave
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lower than that of cold stream, then the required effective-
ness is obtained by the following equation

(12)�req =
Tin − Tout

Tin − tin

On the contrary, if the mass capacitance of the hot 
stream is higher than that of the cold stream, the required 
effectiveness is calculated by

(13)�req =
tout − tin

Tin − tin

Table 9   Friedmann test results for the compared algorithms

CM05 versus the metaheuristic algorithm α = 0.05

Functions CM01 CM02 CM03 CM04 CM06 CM07 CM08 CM09 CM10 MRFO BMO HHO SGULL

f1 0.061 0.042 0.078 0.055 0.052 0.045 0.060 0.051 0.047 0.042 0.065 0.035 0.002
f2 0.008 0.007 0.022 0.012 0.009 0.011 0.011 0.026 0.005 0.004 0.006 0.006 0.008
f3 0.004 0.004 0.003 0.005 0.006 0.006 0.008 0.001 0.004 0.008 0.050 0.050 0.009
f4 0.002 0.006 0.005 0.004 0.002 0.001 0.006 0.004 0.002 0.003 0.050 0.007 0.006
f5 0.003 0.004 0.003 0.004 0.004 0.002 0.005 0.005 0.004 0.002 0.008 0.004 0.005
f6 0.011 0.009 0.007 0.012 0.008 0.006 0.008 0.008 0.009 0.006 0.014 0.008 0.009
f7 0.053 0.072 0.064 0.058 0.052 0.067 0.054 0.056 0.067 0.060 0.051 0.006 0.012
f8 0.052 0.051 0.047 0.049 0.055 0.057 0.064 0.062 0.065 0.058 0.054 0.054 0.002
f9 0.008 0.004 0.005 0.005 0.003 0.002 0.006 0.014 0.008 0.005 0.020 0.028 0.004
f10 0.072 0.064 0.058 0.052 0.062 0.067 0.069 0.081 0.074 0.074 0.058 0.056 0.052
f11 0.008 0.012 0.011 0.009 0.007 0.008 0.009 0.050 0.010 0.014 0.011 0.002 0.004
f12 0.010 0.008 0.005 0.007 0.004 0.008 0.002 0.005 0.009 0.010 0.014 0.007 0.005
f13 0.014 0.002 0.008 0.008 0.009 0.009 0.006 0.015 0.007 0.009 0.004 0.008 0.001
f14 0.008 0.007 0.007 0.009 0.012 0.016 0.008 0.008 0.015 0.011 0.007 0.009 0.016
f15 0.005 0.008 0.006 0.015 0.014 0.011 0.017 0.009 0.008 0.008 0.012 0.018 0.017
f16 0.047 0.059 0.057 0.053 0.058 0.051 0.072 0.064 0.063 0.062 0.057 0.060 0.014
f17 0.045 0.045 0.048 0.047 0.048 0.049 0.043 0.041 0.048 0.047 N/A N/A 0.047
f18 0.035 0.037 0.034 0.032 0.031 0.030 0.037 0.034 0.042 0.040 0.039 0.037 0.038
f19 0.030 0.027 0.074 0.035 0.031 0.028 0.041 0.037 0.048 0.042 0.062 0.035 0.003
f20 0.004 0.008 0.006 0.006 0.007 0.009 0.006 0.010 0.008 0.005 0.005 0.009 0.008
f21 0.010 0.015 0.009 0.009 0.007 0.008 0.006 0.007 0.005 0.009 0.008 0.012 0.010
f22 0.055 0.058 0.063 0.062 0.057 0.059 0.062 0.052 0.056 0.059 0.062 0.053 0.081
f23 0.015 0.022 0.014 0.018 0.028 0.021 0.015 0.002 0.010 0.014 0.005 0.006 0.001
f24 0.048 0.052 0.047 0.053 0.054 0.062 0.058 0.060 0.057 0.055 0.052 0.042 0.012
f25 0.015 0.021 0.008 0.018 0.017 0.026 0.021 0.034 0.025 0.027 N/A 0.006 0.022
f26 0.010 0.018 0.014 0.014 0.012 0.011 0.009 0.016 0.015 0.017 0.024 0.013 0.011
f27 0.015 0.018 0.012 0.011 0.022 0.021 0.017 0.012 0.026 0.024 0.018 0.15 0.014
f28 0.052 0.068 0.072 0.056 0.054 0.057 0.061 0.105 0.065 0.069 0.094 0.092 0.053
f29 0.015 0.011 0.034 0.025 0.016 0.019 0.021 0.005 0.019 0.026 0.045 0.041 0.022
f30 0.014 0.012 0.041 0.018 0.026 0.024 0.018 0.041 0.016 0.011 0.042 0.039 0.032
f31 0.015 0.018 0.043 0.024 0.017 0.016 0.030 0.045 0.028 0.024 0.037 0.037 0.021
f32 0.021 0.011 0.045 0.017 0.022 0.025 0.021 0.042 0.017 0.024 0.039 0.045 0.034
f33 0.012 0.017 0.055 0.009 0.021 0.019 0.026 0.062 0.027 0.016 0.056 0.051 0.017
f34 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
f35 0.012 0.017 0.009 0.014 0.018 0.008 0.020 0.014 0.011 0.008 0.015 0.014 0.022
f36 0.041 0.039 0.002 0.028 0.025 0.027 0.035 0.031 0.035 0.032 0.033 0.042 0.005
f37 0.012 0.011 0.024 0.028 0.034 0.020 0.014 0.016 0.025 0.021 0.028 0.017 0.004
f38 0.011 0.008 0.035 0.015 0.012 0.009 0.021 0.038 0.017 0.019 0.042 0.043 0.015
f39 0.032 0.028 0.072 0.022 0.053 0.052 0.030 0.065 0.042 0.039 0.058 0.055 0.034
f40 0.048 0.047 0.044 0.043 0.053 0.042 0.058 0.041 0.038 0.025 0.052 0.051 0.026
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Fig. 10   Comparison of the convergence performances between the best performing chaotic variants and literature optimizers for unimodal 
test functions

