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Abstract
Antibiotics have been regarded as the emerging contaminants because of their massive use in humans and veterinary 
medicines and their persistence in the environment. The global concern of antibiotic contamination to different envi-
ronmental matrices and the emergence of antibiotic resistance has posed a severe impact on the environment. Different 
mass-spectrometry-based techniques confirm their presence in the environment. Antibiotics are released into the envi-
ronment through the wastewater steams and runoff from land application of manure. The microorganisms get exposed 
to the antibiotics resulting in the development of antimicrobial resistance. Consistent release of the antibiotics, even in 
trace amount into the soil and water ecosystem, is the major concern because the antibiotics can lead to multi-resistance 
in bacteria which can cause hazardous effects on agriculture, aquaculture, human, and livestock. A better understanding 
of the correlation between the antibiotic use and occurrence of antibiotic resistance can help in the development of 
policies to promote the judicious use of antibiotics. The present review puts a light on the remediation, transportation, 
uptake, and antibiotic resistance in the environment along with a novel approach of creating a database for systemic 
remediation, and metabolomics for the cleaner and safer environment.
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1 Introduction

Antibiotics term first introduced in the 1940s with the 
clinical use of penicillin. The subsequent development of 
other antibiotics has proved to be effective against bacte-
rial infections. These bacterial infections are considered to 
be under therapeutic control because of the effectiveness 
of these antibiotics. Excessive use and misuse of antibiotics 
have caused a significant threat to human health. Antibi-
otics are ubiquitous in nature whose residues has been 
frequently found in different environmental matrices, e.g., 
soil, groundwater, surface water, wastewater, sediments, 

and sludge [64, 65, 90, 119, 156, 157, 195, 199, 220, 223]. 
The effluent wastewater from industries, hospitals, aqua-
culture, and domestics may be a significant contributor 
of antibiotics to aquatic environments. The “pollution 
potential” of poultry manure get influenced by the spe-
cific compositions of antibiotics [214]. The antibiotic con-
centration varies depending on the soil’s type and texture 
[204]. Antibiotic finds its way to the vegetation via the use 
of livestock waste in manure. Livestock waste containing 
antibiotics is used as manure to enhance the texture, fer-
tility, and conditioning of the soil [73, 140]. The transfer 
of antibiotic residues and their active metabolites from 
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the slurry to the harvested vegetables has been shown 
from time to time [25, 73, 75, 77–79, 112, 135, 140, Doli-
ver et al. 2007]. The soil also exerts its buffering behavior 
on antibiotics, antibiotic-resistant genes (ARGs), and anti-
biotic-resistant bacteria (ARB). This effect makes applied 
manure ARBs and ARGs non-effective among existing soil 
microbial communities due to the remediation process 
employed by existing microbes. However, the resistance 
in manured biota can also be managed by manure treat-
ment [104]. Extensive information is available on antibi-
otic resistance. However, only few studies are available 
on antibiotic degradation, and fewer studies are available 
that have investigated microorganisms which use them as 
energy and carbon sources. Thus, the degrdataion mecha-
nism of microorganisms is not well understood.

Due to technological advancements in the last few 
decades, new methods and tools are designed which has 
high accuracy and sensitivity to study the pharmaceuti-
cal compounds in the environmental compartments. 
Regardless of the immense importance of antibiotics to 
treat bacterial infections, they are posing a major threat 
to mankind. Fluoroquinolones (FQs) such as ciprofloxacin 
was detected in hospital effluent in the concentration of 
0.7–124.5 μg/L. Ampicillin was detected in the German 
hospitals in the range of 20–80 μg/L [114]. The hospital 
effluents get diluted by municipal sewage which lowers 
the concentration of the antibiotic moderately because 
the municipal wastewater also contains livestock, vet-
erinary, and household waste. Soils are contaminated 
with antibiotics when manures, sludge, and wastewater 
are applied to land [46], but some antibiotics are directly 
applied to farmland for controlling the pathogens [189]. 
Aquatic resources receives antibiotics via waste water and 
aquaculture facilities [29]. The quinolones such as FQs, 
erythromycin, sulfonamides are frequently detected in the 
groundwater, surface water, and effluents of Wastewater 
treatment plants (WWTPs) in the μg/L range. Tetracycline 
(TET) has been detected in the soil in 0.2 g/kg concentra-
tion and sediments. The European Commission has admit-
ted that “the soil and water pollutions with pharmaceuticals 
is a critical concern for the public health and an important 
environmental issue” [106]. The antibiotics which are the 
most commonly found in soil are triclosan, sulfadiazine, 
and trimethoprim. The antibiotics are found in soil at a 
lower concentration as compared to water resources. 
Trimethoprim is recorded in the highest concentration 
(60 mg/kg) in Malaysia [88]. The pharamaceuticals’ concen-
tration is the highest in the sewage treatment plants (STPs) 
as compared to surface water. The pharamceuticals get 
attenuated in the surface water as the natural processes 
such as photolysis, dispersion, sorption, biotranforma-
tion, and volatization operates in the surface water [81]. 
The antibiotics (sulfamethaxazole and trimethroprim) are 

present in high concentrations in the freshwater and STPs 
in Asia. In countries like China the antibiotics are present 
at high concentrations in the river and effluent as no pre-
scription is needed for the sale of antibiotics which leads 
to the over-dosing of antibiotics [121]. According to the 
List of emerging pollutants “Watch List” of the European 
Union (EU). Some antibiotic compounds such as amoxicil-
lin and ciprofloxacin are replaced on the EU Watch List in 
2015, and azithromycin, erythromycin, and clarithromycin 
were added to this list in 2018 (https ://ec.europ a.eu/jrc/
en/scien ce-updat e/updat ed-surfa ce-water -watch -list-
adopt ed-commi ssion ). TET and oxytetracycline (OTC) are 
widely used antibiotics in veterinary applications [96]. 
The antibiotics poses a serious risk to animals, humans, 
and plants. Antibiotics causes chronic and acute toxicity 
to living beings along with the damage to aquatic phyto-
planktons, also have an impact on indigeneous microbial 
populations and ARGS in microorganisms [127, 128].

The present review puts a light on the remediation, 
transportation, uptake, and antibiotic resistance in the 
environment along with a novel approach of creating a 
database for systemic remediation, and metabolomics for 
the cleaner and safer environment.

2  Remediation and ecological resilience

The degradation process involves the complete minerali-
zation of the parent compound to a lesser toxic or unreac-
tive compound in the environment, under the naturally 
existing metabolic/co-metabolic processes of microbial 
load. The removal efficiency of antibiotics mostly depends 
on the sorption potential of suspended solids through the 
process of sedimentation. The removal efficiencies for Tri-
methoprim (TMP), norfloxacin (NOR), and TC were reported 
as 43%, 52%, and 69%, respectively, while Ofloxacin (OFX) 
removal efficiency was only 12% in each treatment. The 
STPs are not completely efficient for antibiotic removal. 
For Ex. antibiotics such as sulfamethoxazole, amoxicillin, 
cefalexin, chloramphenicol, and cefotaxime were found 
with overall removal of 80%, 75%, 81%, 77%, and 94%, 
respectively, with up to > 70% removal of cefalexin and 
cefotaxime from activated sludge. The overall removal 
efficiencies of antibiotics can be calculated by the ratio 
of mass loads of influent and effluent [121]. The microor-
ganisms are successful in degrading the antibiotics and 
reducing the environmental load/contamination, but the 
exact mechanism and pathways remain unclear [20]. How-
ever, the degradation can be accelerated using consortia. 
Alexandrine et al. (2017) showed up to 65% of enrofloxa-
cin and 55% of ceftiofur degradation through microbial 
applications, and limits of detection (LOD) were observed 
as 0.1 mg/L. Sulfonamides are one of the frequently used 
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antibiotics (both in humans and animals) due to their 
higher antibacterial activity against Gram-negative, Gram-
positive bacteria, and protozoan diseases [117]. Liao et al. 
[124, 125] showed the successful linear biodegradation of 
sulfanilamide through acclimatized populations, which 
was about 78%. However, ecological microbial degrada-
tion is more beneficial, but electrolysis processes are more 
efficient as it showed up to 98% degradation of enoxacin 
[8]. Sulfonamide-degrading microorganisms [20] include 
Variovorax, Brevundimonas [86], and Pseudomonas [100]. 
FQs can undergo direct or indirect photolysis via the gen-
eration of ROS and photooxidation. Sulfonamides (half-
life < 22d) degrade faster than FQs, whose half-life is much 
higher (half-life > 60d). FQs show slow degradation in the 
soil matrix due to the half-life > 60d [25]. Lin et al. (2017) 
showed the photolytic degradation of ciprofloxacin and 
reported photo transformation, the formation of by-prod-
ucts, pathways, and mechanisms. FQs were found to be 
resistant to hydrolysis and biodegradation [31, 68]. How-
ever, they are susceptible to phototransformation; hence 
photochemical transformation is supposed to be a great 
remediation strategy for surface water FQs contamination 
[193, 208, 227, 229] showed complete degradation of cip-
rofloxacin in the presence of bismuth oxybromide (BiObR), 
while minimal degradation was observed without BiOBr 
or irradiation. This degradation occurred with an oxida-
tion reaction. Hence oxidation of contaminated aqueous 
bodies would be a great strategy to remediate the antibi-
otics. Hence BiOBr could be a potential photocatalyst for 
the removal of antibiotics. FQs undergo direct photolysis 
and self-sensitized photooxidation via ROS or by indirect 
photolysis by hydroxyl radicles [71]. The photo transforma-
tion pathways of some antibiotics are still unclear but in 
addition to hydroxyl radicle oxidation, the photochemical 
transformation of FQs including ciprofloxacin, danofloxa-
cin, norfloxacin, marbofloxacin, and enrofloxacin, has been 
reported in the past few years [68, 71, 152, 171, 194, 214], 
and interestingly they were found to follow the first order 
photodegradation kinetics. Photodegradation of these 
FQs is dependent on factors like acid–base dissociations, 
the presence of different ionizable groups, and the pH of 
the surrounding environment. Here, the need to explore 
the complex network of FQs degradation pathways, mech-
anisms, affected metabolites of the biological system, and 
enzymatic relations enhance the knowledge and con-
ceptual aspects of antibiotics remediation. Ge et al. [69] 
reported the highest photolysis efficiency is in the range 
of 6–9 in the euphotic zone of surface water. Therefore, 
instead of parent compounds, a photodegraded form 
of antibiotics, gatifloxacin, and balofloxacin were found 
in the surface water. Krzeminski et al. [111] also showed 
that membrane bioreactors and moving bed bioreactors 
could not remove antibiotics completely in most cases. 

Constructed wetlands (CWs) may be an option for decreas-
ing the antibiotic load from the environment and simul-
taneously, the antibiotic-resistant genes also [190]. These 
CWs were found to have the potential of removing ARGs 
(45–99%) against sulfonamide, TC, and FQs [41, 91, 129, 
153]. Alicycliphilus, due to its heterotrophic metabolism, 
can help in the remediation of hydrocarbons and metals. 
Bioremediation is possible because the microbe, in addi-
tion to nitrate and chlorate, uses oxygen as a terminal elec-
tron acceptor. The bacterial genus can potentially help in 
the bioremediation of different antibiotic classes. One of 
the studies by [192] showed the degradation of TC and 
OTC by Alicycliphilus [192]. A. denitrificans were reported 
to remove the TET up to 95% [201] and its analog OTC up 
to 70% [36]. It may be a promising approach in biotech-
nology due to its versatility and adaptation in aerobic 
and anaerobic conditions. Generally, antibiotics have a 
shorter half-life and are supposed to be metabolized in 
the body as they are found in the active form in the excre-
tory waste. They are highly persistent and recalcitrant to 
degradation. Ciprofloxacin and Oxolinic acid were found 
to be less persistent (DT50 > 90d), than the quinolones 
and sulfonamides (DT50 > 100 d). The transferase enzyme 
(MurA) is the peptidoglycan precursors in bacterial cells, 
fosfomycin attacks it and inhibits the catalysis by covalent 
modification.

Different physical (ultrafilteration, adsorption), biologi-
cal, photocatalytic, electrocatalytic, and chemical (oxida-
tion, reduction) methods are used for antibiotic removal 
from the environmental matrices. However, these meth-
ods are not economical and produce secondary con-
taminants. The adsorptive removal of antibiotics from 
water has gained considerable attention as the process 
is relatively simple, does not cause any considerable pol-
lution, and requires less energy [97]. Ion exchange resins 
and activated carbons are used as adsorbents but they 
are expensive and difficult to produce. Thus, the develop-
ment of renewable and cheap sources including biomass 
is an alternative solution [12]. Biomass conversion com-
modity and fuels has gained attention as they can provide 
an eco-friendly and sustainable way to remove antibiotics 
from wastewater [102]. In a study by [96], a high-capacity 
adsorbent is used which was prepared by refluxing of the 
pine cones with concentrated sulfuric acid. The sulfuric 
acid was used for sulfonation and carbonization of pine 
cones. High adsorbtion capacity was observed for anti-
biotic TC and methylene blue. The adsorption of TC was 
shown to be increased at acidic pH and it at basic pH for 
methylene blue, wherease adsorption was favored with 
increasing temperature for both. The sulfuric acid treated 
pine cone (PC-SO3H) showed better adsorption capacity 
then pristine pine cone. Similar adsorption capacities were 
found for the adsorption of both the pollutants from the 
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tap water matrix [96].Sulfamethoxazole (SMX) is detected 
in environmental samples. It is bacteriostatic for the treat-
ment of animal and human diseases. It is detected in the 
ng/L range in wastewater and treatment plants. SMX can 
lead to drug resistance in microorganisms [2]. One of the 
studies by [2] used coffee waste (CW) derived CW-SO3H as 
a biosorbent to remove SMX from the aqueous solution. 
Coffee is one of the most consumed beverages all over the 
world which leads to the production of a large number 
of coffee residuals [169]. The sulfonated coffee waste was 
synthesized via the facile sulfonation method and charac-
terized. The characterization revealed the biosorbent to be 
a negatively charged sulfonic acid functionalized carbona-
ceous material and can interact with SMX via electrostatic 
interactions. The biosorption process was spontaneous 
and exothermic because of the negative ΔG° and negative 
ΔH° values and the pseudo-second-order reaction best fits 
the biosorption data.