Fig. 11   Convergence histories of the best performing chaotic algorithms and literature optimizers for multimodal test functions
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Table 10   Statistical results for 
CEC2017 benchmark problems

F Measure EBO with CMAR [66] jSO [67] MRFO CM05 CM03 CM09

F1 Mean 0.00E + 00 0.000E + 00 6.862E-29 0.000E + 00 0.000E + 00 0.000E + 00
STD 0.00E + 00 0.000E + 00 3.963E-32 0.000E + 00 0.000E + 00 0.000E + 00

F2 Mean 0.00E + 00 0.000E + 00 1.132E-25 0.000E + 00 0.000E + 00 0.000E + 00
STD 0.00E + 00 0.000E + 00 2.764E-27 0.000E + 00 0.000E + 00 0.000E + 00

F3 Mean 0.00E + 00 0.000E + 00 3.741E + 05 1.248E + 00 2.573E + 00 1.395E + 00
STD 0.00E + 00 0.000E + 00 2.648E + 04 2.785E-01 3.852E-01 4.843E-01

F4 Mean 5.65E + 01 5.8670E + 01 1.617E + 02 7.852E + 01 6.749E + 01 6.012E + 01
STD 1.11E + 01 7.7797E-01 1.108E + 01 2.457E + 01 1.747E + 01 1.927E + 01

F5 Mean 2.78E + 00 8.5568E + 00 2.837E + 01 1.765E + 01 1.368E + 01 1.128E + 01
STD 1.74E + 00 2.0980E + 00 1.764E + 01 9.538E + 00 8.635E + 00 7.532E + 00

F6 Mean 0.00E + 00 6.0385E-09 N/A 0.000E + 00 0.000E + 00 0.000E + 00
STD 0.00E + 00 2.7122E-08 N/A 0.000E + 00 0.000E + 00 0.000E + 00

F7 Mean 3.35E + 01 3.8927E + 01 2.279E + 03 4.892E + 01 3.789E + 01 5.195E + 01
STD 8.37E-01 1.4594E + 00 1.837E + 03 2.594E + 00 7.161E + 00 1.645E + 01

F8 Mean 2.02E + 00 9.0918E + 00 1.278E + 01 1.076E + 01 1.867E + 01 1.117E + 01
STD 1.32E + 00 1.8399E + 00 2.569E + 00 2.743E-01 2.947E + 00 9.362E-01

F9 Mean 0.00E + 00 0.000E + 00 1.879E + 01 7.639E-05 9.153E-09 6.398E-10
STD 0.00E + 00 0.000E + 00 7.635E + 00 8.528E-06 8.592E-11 7.729E-15

F10 Mean 1.41E + 03 1.5277E + 03 1.086E + 05 2.794E + 04 9.821E + 03 7.762E + 03
STD 2.15E + 02 2.7716E + 02 2.932E + 04 3.176E + 03 1.694E + 03 2.481E + 01

F11 Mean 4.49E + 00 3.0375E + 00 1.796E + 01 2.751E + 00 2.845E + 00 5.082E + 00
STD 8.88E + 00 2.6464E + 00 2.890E + 00 1.823E + 00 1.702E + 00 4.565E + 00

F12 Mean 4.63E + 02 1.7038E + 02 5.684E + 02 4.914E + 02 7.731E + 02 1.653E + 03
STD 2.63E + 02 1.0194E + 02 8.938E + 01 1.703E + 02 1.895E + 02 2.991E + 02

F13 Mean 1.49E + 01 1.4840E + 01 1.516E + 05 2.884E + 02 7.652E + 01 9.759E + 02
STD 6.25E + 00 4.8312E + 00 2.856E + 04 1.561E + 01 2.579E + 01 5.601E + 01

F14 Mean 2.19E + 01 2.1834E + 01 4.480E + 01 3.108E + 01 2.995E + 01 2.653E + 01
STD 3.84E + 00 1.2458E + 00 7.653E + 00 2.792E + 00 4.732E + 00 1.702E + 00

F15 Mean 3.69E + 00 1.0879E + 00 5.685E + 01 9.785E + 00 1.175E + 01 1.036E + 01
STD 2.15E + 00 6.9133E-01 1.647E + 01 3.676E + 00 3.163E + 00 4.572E + 00