Nanocatalysts are used for the antibiotic remediation. 
They are cost-effective, eco-friendly, easy, cheap, and sus-
tainable technology. [3] developed metallic iron nano-
particles having core–shell structured using coffee waste 
(Fe@BMC) at 800 °C and characterized it. It showed prop-
erties as an electrocatalyst. The catalytic studies revealed 
that that the nanocatalyst is most effective as a catalyst 
for 95.72% of TC degradation in 45 min. The reaction rate 
constant of 0.068 min−1. The porous carbon network and 
the interaction between the ultrathin carbon shell and the 
encapsulated metallic iron core are responsible for the 
catalytic behavior of nanocatalysts.

Fenton’s reagent is used for antibiotic removal. Fenton’s 
reagent is a mixture of ferrous salt and hydrogen peroxide 
used for the oxidation of the organics. It works better in 
acidic pH of 2.8–3, as at pH greater than 3 the iron precipi-
tates as iron hydroxide. Electro-Fenton (EF) is used to treat 
wastewater and an advanced oxidation process which 
relies on the electro generation of hydrogen peroxide 
in situ and the production of hydroxyl radicals in the pres-
ence of Fenton’s catalyst. EF can also be called cold incin-
eration as it allows the mineralization of organic pollutants 
to water, inorganic species, and carbon dioxide in aqueous 
media at atmospheric pressure and room temperature. 
EF allows the treatment of toxic and non-biodegradable 
effluents which are persistent and do not get oxidized by 
conventional processes. In EF process, hydrogen peroxide 
gets electrogenerated. Hydroxyl radicals are generated by 
both cathodic and anodic sources which work together 
to oxidize the organic pollutants via the abstraction of 
hydrogen or via hydroxylation. The successive oxidation 
leads to the production of organic acids with short chain 
such as oxalic acid and finally complete mineralization 
is reached [34]. EF processes provides the advantage of 
higher mineralization rate as compared to that of Fenton 

reaction or electrochemical oxidation. The regeneration of 
ferrous ion at the cathode makes this process highly effi-
cient. EF processed are used for the treatment of heavily 
polluted wastewater which contain the persistent organic 
compounds and the hazardous waste at low cost and in 
with high efficiency.

3  Transportation of antibiotics 
through mathematical ingression 
and sorption

Antibiotics from different sources (domestic, hospitals, vet-
erinaries, aquaculture, industries) contaminate the main 
sewage and reach the ground aquifers through leaching, 
with soil and water. The mobility of antibiotics in the soil is 
dependent on the sorption behavior of soil matter, which 
is estimated through the octanol–water partition coeffi-
cient (Kow): Kow ¼ ½Solute_ octanol ½Solute_ Water. How-
ever, the sorption potential of antibiotics can be described 
by the soil–water partition coefficient (Kd), the ratio of the 
concentration of the compound in soil, and concentration 
dissolved in water. It is also useful to estimate the extent of 
antibiotic movement in ground and surface water; hence 
the use of Kd value rather than Kow is more beneficial in 
sorption studies in soil matrices as the sorption coeffi-
cient always varies in the aqueous matrix. Hence, the data 
representation is always independent of one established 
mathematical modeling and is variable, depending on the 
sorption matrix. Hence, Kd and Kf (Freundlich sorption con-
stant) values are used to deliver the correct data, but Kf is 
always better in estimating the partitioning.

The leaching of antibiotics to groundwater aquifers can 
be calculated by the ratio of tritium and helium (3H/3He) 
in the water [175].

Antibiotic contamination assessment to groundwater is 
the call of the current situation of antibiotic resistance 
and the failure of antibiotics. The groundwater quality can 
be accessed by monitored through groundwater oxida-
tion capacity (OXC) in the context of present nitrates and 
sulfates.

The OXC can be explained by its behavior to oxidize the 
reduced compounds through redox reactions. The equa-
tion was successfully applied to determine the ground-
water contamination in the Netherlands [228]. Hence, 
the concentration of antibiotics might get influenced by 
redox conditions. Antibiotics can also be transported or 
contaminate other environments by aerial transport with 
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particulate matter [143], through rainfall and soil erosion, 
through eroded soil of unpaved roads [204]. Interest-
ingly, erosion can be accounted for as an erosion rate of 
394.6 Mg km−2 year−1 [203].

Sorption is one of the main factors in antibiotic reme-
diation. It determines the antibiotics’ behavior and fate 
in the soil environment [210]. It has shown that the FQs 
sorption in different kinds of soils (sandy loam, loam, clay 
loam, sand, loamy sand, silt sand, silt clay loam) is very 
high due to very high Kd values [213]. Still, it depends 
upon soil texture and cation exchange properties of soil. 
Antibiotic sorption efficiency may depend on the hydro-
phobic partition, hydrogen bonding, ionic exchanges, and 
bridging and the pH, quality, and minerals present with 
the matrix. Hydrophobic partition and non-hydrophobic 
interaction of antibiotics are always the key results of anti-
biotic sorption in soil [104]. Soil sorption of ionizable anti-
biotics also depends on their electrostatic interaction and 
hydrogen bonding. The transportation of antibiotics in soil 
depends upon their mobility, reactivity, and bioavailability, 
microbial communities, microbial products, soil buffering 
capacity, soil texture, etc. Some antibiotics are nonpolar 
or hydrophobic, whereas others get dissociated easily 
depending on soil pH.

Therefore, the properties of the compounds and envi-
ronmental factors are the deciding factor for the antibiot-
ics’ adsorption. The adsorption behavior depends mainly 
on the functional groups and structure of the antibiotics. 
Quinolones and TET have ionic groups and strong polar-
ity, which is mainly responsible for its high adsorption. 
Enrofloxacin, norfloxacin, and ciprofloxacin show strong 
adsorption to the soil surface. Ciprofloxacin structure 
includes one bond each of –N(CH3)2, –C=O, –CONH2, 
and –COOH group, which contributes to its high adsorp-
tion [105]. The -COOH group is mainly responsible for the 
adsorption properties of the quinolones, as two orders of 
magnitude in enrofloxacin reduced the adsorption capac-
ity without the -COOH group [154]. TET can adsorb on 
the surface of soil because of the electrostatic attraction 
between the negatively charged site of adsorption and 
positively charged group (–NH(CH3)2) [60].

The adsorption in the soil is dependent on pH. At envi-
ronmental pH, antibiotics can exist as zwitterions, anions, 
and cations [183]. Kow of antibiotics varies in a pH range, 
which is around the acid dissociation constant [134]. The 
montmorillonite adsorption for TET decreases with an 
increase in pH [172]. Furthermore, the type of soil also 
determines the adsorption behavior of the same antibi-
otic. Kd values vary of metronidazole, and tylosin varies 
with the type of soil being used. Sulfamethazine adsorp-
tion is also affected by the soil pH, as the pH increased 
the Kd value decrease, and the Kd value increase with high 
organic carbon [120].

4  Uptake by plants

Vegetables are an essential part of our daily diet. Due 
to the reach of antibiotics in the water ecosystem, their 
presence in vegetables was investigated. Antibiotic 
exposure to humans through plant-based food (e.g., 
vegetables) helps in antibiotic transportation in the food 
chain [42]. These antibiotics, when entering the food 
chain, contribute to antibiotic resistance among micro-
bial communities. However, from the view of remedia-
tion, the higher accumulator plants can be used as the 
biological tools in remediation. Physiochemical and min-
eralogical properties of antibiotics include water solubil-
ity, dissociation coefficient, partition coefficient, Henry’s 
law constant, soil properties, water quality, nature of the 
antibiotics, charge, lipophilicity hydrophobicity, acidity, 
volatility, and sorption potential. These physicochemical 
and mineralogical properties of antibiotics these proper-
ties determine their uptake by plants.

The hydrophobicity log Kow and extent of ionization 
may be the reason for variation in accumulation and 
their translocation in a plant system. These physical and 
chemical properties describe the neutral or ionizable 
forms of antibiotics at different environmental matrices 
and pH. For example, carbamazepine uptake is found 
mainly in the plant leaves (< 52 µg/g) rather than plant 
roots, and it is due to the passive translocation along 
with its neutrality. The lesser log Kow enables it to move 
via instance roots to be accumulated in matured leaves. 
While triclosan, an antibacterial agent movement, falls 
on the upper tail of Gaussian distribution due to the 
slightly ionizable form, the neutral form of sulfameth-
azine would not enter the root system because of the 
low log Kow (0.9). Not every chemical can influence 
plant physiology; it depends on the physicochemical 
behavior of a particular chemical/pollutant [140]. How-
ever, plants uptake the antibiotics from soil and water 
as a part of their normal physiology, but they tend to 
experience some negative effects on their physiology. 
Vegetables carry antibiotic contamination at far below 
the MIC and carry it forward to the ecological food web, 
which can lead to bacterial resistance against antibiotics. 
The plant growth can be compromised on both above 
and below ground level under the stress of organic pol-
lutants, above-ground effects are more critical as the 
young leaves get sacrificed. Antibiotics metabolism in 
plants recently reported being accelerated due to the 
increased resistance, e.g., Typha [52]. Pharmaceuticals 
can be taken up by plants in concentrations high enough 
to use these plants as phytoremediation agents, e.g., let-
tuce, carrots, potatoes, tomatoes, cucumber, and green 
beans [33]. The red cabbage is found to be the reservoir 
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of veterinary antibiotics, e.g., enrofloxacin, chlortetra-
cycline, amoxicillin, monensin, and growth inhibition 
of red cabbage observed under monensin stress. Red 
cabbage roots, stem, and leaves were studied and found 
to be a main reservoir/collector of antibiotic residues of 
chlortetracycline. Enrofloxacin was reported to inhibit/
altered photosynthesis [9]. Phytoremediation can be 
useful for antibiotic remediation, but plants always have 
to pay a cost in terms of reduced photosynthesis and 
consequently reduced growth [76, 77, 79].

Not all antibiotics reach every part of a plant; their 
movement depends on the physiological and mineral-
ogical properties. For example, ciprofloxacin, a product of 
enrofloxacin, is only found in the stem [42]. Several plants 
are studied to check their potential for antibiotic remedia-
tion, including the consumable plants, e.g., red cabbage, 
white cabbage, radish, and ryegrass [32]. Plant metabolic 
enzymes ion channel, or ATP-dependent pumps, help 
remove toxic substances from them. But the accumulation 
of antibiotics in plant root, shoot, leaf, stem or fruit, pos-
tulates that antibiotics may alter these important working 
units of the plant system. Pharmaceuticals (PCs) were also 
evaluated in cucumber and tomato for their translocation, 
accumulation, and effects on plant organs. The treated 
wastewater results in decreased bioavailability of ionic PCs 
in plants rather than the contaminated freshwater, and it 
indicates the positive side for using the treated wastewater 
for irrigation [73]. The red cabbage was found to be the 
reservoir of antibiotics and helps in their carrier in the food 
chain. Plants do not support the non-ionic PCs transporta-
tion in the cell due to maybe repulsion forces exerted by 
negatively charged cell wall & cytosolic molecules; there-
fore, they might get accelerated in fruits rather than leaves 
[73].On harvesting, red cabbage was found to contain the 
chlortetracycline up to 17 μg/kg of fresh weight (FW). Red 
cabbage roots, stem, or leaves were studied and found as 
a main reservoir/collector of antibiotic residues of chlo-
rtetracycline. Enrofloxacin was supposed to inhibit/alter 
photosynthesis [9, 101]. The enrofloxacin stressed plants 
showed faded yellow leaves. However, the concentration 
of antibiotics above ground level was found much lower 
than below ground (roots) and the stem. PCs have been 
detected in the soil matrix. The potential of carbamazepine 
and sulfamethazine for the uptake by crops has been stud-
ied to investigate the plant–soil relation under the antibi-
otic stress, e.g., radish and ryegrass, and interestingly they 
found the carbamazepine uptake as 52 μg/g and 33 μg/g 
respectively by both, radish and ryegrass [9]. While the sul-
famethazine was reported below the LOQ (< 0.01 μg/g), 
both the antibiotics were detected in the spiked water 
even after seven days, which also supports the physical 
availability of antibiotics and their incomplete remediation 
through the plant system. Here the need for a microbial 

enzyme system is found as an alternative in the complete 
removal of antibiotics.

5  Bacterial strategies and scope 
to overcome the antibiotic load

The easy reach, availability, and use of antibiotic com-
pound by humans has resulted in the emergence of resist-
ance among the bacterial communities in the environ-
ment, and the risk of owing pathogenic bacterial diseases 
through the reuse of contaminated water (for irrigation) 
cannot be neglected [6, 158]. Bacteria can degrade a vari-
ety of organic pollutants/hydrocarbon, e.g., chlorpyrifos, 
parathion [159], petroleum oil [22]. Hence, the approach of 
antibiotic degradation by bacteria is vital for maintaining 
ecological resilience. Strains of Bacillus and Chryscobacte-
rium are the known potential bacteria for organic pollut-
ants degradation, including the antibiotic, sulfanilamide 
[174, 219]. A study by [113] showed the use of Serratia sp. 
for the degradation of penicillin from the River Yamuna 
[113].

Although bacteria residing in different matrices are con-
tinuously in close contact with the contaminants, bacte-
ria survive due to certain molecular mechanisms, e.g., the 
mutation in antibiotic target molecules, overexpression 
of drug efflux pumps, and foreign gene acquisition are 
among the major mechanisms of antibiotic resistance. Still, 
in addition to these, there are more ways to overcome the 
effect of antibiotics (Fig. 1). Immediate cellular responses 
were observed to these stressors (antibiotics), e.g., ATP-
dependent efflux pumps and osmolarity regulator outer 
proteins [17, 122, 163].