F16 Mean 4.26E + 01 7.8923E + 01 3.765E + 02 8.802E + 01 9.754E + 01 1.113E + 02
STD 5.69E + 01 8.4769E + 01 1.649E + 01 7.937E + 01 4.852E + 01 2.763E + 01

Fig. 12   Schematic representa-
tion of the (a) Forced draft air 
coolers (b) Induced air draft 
coolers
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where Tin and Tout are respectively inlet and outlet tem-
peratures of the hot stream while tin and tout correspond-
ingly stand for inlet and outlet temperatures for the cold 
stream. Tubes in the bundle can be arranged in equilateral 
or staggered order. Keeping in mind that pitch arrange-
ments across the tubes are designated by transverse pitch 
Pt, longitudinal pitch Pl or diagonal pitch Pd. Diagonal pitch 
Pd is the function of transverse pitch Pt and longitudinal 
pitch Pl and can be mathematically expressed by the fol-
lowing simple formulation

Figure 13 shows the respective (a) staggered and (b) 
in-line tube arrangements. The total number of tubes in 
the bank N is the multiplication of n tubes in a row and 
nr tube rows. Height of the mounted fins on the tubes is 
computed by

where da and db are respectively outer and inner diam-
eters of the fins with � thickness. The length of the tubes in 
the bundle is symbolized by the L parameter whose clear 
space between each tube is represented by the z param-
eter. Minimum flow area (Amin) between tubes is a direct 
function of transverse pitch Pt and can be calculated by 
the following procedure

(14)Pd =

√√√√
[(

Pt

2

)2

+ P2t

]

(15)b =
da − db

2

The total surface area of the tubes between the fins can 
be calculated by

Total heat exchange area of the fins including the tip 
surfaces through which heat exchange takes place is com-
puted by the following expression

Total heat exchange area becomes the summation of 
finned and bare tube area, which is expressed by

Convective heat transfer from tube bundles containing 
high fins to the process air is calculated by the correlation 
developed by the Briggs and Youngs [68]

where Re is the airside Reynolds number calculated by

(16)

If Pt >
(
2Pd − db −

2z𝛿

z + 𝛿

)

Amin = nL
(
Pt − db −

2z𝛿

z + 𝛿

)

else if Pt <
(
2Pd − db −

2z𝛿

z + 𝛿

)

Amin = 2nL
(
Pd − db −

2z𝛿

z + 𝛿

)

end

(17)Atube =
�NLdbz

z + �

(18)Afin =
�NL

z + �

[
0.5

(
d2
a
− d2

b

)
+ da�

]

(19)AHE = Afin + Atube

(20)

Nu =
hair × db

kair
= 0.134Re0.681

0.333

Pr

[
2
(
Pf − �

)
da − db

]0.2(
Pf − �

�

)0.1134

Fig. 13   Tube arrangements 
for air-fin coolers: a) Staggered 
tube arrangement b) In-line 
tube arrangement
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where Gair is the mass velocity of the process air flowing 
over the fins and �air is the viscosity of the process air. 
Amount of pressure loss occurring between the staggered 
tube bundle is calculated by the correlation developed by 
Robinson and Briggs [68]

where �air is the density of the process air. For calculat-
ing the amount of tube side convective heat transfer rate, 
Gnielinski correlation [69] is utilized

where htube is the tube side convective heat transfer coef-
ficient; din is the inner diameter of the tube; k is the heat 
conductivity of the running in-tube fluid; Retube and Prtube 
are correspondingly tube side dimensionless Reynolds and 
Prandtl numbers, and ftube is the friction factor calculated 
by the following expression

And tube side pressure drop is calculated by the fol-
lowing equation

For calculating the overall heat transfer coefficient 
between the cold and hot side streams, all different 
types of heat transfer resistances should be taken into 
account to obtain the most accurate heat transfer rates. 
Five different heat resistances are described and formu-
lated as follows.

(a) Inside film resistance 

(b) Inside fouling resistance 

(c) Tube metal resistance is a function of liner diameter 
and tube thickness which is calculated by the following

(21)Re =
Gair ⋅ db

�air

(22)ΔPair = 18.03
G2
air

�air
nrRe

−0.316

(
Pt

db

)−0.927(
Pt

Pd

)0.515

(23)

Nu =
htube ⋅ din

k
=

(
ftube∕8

)(
Retube − 1000

)
Prtube

1.00 + 12.7

√(
ftube∕8

)(
Pr

2∕3

tube
−1

)

(24)ftube =
1(

1.82 log10 Retube − 1.64
)2

(25)ΔPtube =
4ftubeG

2
tube

2�

L

di

(26)rfi =
1

htube

db

di

(27)rdio = rdi
db

di

and liner metal resistance is computed by

(d) Bond resistance 

(e) Outer tube metal thickness is based on mean outer 
tube diameter and metal thickness 

Figure 14 illustrates five different diameter designations 
to visually explain the five different inside resistances. With 
taking into account of all these resistances, the total resist-
ance is summed up by the following expression

It should be reminded that total resistance is based on 
the equivalent bare outside tube surface. So, the modified 
total resistance as a function of a gross outside surface can 
be calculated by the following