Integron is a comparatively novel transfer system for 
genes that may contribute to multi-resistance in bacterial 
communities. The bacteria-harboring ARG’s also persisted 
throughout all stages of wastewater treatment and found 
to be better surviving than total bacterial load even after 
the chlorination processes [137]. WWTPs are not capa-
ble enough to remove the existing bacterial populations 
as the E. coli detection was found to be 2.3–3.3 log unit 
reduction only, and beta-lactam along with quinolone-
resistant bacteria was observed as a 6% change in influ-
ent and effluents. E. coli was the most affected multidrug-
resistant (MDR) isolate, among others, while resistance 
was also seen against sulfamethoxazole, ciprofloxacin, 
trimethoprim, with the prevalence value of 30% [6, 133, 
155]. But there is a significant difference among these 
prevalence values as [21] reported it as 20% in the efflu-
ent wastewater. The heterotrophic population of bacteria 
were selected seasonally and found that these MDR bacte-
ria were ranging between 5 and 64% and confirmed by the 
presence of tet genes (tetO, W, H, Z, Q) in the chlorinated 
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effluents. Simultaneously, even after chlorination, the 
ARGs (tetA, EBGHTSX) (sul1,2), ermC, qnrB were discharged 
in the effluent, which is quite higher than influents [4]. 
These ARGs can be removed by the biological treatment 
following ultraviolet radiation. Mao et al. [137] observed 
a 90% reduction in the total ARGs., in 2015 from influ-
ent to effluent in conventional activated sludge (CAS), 
while ARGs were found abundantly in WWTPs effluents 
[216] Furthermore, Vibrio fischeri and E.coli faced enor-
mous toxicity against FQs, which may finally disturb the 
microbial activities in the aquatic environment due to the 
enhanced phototoxic effects of FQs [68, 71]. ARBs can be 
found in different environmental matrixes, e.g., soil, water, 
dust, food, insects, and wildlife [42]. World Health Organi-
zation (WHO) has declared a list of the urgent threat of 
antibiotic-resistant bacteria, e.g., multidrug-resistant 
Mycobacterium; carbapenem-resistant Pseudomonas bau-
mannii, Pseudomonas aeruginosa, Klebsiella pneumonia, 
E. coli, Enterococcus sp., Serratia sp., Proteus sp., Providen-
cia sp., Morganella sp.; Methicillin-resistant Staphylococ-
cus aureus; vancomycin-resistant Enterococcus faecium; 
ampicillin-resistant Haemophilus influenza; FQs-resistant 
Campylobacter; clarithromycin resistant Helicobacter pylori; 
and Shigella sp.; penicillin-non susceptible Streptococcus 
pneumoniae; FQs and cephalosporin-resistant Neisseria 
gonorrhea, recommends the research and discoveries of 
new antibiotics. Some bacteria are have already developed 
resistance against the antibiotic fosfomycin, e.g., Mycobac-
terium tuberculosis, Escherichia coli, and Borrelia burgdor-
feria encode aspartic acid instead of cystine in the active 
site of the MurA enzyme. At the same time, many became 
resistant by acquiring resistance through horizontal gene 
transfer or bacterial genetic machinery or its products.

Microbial communities are under the direct (short-
term) and indirect (long-term) stress of antibiotics in the 

environment. Direct stress involves bactericidal and bacte-
riostatic effects and sometimes leads to the disappearance 
of the whole microbial community, while indirect stress 
includes the development of antibiotic resistance in bac-
teria. Earlier it was suggested that the selection of resistant 
bacteria occurred, on direct contact with high antibiotic 
flux by the bacteria, but it’s now clear that the continuous 
exposure of antibiotics (usually finds in wastewater is the 
main reason for bacterial evolution and resistance [44].

6  Evolutionary host for resistance 
emergence and its spread

The “persistence” and “viable but non-culturable” (VNBC) 
mode of bacterial evolution makes them special under 
stress/toxic conditions [11]. However, VBNC and antibiotic 
resistance (AR) were discovered with a time gap of dec-
ades, but they share some similarities, e.g., the formation 
of VBNC and persistent antibiotic cells, presence of biofilm 
and antibiotic tolerance, stringent responses, proteolysis, 
toxin–antitoxin systems, ATP depletion, and dormancy. 
These mechanisms promote the fitness of survived resist-
ant mutants of bacterial populations under the influence 
of their genetic rearrangements [11]. Once the resistance is 
developed in bacteria, it is less likely to revert in the absence 
of antibiotic load or stress, because fitness and selection are 
unidirectional and evolution cannot be operated backward 
[191]. Ahmed et al. [1] have shown the evolution of bacte-
ria from biofilms against the ciprofloxacin at sub-inhibitory 
concentrations (0.1 mg/l). [173] reported the dangerous 
situation of antibiotic resistance, and it indicates that the 
consumption of antibiotics in China is above the threshold 
and may result in some multi antibiotic-resistant “superbug.” 
The non-lethal concentration of FQs, aminoglycosides, and 

Fig. 1  Antibiotic resistance development in bacterial cell; a The 
normal mechanism of antibiotic and its target interaction while 
in the resistant bacteria b target gene may be mutated or c target 
protein/molecules may be masked by other protein/molecules (in 

response to antibiotic stress) or d the direct/indirect degradation 
may occur or e modification of antibiotic or f The efflux of antibi-
otics from the bacterial cell through ATP-dependent efflux pumps 
may operate to provide the resistance to a bacterial cell
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beta-lactam can increase the resistance level due to an 
increased mutation rate, which ultimately interferes with 
normal homologous recombination and stimulates the 
horizontal gene transfer (HGTs). This new genetic variation 
may lead to high-level resistance even at sub-MICs [99]. The 
resistant bacteria are a threat to the human, animals, and 
ecosystem and are high-risk organisms listed in [35] report, 
e.g., Drug-resistant Neisseria gonorrhoeae, Campylobacter, 
Enterococcus, Candida, Enterobacteriaceae, Clostridium dif-
ficile, Non-typhoidal Salmonella, Shigella, Salmonella typhi, 
Staphylococcus aureus, Tuberculosis, Group B Streptococ-
cus, Group A Streptococcus, Streptococcus pneumonia and 
multidrug-resistant beta-lactamase-producing Enterobac-
teriaceae, Pseudomonas aeruginosa and Acinetobacter [35]. 
They all can cause acute and persistent infections. The level 
of antibiotic resistance in the USA is at a very critical point 
as the vancomycin-resistant Enterococcus faecium showed 
the MICs, > 1.024 μg/mL for fosfomycin and it is interestingly 
noted that this high-level resistance is due to the major sub-
stitution mutation as CYS119ASP in the active site of MurA 
enzyme. This scenario indicates the current need for sur-
veillance activities to check, aware, and minimize the tar-
get antibiotic contamination and prevent the spreading of 
antibiotic resistance among bacteria. Fecal contamination is 
the main source for the spreading of zoonotic bacteria due 
to direct contact with the animal-based food product, e.g., 
meat [54]. The American consumer is not in direct contact 
with farm animals; rather, the antibiotic-resistant bacteria 
were found from the human population. Hence, it is clearly 
said that the indirect transfer through plasmids and trans-
posons is critically responsible for infection among other 
microbial communities. In the European Union, Campylo-
bacteriosis was found in 246307 cases in 2016, which shows 
the level of resistance, and the spread of this bacteria con-
tinues to rise [55, 56]. In addition to resistance against the 
particular antibiotics, bacteria also show cross-resistance, 
and it might be possible that it happens when bacteria sur-
vive in multidrug stress in the environment. Campylobacter 
sp., the common agent of gastroenteritis, has shown indi-
vidual and cross-resistance against ciprofloxacin, TET, and 
erythromycin. Campylobacter transmission to the human 
population is mainly due to poultry farming [103], and it 
also shows the cross-resistance with TET by binding with 
the TetO protein of the ribosomal A site. This tetO gene was 
associated with TET resistance, as described by Iovine [94]. 
However, it was also found to be resistant (C. jejuni and 
C. coli) against ciprofloxacin through the point mutation 
in quinolone resistance determining region of GyrA pro-
tein [94]. Ciprofloxacin, TET, and erythromycin resistance 
through the multidrug efflux pumps are predominantly 
active in the resistant bacteria [94, 217]. The erythromycin 
resistance was found to be associated with mutations in 23S 
rRNA, L22, and L4 proteins of ribosomes [83]. In addition to 