Outer resistance ( rout ) based on convective heat trans-
fer is formed by airside convective heat transfer coefficient 
expressed by Eq. (20) and the modified fin efficiency

where �o is the weighted fin efficiency and calculated by

where � is the fin efficiency and computed by

where m is a parameter given by the below term

(28)�th =
do − di

2

(29)rmi =
�thi

ktube

2db

do + di

(30)rBd = rb
db

dg

(31)rmo =
�tho

ktube

2db

db + dg

(32)
∑

Rsum = rfi + rdio + rmi + rBd + rmo

(33)
∑

Rsum, mod =
∑

Rsum
AHE

NL�db

(34)rout =
1

hair�o

(35)�o = 1 −
Afin

AHE

(1 − �)

(36)� =
tanh (m�)

m�

(37)m =

√
2hair

ktube�th,fin
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And �  is calculated by the following

where the parameter � is the ratio between db and da, that 
is � = db∕da . Based on the defined expression and numeri-
cal definitions above, the overall heat transfer coefficient 
is given by the following equation

4.4 � Objective function definition

Here in this optimization case study, the utmost aim is 
the find optimal decision variables of an air cooler that 
minimizes the overall cost of a heat exchanger under 
predefined imposed design constraints. The overall cost 
of a heat exchanger is formed by two different factors 
including capital and operating costs. The capital cost of 
a system includes the expenditures regarding material, 
manufacturing, installation, and shipping costs, etc. An 

(38)� = 0.5db
1 − �

�

(
1 + 0.35 ln

(
1

�

))

(39)Uo =
1∑

Rsum, mod + rout

insightful formulation that estimates the capital cost of 
air cooler can be given by [70]

where AHE is the total heat exchange surface in m2 and 
Caircooler is the capital cost in $. The capital cost of the pump 
component is calculated the following correlated equa-
tion [71]

where Cpump is the capital cost of the pump in $; Ẇpump is 
the pumping power calculated by the following equation

where ṁcool is the in-tube fluid is the flow rate in kg/s; 
�cool is the density of in-tube fluid; ΔPtube is the pressure 
gradient in Pa, and �pump is the pump efficiency which is 
considered as 0.8. The capital cost of the fan equipment is 
computed by the correlation given below [70]

where V̇air is the volumetric flow rate of air in standard 
cubic feet per minute; fm and fp are respectively installa-
tion and pressure factors; numerical values of the correla-
tion parameters a, b, and c vary based upon the type of 
the running fan. A radial bladed fan is considered for this 
case study so corresponding values of the parameters a, b, 
and c are respectively set to 0.4692, 0.1203, and 0.0931. To 
determine the annual capital cost of the cooling system, 
the following equation is used

where CRF and � are correspondingly cost recovery and 
maintenance factors. Cost recovery factor can be evalu-
ated as a function of annual interest rate i and deprecia-
tion time of the system dt with using the below-defined 
equation

This study aims the investigate the variational effects of 
the considered design variables including cooler height 
(H), cooler length (L), fin pitch (Pf), tube pitch (Pt), tube inner 
diameter (di), tube outer diameter (do), gap outside diameter 
(dg), fin inside diameter (db) and fin outside diameter (da), 
and fin thickness (δ) on the annual cost of an air fin cooler. 

(40)Caircooler = 30000
(
AHE∕92.90304

)0.4

(41)Cpump = 705.48 ⋅ Ẇ0.71
pump

⋅

(
1 +

0.2

1 − 𝜂pump

)

(42)Ẇpump =
1

𝜂pump

(
ṁcool

𝜌cool
ΔPtube

)

(43)

Cfan = 1218 ⋅ fm ⋅ fp ⋅ exp
(
a + b ln

(
V̇air

)
+ c

(
ln V̇air

)2)

(44)Cannual,sys =
(
Caircooler + Cpump + Cfan

)
× CRF × �

(45)CRF =
i(i + 1)dt

(i + 1)dt − 1

Fig. 14   Five diameter designations for the finned tube bundle
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Literature studies concerning design optimization of air 
fin coolers have some deficiencies while constructing the 
governing objective function. Theoretical investigations on 
air fin coolers made in some reference studies [72, 73] only 
take into account bare heat exchange without considering 
the influence of fin surfaces to optimize the total cost air fin 
cooler system. This kind of system evaluation may lead to 
inappropriate inferences regarding the optimal design as 
the fin surface plays a much important role even more than 
the bare heat exchange area on total investment cost rates. 
Furthermore, some research studies [43, 74] did not even 
consider the effects of electro fan prices as an investment 
cost, which is another misleading objective function formu-
lation that may provide deceptive insights on overall cost 
rates as electric expenditures resulted from fan work shares 
plenty of portions of the total cost of the cooling system. 
Novelty proposed in this research study is incorporating the 
heat transfer resistances into overall heat transfer calcula-
tions. Nearly all case studies on air cooler design took place 
in the literature do not consider the heat transfer resistances 
occurred within gaps between fins and adjacent tube seg-
ments, which significantly affects the rate of heat transfer 
between flowing hot and cold streams. Equations 26, 27, 
28, 29, 30, 31 explicitly explain the definitions and formu-
lations of the governing heat transfer mechanisms behind 
the fin metal resistances. The objective function framework 
constructed for this research study considers all the above-
mentioned design aspects overlooked by the literature stud-
ies and proposes a more complex and reliable mathematical 
model that provides a feasible pathway to investigate the 
effects of each design variable on the problem objective.

4.5 � Design constraints

The design problem is subjected to below-defined design 
constrained based on the structural limitations.

Fully developed turbulent flow conditions should be 
maintained inside the tubes, which can be realized if the in-
tube Reynolds number is higher than 10,000

Briggs and Young [68] correlation that models the con-
vective heat transfer between the tube bundles with having 
high fin tubes and process air is applicable and yields reliable 
predictive results within the below-defined ranges

(46)Retube ≥ 10000

(47)

1000 < Reair < 18000

11.13mm < db < 40.89mm

2.84mm<
(
da − db

)
< 33.14mm

0.30mm < 𝛿 < 2.02mm

24.99mm < Pt < 111mm

Optimized design variables should lie within the above-
defined ranges to ensure the accuracy and credibility of 
the utilized correlation. Robinson and Briggs [68] correla-
tion used for estimating the pressure gradient along the air 
channels is applicable between the below-defined opera-
tion ranges

Pressure drop constraints for each side are given as

Actual available effectiveness of the air fin cooler should 
be higher than the below-defined value

The above defined constrained complex design prob-
lem is converted into unconstrained optimization one by 
using static death penalty approach. A large valued pen-
alty factor is added into the objective solution to convert 
infeasible solutions that violate the prescribed constraints 
into feasible ones. Due to its easy implementation on any 
kind of optimization problem, this method is considered 
for handling constraints in this research study. Formulate 
the optimization problem such that

where m is the number of inequality constraints and Ncon 
stands for the total number of constraints.. Incorporat-
ing static penalty function into the defined optimization 
problem is a very efficient and practical method for avod-
ing infeasible solutions in the search space. Main aim is 
to construct an easy-to-implement penalty function that 
takes into account number of prescribed problem con-
straints. Constrained optimization problem is converted 
into unconstrained problem by employing static penalty 
approach, as given in the below equation

(48)

2000 < Reair < 50000

18.64mm < db < 40.89mm

39.68mm < da < 69.85mm

42.85mm < Pt < 114.3mm

1.5 < Pt∕db < 4.6

(49)
ΔPtube < 2000 Pa

ΔPair < 200 Pa

(50)𝜀avail > 0.2874

(51)

Minimize f (x⃗)

x⃗ = {1, 2, ...,D}

with subject to

gi(x⃗) ≤ 0 i = 1, ...,m

hi(x⃗) = 0 i = m + 1, ...,Ncon
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where Peni is the high valued penalty factor responsible 
for penalizing infeasible solutions and � is a trial number 
very close to zero.

5 � Results and discussion

5.1 � Model verification

The proposed mathematical model describing the heat 
exchange mechanism occurring in an air fin cooler is com-
pared with the heat transfer and pressure drop results 
obtained by Yu et al. [72]. Figure 15a shows the deviations 
between experimental heat transfer coefficients obtained 
for low fin tubes and estimations made by Briggs and 
Young [68] correlation for the same input parameters. It is 
observed experimental data agrees well with the predic-
tive results such that maximum absolute error is no more 
than 12% which confirms the applicability of the proposed 
model. Figure 13b visualizes the estimated pressure drop 
values as a function of Reynolds number acquired by 
Robinson and Briggs correlation [68] and the experimen-
tal results of Yu et al. [75]. A good agreement is observed 
between the experimental data and model results as the 
maximum deviation error among the available data set is 
no more than 10.1%. Outcomes of the comparative results 
shown in Fig. 15 verify that the proposed heat transfer 
model is accurate and reliable to be utilized for the objec-
tive function of the optimization problem.

5.2 � Case study

Case study taken from Kraus et al. [68] is used as a design 
optimization problem solved by the best performing 
variant of the chaotic manta ray algorithm. The problem 
objective is to obtain the optimum heat exchanger design 
with a minimum total annual capital cost. Hot water flow-
ing in the tube bundles with a mass flow rate of 46.5 kg/s 
enters the air fin cooler at 92 °C and leaves the system 
at 76 °C. Process air with an initial temperature of 5.0 °C 
passes over the tubes at a flow rate of 124 kg/s and cools 
the hot water to some degree. Allowable pressure drop 
values for hot and cold sides are respectively set to 2000 Pa 
and 200 Pa as mentioned in Eq. (49). Air cooler considers 
muff-type tubes with equilateral triangular pitch configu-
ration. Thermal conductivities of liner and tubes are cor-
respondingly 200.0 and 385.0 W/m.K. Table 11 reports the 

(52)

F
(
x⃗
)
= f

(
x⃗
)
+

m∑
i=1

Peni max
{
gi
(
x⃗
)
, 0
}

+

Ncon∑
i=m+1

Peni max
{
hi
(
x⃗
)
− 𝛿, 0

}

thermo-physical properties of the running fluids at bulk 
temperatures. Model parameters of depreciation time are 
considered dt = 15, annual interest rate i = 0.14, and main-
tenance factor � = 1.06 . Table 12 provides the upper and 
lower bounds of the design variables to be optimized.