other physiochemical properties, the resistance and cross-
resistance are also achieved by variation in temperature, 
e.g., E. coli. Interestingly, the Thr86IIe Gyr A mutation was 
found to be responsible for the variability in FQs resistance. 
A2075G mutation in the 23S rRNA gene is also responsi-
ble for erythromycin resistance. The efflux pumps do not 
govern bacterial resistance; rather, they are developed by 
the point mutations at specifics sites. Generally, antibiotic 
treatment is not recommended for Campylobacteriosis but 
is sometimes given to immunocompromised individuals. 
Human to human transmission is not frequent and normally 
occurs by meat, contaminated water, and unpasteurized 
milk consumption [94]. From 2013 to 2016, Campylobacter 
jejuni was the frequently found bacterial sp. with high anti-
bacterial resistance, while C. concisus and C. fetus were least 
detected [55, 56].

7  Detection of antibiotics 
in the environmental matrices

Their detection has confirmed the presence and risk of 
active antibiotics in the supply of water Detection of anti-
biotics are mostly seen under MICs, but still, resistance is 
reported to be increased. It is most obvious that the detec-
tion and actual present concentrations may vary because 
there is always a possibility of in-process degradation by 
the stored enzymes which come out during the homog-
enization of plant tissues. Carbamazepine (52 µg/g in rad-
ish & 33 µg/g in ryegrass), sulfamethazine (< 0.01 µg/g by 
radish & ryegrass) has been detected in soil [32]. Beta-lac-
tams are water-soluble antibiotics and easily transformed 
through hydrolysis, despite the high consumption, neither 
penicillin G/V nor amoxicillin was detected in wastewater. 
The ampicillin was detected up to 75.40 ng/L [93, 109, 161] 
reported ampicillin up to 1805 ng/L in WWTPs in Greece. 
Amoxicillin can get hydrolyzed in animals [176], but in the 
presence of methanol, it can form complex as AMO-MEOH 
adduct, and it was confirmed by LC–MS/MS [80]. The traces 
were found in root samples of the plant but not in plant 
tissues. FQs were the most abundant antibiotics found 
in WWTP influents enrofloxacin (400.20 ng/L), ofloxacin 
(175.01  ng/L), ciprofloxacin (330.33  ng/L) in domestic 
wastewater ciprofloxacin (639 ng/L), ofloxacin (529 ng/L), 
and enrofloxacin (below LOD) [178]. The WWTP’s are not 
efficient for the complete removal of antibiotics [127, 128, 
145, 170], but the Hazard quotient (HQ) for the estimation 
of risk of WWTPs effluents on the environment can be cal-
culated by the ratio of measured concentration (MEC) and 
predicted no-effect concentrations (PNEC) [HQ = (MEC)/
(PNEC)], described by European community guidelines [56, 
58]. Table 1 shows the mass spectrometry techniques for 
the detection of antibiotics in the environmental matrices.
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Table 1  The mass-spectrometry based techniques for the detection of antibiotics in different environmental matrices

S. No. Antibiotic Detection Matrix References

1. Cefdimir
Sulfonamide
Sulfaguanidine
Sulfathiazole
Sulfamethoxazole
Ciprofloxacin
Sulfanilamide

LC–ESI–MS/MS Liquid matrix
River water
Activated sludge
Microbial culture
Microbial liquid biomass

Selvi et al. [188], Sági et al. [180], Liao 
et al. [124, 125]

2. Sulfamethoxazole
Sulfadimethoxine
Sulfamethazine
Enrofloxacin
Ceftiofur
Oxytetracycline
Chlortetracycline
Tetracycline
Tetracycline
Sulfathiazole
Ampicillin
Norfloxacin
Ciprofloxacin
Danofloxacin
Enrofloxacin
Sulfadiazine
Sulfamethoxazole
Sulfachloropyridazine
Sulfadimidine
Sulfathiazole
Sulfamethazine
Enoxacin

HPLC Liquid/aqueous matrix
Microbial culture
Waste water
Sludge
Waste water
Soil
Aqueous matrix
Waste water

Yang et al. [222], Diago et al. [51], 
Chen et al. [40], Park and Choung 
[162], Pereira et al. [167],  Pan et al. 
[160], Annabi et al. [8]

3. Enoxacin
Cefalexin
Ampicillin
Sulfamethoxazole
Sulfadiazine
Norfloxacin
Ofloxacin
Ciprofloxacin
Tetracycline
Roxithromycin
Erythromycin
Trimethoprime

UPLC–MS/MS Surface water
Sludge

Annabi et al. [8], Dai et al. [45], Li and 
Zhang [123]
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Table 1  (continued)

S. No. Antibiotic Detection Matrix References

4. Sulfamethazine
Enrofloxacin
Ciprofloxacin
Monensin
Fluoxetine
Carbamazepine
Propranolol
Sulfamethazine
Triclosan
Sulfamethoxazole
Sulfapyridine
Naproxen
Ibuprofen
Gemfibrozil
Clofibric acid
Ketoprofen
Bezafibrate
Metoproloi
Caffeine
Sildenofil
Lamotrigine
Carbamazepine
Sulfamethoxazole
Sulfadimethoxine
Sulfamonomethoxine

LC-MS/MS Soil
Red cabbage
White cabbage Radish & Rye grass 

(root, stem, and leaves)
Soil and water matrix
Tomato & cucumber (fruits, leaves, 

soil, clay sand)
Waste water sludge

Topp et al. [205], Choudhary et al. 
[42], Grote et al. [78], Carter et al. 
[32], Goldstein et al. [73], Yang et al. 
[221]