5.3 � Optimization results

Optimization capabilities of the proposed chaotic MRFO 
variants will be assessed by comparing their prediction 
performances in attaining the minimum annualized capi-
tal cost of an air fin cooler. Table 13 reports the optimum 
design parameters obtained by the literature metaheuris-
tic method of Coyote Optimization Algorithm (COYOTE) 
[76] and different chaotic variants along with the prelimi-
nary results of the considered case study retained from 
Kraus et al. [68]. One can easily see that the chaotic Kent 
map-based Manta-Ray algorithm (CM05) provides the 
minimum objective function value of 35889.14613 $ and 
outperforms the compared variants in terms of solution 
efficiency. Therefore, comparative evaluations between 
the preliminary results will be founded on optimum results 
found by this Kent map-based chaotic algorithm CM05. A 
significant decline (19.6%) in annualized capital cost values 
compared to preliminary results is evident in this case. This 
is because of the sharp decreases in an air cooler (30.0%) 
and pump (55.8%) cost rates. Fan cost expenditure is not 
varied by the optimization algorithms since it is a direct 
function of the airflow rate as modeled in Eq. (43) which 
is not considered as a design variable to be optimized for 
this case study. As can be seen from Eq. (40), the air cooler 
cost is directly linked with the total heat exchange area. 
At the specific heat load and the temperature difference 
between two heat exchanging streams, it is known that 
the overall heat transfer coefficient is inversely propor-
tional to the total heat transfer area of a heat exchanger. 
Therefore, a drastic increase (77.3%) observed in overall 
heat transfer rates leads to a marked decrease in the total 
heat exchange area which entails a significant decline in 
the air cooler cost rates. Many structural design factors 
influence the numerical value of the overall heat transfer 
coefficient of a heat exchanger as suggested in Eq. (33). 
Heat transfer resistances play an important role in heat 
exchanger design; however, the majority of the literature 
approaches do not consider these design parameters in 
their proposed mathematical models and the variational 
influences of these different types of heat transfer resist-
ances on the selected design objectives have not been 
clearly identified yet. The heat transfer model dealt with in 
this study explains the effect of heat resistances on over-
all heat transfer coefficient rates, particularly described 
in Eqs. (32)-(33). Proposed chaotic algorithms iteratively 
adjust the commanding design parameters related to fin 
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geometries given in Eqs. (26), (27), (28), (29), (30), (31) in 
such a way that the numerical value of total heat resist-
ance formulated in Eq. (32) is minimized. Furthermore, 
respective increases in cooler length – L by 12.1%, fin 
inside diameters – db by 21.8%, accompanied by a mam-
moth decline in overall heat exchange area by 59.1% 
cause an enormous decline in modified total heat transfer 
resistance values given in Eq. (33). One can see the dras-
tic decline (66.5%) in the total fin heat exchanger area 

which contributes the most of the decrement in total heat 
exchange area, whereas bare (only tube) heat exchange 
surface is hugely increased by 100.1% through the chaotic 
MRFO variant. Variational changes in the design variables 
given in Eq. (18) cause this abrupt decrease in the fin sur-
face area. A decline in cooler length—L, a decrease in fin 

Fig. 15   Comparison between 
the predictions obtained by 
heat transfer and pressure 
drop correlations and the 
actual experimental data

Table 11   Thermophysical properties of the running fluids at bulk 
temperatures

Property In tube fluid: hot water Outside tube: 
cold process 
air

µ (kg.m/s) 3.35E-4 1.79E-5
k (W/m.K) 0.672 0.0255
Cp (J/kg.K) 4206 1007
ρ (kg/m3) 969.4 1.215
Pr 2.19 0.71

Table 12   Upper and lower search bounds for each design variable

Lower bound Upper bound

Cooler height—H (m) 2.5 5.0
Cooler length—L (m) 3.0 7.0
Fin pitch—Pf (fin/cm) 2.5 5.0
Tube pitch—Pt (m) 0.0400 0.0600
Inner tube diameter—di (m) 0.0170 0.0230
Outer tube diameter—do (m) 0.0235 0.0258
Gap outside diameter—dg (m) 0.0260 0.0288
Fin inside diameter—da (m) 0.0470 0.0550
Fin outside diameter—db(m) 0.0260 0.0390
Fin thickness—δ (mm) 0.3 0.6
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Table 13   Comparison of the optimal results obtained by different algorithms for thermo-economic design optimization of an air-fin cooler

Preliminary results 
[68]

CM05 CM09 CM03 CM02 COYOTE [76] MRFO

H – Cooler height 
(m)

3.70157 4.97887 4.98231 4.98721 4.98507 4.99720 4.99624

L – Cooler length (m) 4.00000 4.48761 4.49697 4.40062 4.02567 4.01542 3.79820
Pf – Fin pitch (fin/cm) 3.00000 2.50000 2.50000 2.51828 2.50000 2.51005 2.50000
Pt – Tube pitch (m) 0.05989 0.05856 0.05854 0.05864 0.05793 0.05810 0.05741
di – Tube inner diam-

eter (m)
0.02242 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300

do – Tube outer 
diameter (m)

0.02423 0.02390 0.02502 0.02366 0.02361 0.02366 0.02351

dg – Gap outside 
diameter (m)