5. Sulfamonomethoxine
Sulfachloropyridazine
Sulfamethazine
Trimethoprim
Norfloxacin
Ofloxacin
Lincomycin
Leucomycin
Oxytetracycline
Norfloxacin

UPLC-ESI–MS/MS Waste water
irradiated aquous solution

Chen et al. [40]

6. Norfloxacin
ciprofloxacin

UV/Vis spectrophotometer Aerobic and anaerobic sludge of 
bioreactor

Soil

Santos and Ramos [182], Zhang et al. 
[226]

7. Levofloxacin
Lincomycin
Linezolid
Marbofloxacin
Sarafloxacin

LC-UV–MS Aqueous media Bergheim et al. [19]

8. Sulfamethoxazole LC-ToF–MS/MS Microbial culture Miran et al. [146]
9. Sulfamethoxazole

Sulfadimidine
Sulfapyridine
Sulfadiazine
Sulfathiozole
Sulfamethazine
Tylosin
Chlortetracycline
Ciprofloxacin
Norfloxacin
Tetracycline

HPLC–UV/Vis Microbial culture
Soil
Aqueous solution
Gamma
Sludge
Soil
Liquid matrix

Mao et al. [138], Topp et al. [205], 
Zhang et al. [227, 229], Jiang et al. 
[100]
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Table 1  (continued)

S. No. Antibiotic Detection Matrix References

10. Salbutanol
Atenolol
Ranitidine
Lincomycin
Ofloxacin
Cyclophosphamide
Carbamazepine
bezafibrate

SPE-LC–MS/MS Eruca sativa L. and Zea mays L. 
(Leaves and Kernels)

Marsoni et al. [140]

11. Gatifloxacin
Balofloxacin
Norfloxacin
Enrofloxacin
Ciprofloxacin
Fluoroquinolone
Ofloxacin
Cefalexin
Tetracycline
Chloramphenicol
Erythromycin
Trimethoprim
Roxithromycin
Tylosin
Levofloxacin
Sulfamethazine
Sulfathiazole
Sulfamethoxazole
Amoxicillin
Cefotaxime
Oxytetracycline

HPLC–ESI–MS/MS Water
River water
Waste water
Synthetic water
Liquid matrix

Ge et al. [70], Babic et al. [13], Leung 
et al. [121]

12. Sulfamethoxazole
Sulfamethazine
Lincomycin
Chloramphenicol
Sulfadiazine
Doxycycline
Oxytetracycline
Tetracycline
Trimethoprim
Amoxicillin
Cefuroxime
Azithromycin
Clarithromycin
Erythromycin
Roxithromycin
Tylosin
Flumequine
Levofloxacin
Furazolidone
Sulfachloropyridazine
Ofloxacin

LC–MS/MS
ESI-PoS/NEG(MRM)-SPE

Water Kivits et al. [107]

13. Ciprofloxacin HPLC–MS Aqueous solution Zhang et al. [227, 229]
14. Ciprofloxacin

Sulfamethoxazole
SPE-LC–MS Ground water Ji et al. [99]
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Table 1  (continued)

S. No. Antibiotic Detection Matrix References

15. Erythromycin
Roxithromycin
Tylosin
Norfloxacin
Ciprofloxacin
Enrofloxacin
Levofloxacin
Sulfamethoxazole
Sulfamethazine
Sulfaquinoxaline
Oxytetracycline

UPLC Manured soil Camotti Bastos et al. [30]

16. Ciprofloxacin HPLC-FDA Water samples Baginska et al. [15]
17. Ofloxacin

Norfloxacin
Ciprofloxacin

UFLC Microbial culture Amorim et al. [7]

18. Ciprofloxacin
Difloxacin
Enrofloxacin
Levofloxacin
Lomefloxacin
Norfloxacin
Ofloxacin
Orbifloxacin
Sarafloxacin
Fleroxacin
Gatifloxacin
Moxifloxacin

HPLC-FLD Waste water He and Blaney [85]

19. Ciprofloxacin
Tetracycline
Doxycycline
Sulfamethazine
Sulfamethoxazole
Clindamycin
Ofloxacin
Norfloxacin
Sulfanilamide

LC–MS/MS–ESI Biosolids
Microbial culture
Aquous solution
Solid and aqueous solution

Wu et al. [218], Amorim et al. [7]

20. Ciprofloxacin
Piromidic acid
Norfloxacin
Pipemidic acid
Ofloxacin
Moxifloxacin

UPLC-MS/MS–ESI Waste water García-Fernández et al. [66]

21. Tetracycline
Streptogramin

Electrochemical ELISA’s Microfluid Kling et al. [108]
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Table 1  (continued)

S. No. Antibiotic Detection Matrix References

22. Azithromycin
Clarithromycin
Erythromycin
Roxithromycin
Tylosin
Cefaclor
Ampicillin
Tetracycline
Chlortetracycline
Oxytetracycline
Ciprofloxacin
Ofloxacin
Enrofloxacin
Norfloxacin
Sulfamethazine
Sulfamethoxazole
Sulfadiazine
Trimethoprim
Chloramphenicol
Florfenicol
Thiamphenicol

SPE
UPLC-Q/TOF/MS

Urine Wang et al. [209, 211]

23. Lincomycin
Gentamycin
Kanamycin
Streptomycin
neomycin

Immunochromatographic assay Milk Peng et al. [166]

24. Oxytetracycline
Chloramphenicol
Kanamycin
Streptomycin
Tetracycline
Penicillin G
Doxycycline
Aminoglycoside
Amoxicillin
Fluoroquinolone
Erythromycin

Biosensor, optical, electrochem-
ical and nanomaterials

Lan et al. [116]

25. Chloramphenicol
Kanamycin
Oxytetracycline
Thiamphenicol

Microchip electrophoresis Food Zhou et al. [230]

26. Ciprofloxacin Biosensor
UV/Vis

Microbial liquid Pawar et al. [164]

27. Kanamycin
Chloramphenicol

Electrochemical aptasensor Microfluid Huang et al. [91]

28. Ofloxacin
Ciprofloxacin
Enrofloxacin
Ampicillin
Cefalexin
Azithromycin
Spiramycin
Lincomycin
Sulfamethoxazole
Sulfapyridine
Trimethoprim

UPLC-ESI Waste water Harrabi et al. [84]