0.02852 0.02870 0.02814 0.02879 0.02874 0.02875 0.02873

db – Fin inside diam-
eter (m)

0.03199 0.03899 0.03899 0.03876 0.03675 0.03684 0.03542

da – Fin outside 
diameter (m)

0.04900 0.04700 0.04700 0.04708 0.04700 0.04710 0.04700

δ – Fin thickness 
(mm)

0.30000 0.30000 0.30000 0.30000 0.30000 0.30000 0.30000

Total cross-sectional 
area of the tubes 
(m2)

0.12656 0.21188 0.21188 0.21188 0.21437 0.21437 0.21687

Space between fins 
(m)

0.00233 0.00369 0.00369 0.00367 0.00369 0.00368 0.00369

Bare heat exchange 
area (m2)

82.55177 165.12135 165.43583 160.83614 141.25776 141.18299 129.94949

Fin heat exchange 
area (m2)

1896.13078 643.81411 645.65413 659.41643 722.79354 727.06223 764.83191

Total heat exchange 
area (m2)

1978.68255 808.93550 811.08921 820.25257 864.05130 868.24523 894.78141

Tube side Reynolds 
number

24236.17971 15067.21768 15067.29748 15067.21762 14892.01741 14892.01741 14720.84480

Tube side heat 
transfer coefficient 
(W/m2K)

3174.68466 2046.46821 2046.46962 2046.46821 2026.24048 2026.24048 2006.42913

Air side Reynolds 
number

12147.24312 18547.35093 18513.39638 18486.60227 17755.42182 17770.08377 17254.73037

Air side heat transfer 
coefficient (W/
m2K)

58.27202 82.54933 82.44671 82.01770 80.92060 80.63165 80.34587

Weighted fin effi-
ciency

0.92908 0.98699 0.98698 0.98583 0.97748 0.97744 0.97042

Overall heat transfer 
coefficient (W/
m2K)

34.26539 60.77771 60.62075 59.93788 56.90031 56.63255 54.94762

Actual effectiveness 0.36125 0.28736 0.28737 0.28735 0.28735 0.28738 0.28736
Tube side pressure 

loss (Pa)
1724.67748 545.05044 546.18734 534.48502 479.12365 477.90425 443.07989

Air side pressure loss 
(Pa)

154.26761 199.99921 199.47020 199.94967 199.99761 199.23001 199.94711

Air cooler cost ($) 101967.02176 71297.58896 71373.48452 71694.91026 73202.36232 73344.27968 74232.83837
Pump cost ($) 36405.27581 16068.36835 16092.15763 15846.59492 14662.88830 14636.38276 13870.84311
Fan cost ($) 120593.63731 120593.63731 120593.63125 120593.63125 120593.63125 120593.63125 12593.63125
Total cost of air-fin 

cooler system ($)
258965.92882 207959.58384 208059.27341 208135.13644 208458.88188 208574.29370 208697.31274
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outside diameter-da, and a marked increase in fin inside 
diameter- db are the key elements that explain the con-
siderable reduction in total fin heat exchange area. How-
ever, respective increases in the cooler length–L, fin inside 
diameters—db, and the parameter z which represents the 
clear space between tubes entail an increase in the bare 
tube heat exchange area, as indicated in Eq. (17). Tube and 
air-side heat transfer coefficients are decisive parametric 
quantities having a direct impact on total heat transfer 
rates, whose respective formulations are given in Eq. (23) 
and Eq. (20). An increase in the air-side heat transfer coef-
ficient (41.6%) compensates for the decrease in tube side 
heat transfer coefficient values (35.5%), those of which 
are closely associated with the corresponding Reynolds 
numbers of air and tube side streams. Corresponding 
decrements (37.8%) and increments (52.6%) in the tube 
and air-side heat transfer coefficient values are the main 
reasons behind this variational interaction. Besides, a 
remarkable increase (6.2%) is observed for weighted fin 
efficiency, which also plays a dominant role along with the 
air-side heat transfer coefficient parameter on total heat 
transfer rates as indicated in Eq. (34). Another influencing 
factor on total annual cost rates is the pumping expendi-
tures whose governing formulation is given in Eq. (41). It 
is seen that the pumping cost of the cooling system has 
a direct relation with the pumping power—Ẇpump , which 
maintains the required amount of refrigerant water cir-
culation along the heat exchanger tubing. Equation (42) 
indicates that the pressure gradient caused by the friction 
losses in the tubes necessitates the required pumping 
power. A considerable decrease (68.4%) in pressure drop 
values is resulted from the variational changes of differ-
ent operational parameters. Tube inner diameter—di hits 
the allowable upper bound which allows for the resulting 
decreases in the mass velocity of the in-tube fluid. Increas-
ing inner tube diameters—di along with the enhanced fric-
tion losses—ftube resulted from the decreasing tube-side 
Reynolds number have a negligible effect compared to the 
influence of greatly reduced in-tube fluid mass flux rates 
as described in Eq. (25).

Figures  16 and 17 show the variational changes of 
the operational parameters over the design objective of 
the annualized capital cost of an air fin cooler. Optimum 
design variables obtained by CM05 are utilized for para-
metrical analysis and the remaining variables stay constant 
while the related parameter is varied between its allowable 

search space. It is evident that annualized capital cost rates 
significantly increase as cooler length—L and fin pitch—
Pf vary between the lower and upper search bounds. As 
coooler length is increased along the allowable region, 
bare tube area (Atube) and tube side pre4ssure drop ( ΔPtube ) 
increase which yields an increase in capital cost rates. It 
is also seen that tube pitch—Pt is inversely proportional 
to the annual capital cost. Increasing tube pitch values 
leads to a decrease in air side pressure drop rates, which 
eventually entails a decrease in fan cost expenditures. 
Objective function values tend to decrease with increas-
ing cooler height until the cooler height reaches 4.0 m 
then this value increases with increasing cooler heights. 
It can be also observed from Fig. 16 that variation of the 
cooler length between its corresponding search space has 
much more impact on the change of annualized capital 
cost values compared to those obtained for the remain-
ing design variables. Figure 17 visualizes the influences 
of varying design parameters on the objective function 
values. It is seen that varying gap outside diameters- dg 
and outer tube diameters—do have a negligible effect on 
the design objective while increasing inner tube diameters 
and fin inside diameters reduces the annualized capital 
cost values. Increasing inner tube diameters leads to a 
decrease in tube side pressured drop rates as formulated 
in Eq. (25), which imposes a reduction in pumping cost 
rates. Due to its relatively small search span, fin thickness-δ 
has a limited effect over the range of solution space. Annu-
alized capital cost values are significantly increased with 
increasing fin outside diameters—da. As Eq. (18) suggests, 
increasing fin outside diameters –da increases the total fin 
heat exchange area, which consequently increases annual-
ized cost values. On the contrary, annualized cost values 
decreases with increasing fin inside diameters-db rely-
ing on the numerical relationship expressed in Eq. (18). 
It is also worth to mention that no constraint violation is 
observed for any defined design variable, which also idi-
cates that all obtained optimum solutions residing in the 
feasible region of the search space.

6 � Conclusion

This study proposes the chaotic Manta-Ray Foraging Opti-
mization (MRFO) Algorithm for solving multidimensional 
optimization problems. Twenty-four different chaotic 

Table 13   (continued)

Preliminary results 
[68]

CM05 CM09 CM03 CM02 COYOTE [76] MRFO

Annualized capital 
cost ($/year)

44691.69277 35889.14613 35906.34939 35919.44166 35975.31284 35995.23032 36016.46064
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maps taken from the literature studies are applied to MRFO 
and best performing ten chaotic maps out of twenty-four 
maps have been selected. The effectiveness of these ten 
chaotic maps is compared in terms of solution quality 

improvement utilizing different kinds of optimization test 
functions. Numerical experiments based on unconstrained 
multimodal and unimodal benchmark functions indicate 
that incorporating the chaotic maps into the the base 

Fig. 16   Variational effects of operating parameters on the problem objective

Fig. 17   Influences of design parameters on the problem objective of annualized capital cost values
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metaheuristic algorithm have considerably improved the 
solution quality and accuracy. It is shown that Kent map 
(CM05), Chirikov map (CM03), and Standard map (CM09) 
based chaotic MRFO algorithms provide the most reli-
able statistical results compared to the remaining chaotic 
methods. The results prove that chaotic variants can sig-
nificantly improve the optimization performance of MRFO 
by escaping the local minimum points on the search space 
and boosting up the convergence speed to some extent. 
To assess the prediction capability of the chaos enhanced 
algorithms over constrained test problems, a batch of 
sixteen benchmark cases of CEC2017 competition have 
been solved by three best performing above mentioned 
chaotic variants and respective solution outcomes have 
been compared with those obtained by the first and sec-
ond place holders of this competition. A multidimensional 
real-world constrained optimization problem concerning 
thermo-economic design optimization of an air-fin cooler 
is applied to the chaotic MRFO method. Optimization 
results reveal that chaotic variants of MRFO can maintain 
a huge amount of energy-saving compared to that of the 
preliminary design. Total cost of the fin cooler is reduced 
by 19.7% compared to preliminary design when chaotic 
Kent Map based MRFO is employed. A sensitivity analy-
sis is performed to investigate the variational changes of 
each optimized operating parameter of the air-fin cooler 
over the considered problem objective. It is seen that 
increasing cooler length, fin ptich, and fin outside diam-
eter values increase the total cost of the heat exchanger. 
On the contrary, annual cost rates decrease as the design 
parameters increase within the defined search range. It is 
also observed that gap and tube outside diameters have 
a negligible efffect on the annual cost values. All in all, the 
optimization efficiency of the chaotic algorithms is verified 
against benchmark problems with different characteristics 
and it is understood that the superiority of the proposed 
methods is evident for the majority of the comparison 
case. Real-world multi-objective engineering problems 
can be a favorable test bench for evaluating chaotic MRFO 
methods for future work. An interesting idea for perfor-
mance evaluation maybe their successful implementation 
over parallel or distributed environments. Furthermore, 
chaotic MRFO methods can be compared with newly 
emerged state-of-art metaheuristic algorithms to make a 
reliable conclusion on their optimization capabilities.
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