29. Enrofloxacin
Ceftiofur
Ciprofloxacin
Sulfadiazine

HPLC–DAD Microbial culture
Solid and aqueous solution
Aqueous matrix

Alexandrino et al. [5], Tappe et al. 
[200]
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The half-life of antibiotics shows variations, depend-
ing on the type of matrix on which they adsorb/attach or 
interact. Ji et al. [99] showed Fe(III) activated persulfate-
assisted ciprofloxacin degradation up to 95% and sul-
famethoxazole degradation up to 35% [184] showed the 
gamma rays irradiated degradation of norfloxacin by HPLC 
and found out the intermediate and by-products by UPLC-
MS/MS–ESI. They also showed that OH in the presence of 
tert-butanol and 2-propanol played a critical role in the 
degradation of norfloxacin. The norfloxacin concentra-
tion in aqueous solution can be found out by C = Coe − Kd 
[130]. FQs are the fourth largest and most important 
antibiotics, frequently found in the surface water as an 
“emerging pollutant.” Clinically is found that the antibiot-
ics, administered to humans or livestock, maybe partially 
metabolized hence, can enter into agricultural runoff and 
wastewater. The detection of TET and metronidazole in 
Tunisia was below the limit of quantification (LOQ), it may 
be due to low antibiotic consumption [93], and there is 
only one study of Tunisia which showed the 14 aminogly-
cosides and amphenicols in wastewater, seawater, and 
pharmaceutical industry effluents [198]. Sulfonamides 
were detected in the range of 0.3–18 ng/L from the Neth-
erlands‘ groundwater where livestock farming occurred. 
The 11 antibiotics, erythromycin, roxithromycin, tylosin, 
norfloxacin, ciprofloxacin, enrofloxacin, levofloxacin, 
sulfamethoxazole, sulfaquinolones, sulfamethazine, and 
OTC, were quantified in Brazilian soils, fertilized with the 
manure of animals. However, the rules and regulations 
are strict nowadays in European Union countries, but 
increased soil genes have been observed [187]. The sul-
famethazine was found with a maximum concentration 
of 3.6 mg/L in the Californian dairy farm’s groundwater 

[212]. Hirsch et  al. [87] were among the first research 
groups who detected the presence of antibiotics in the 
aquatic environment. Sacher et al. [179] carried out Ger-
man groundwater monitoring and found the presence of 
sulfamethazine (410 ng/L). From the 1990s until recent 
years, antibiotics are being detected at an alarming rate. 
Recently, antibiotic presence in surface water and ground-
water was reported in a drinking water production site, in 
Germany, and among 26 antibiotics, eight were detected 
in surface water, while in groundwater, only trimetho-
prim was detected with concentrations between 5 and 
12 ng/L, among the 11 wells [28]. Another research group 
also carried out their work at the same region, in the high 
livestock production area and found sulfamethoxazole up 
to 950 ng/L, and sulfadiazine and sulfamethazine below 
12 ng/L among seven wells [16, 82].

Italian rivers were continually found to be contaminated 
by antibiotics. Antibiotics such as amoxicillin, ciprofloxa-
cin, clarithromycin, erythromycin, lincomycin, metroni-
dazole, oleandomycin, ofloxacin, OTC, sulfamethoxazole, 
sulfadiazine, sulfadimethoxine, sulfapyridine, spiramycin, 
tilmicosin, tylosin, vancomycin were detected. From there, 
we can imagine the level of resistance among the micro-
bial community. Loos et al. [132] showed the detection 
frequency of ciprofloxacin and carbamazepine up to 90%, 
and sulfamethoxazole up to 83% [139]. Krzeminski et al. 
[111] showed the detection limit of antibiotics, trimetho-
prim was detected up to 6000 ng/L, clarithromycin up to 
8000 ng/L, azithromycin up to 6810 ng/L, and metformin 
up to > 10,000 ng/L. During the detection experiments, 
we may not be able to find out the exact concentration 
of antibiotics, because, during homogenization of plant 
tissues, antibiotics can be degraded in accelerated form 

Table 1  (continued)

S. No. Antibiotic Detection Matrix References

30. Chlortetracycline
Monensin
Sulfamethazine
Tylosin
Virginiamycin
Sulfamethoxazole
Monensin
Salinomycin
Narasin

LC–MS Radish
Potato
Garlic
Corn
Spinach
Onion
Cabbage
Lettuce
Carrot
Microbial culture
Broiler litter & soil microcosms

Kang et al. [104], Ricken et al. [177], 
Sun et al. [196]

31. Sulfamethoxazole
Sulfadiazine

GC–MS Liquid matrix
Aqueous matrix

Jiang et al. [100], Tappe et al. [200]

32. Tetracycline Photoelectrocatalytic
ESI

Copper oxide nanorods Eswar et al. [57]

33. Sulfamethoxazole HPLC–MS/MS
IR

Aqueous matrix Nguyen et al. [151]

34. Sulfadiazine LC-APCI-MS/MS Aqueous matrix Tappe et al. [200]
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because of the enzymes, stored in compartments. Plants 
may have the detoxification potential [26], and the antibi-
otics can be degraded in the plant cell vacuole [141].

Some antibiotics were reported to be present in an 
environment with the LOD as 0.05 mg/mL for ciprofloxacin 
and norfloxacin, and 0.01 mg/mL for enrofloxacin, while 
the LOQ was 0.01 mg/mL for ciprofloxacin and norfloxa-
cin, and 0.05 mg/mL for enrofloxacin [13, 165]. They also 
showed that photolysis of norfloxacin, enrofloxacin, and 
ciprofloxacin through solar radiation followed pseudo-
first-order kinetics. The LOD of antibiotics were (Chlortetra-
cycline = 0.10), (Monensin = 0.58), (Sulfamethazine = 0.10), 
(Tylosin = 0.02), (viginiamycin = 0.09) at µg/L [104], while 
their LOQs were 0.13, 1.0, 0.27, 0.14 and 0.12, respectively. 
The LOD and LOQ scenario showed the data variability, 
and it may depend on the environmental conditions and 
the sorption matrix hence, LOD cannot be universal for 
different matrices as each matrix has its potential to hold 
the antibiotic compound under the influence of chemical 
nature, free reacting groups, surrounding chemical niche, 
other chemically active compounds, and physical condi-
tion has driven forces.

8  Remediation strategies by application 
of “omics” and molecular techniques

Genomics provides revolutionary knowledge filling the 
gap between classical and modern microbiology. The 
field includes the analysis of biophysical techniques, e.g., 
chemical genomics, genotype and phenotype mapping, 
genome-scale library, pan-genome assemblies next-gen-
eration sequencing, quantitative PCRs, and bioinformatic 
tools [215].

The quantitative PCR is a technique to assess the effi-
ciency of wastewater treatment plants for the removal of 
ARGs, and in 2016, Rafraf et al. 225 successfully observed 
ARGs in the influents and effluents of WWTPs. To enhance 
the efficiency of WWTPs, culturable antibiotic-resistant 
bacteria can be used. In Mycobacterium tuberculosis, the 
Tricarboxylic acetate (TCA) cycle enzyme, isocitrate lyase 
provides tolerance against the antibiotics, irrespective 
of their primary/known targets [148] which suggest the 
involvement of a specific metabolic pathway in combating 
the antibiotic stress by the bacteria. The activity of many 
antibiotics is dependent on the metabolic pathway of the 
biological system. However, the factors regarding their 
antibiotic activity are not elaborately discussed [14]. The 
action of antibiotics (ampicillin, norfloxacin, levofloxacin, 
gentamycin, daptomycin, and rifampin) is linked to the 
metabolic behavior of bacterial (E. coli and Staphylococ-
cus aureus) machinery. Metabolism of bacteria (cellular 
respiration) may act downstream to antibiotics action (as 

bactericidal or bacteriostatic), while the accumulation of 
energy in the form of ATP, ADP, and AMP was seen and 
NAD & NADH elevation was observed. These all were seen 
in the TCA cycle metabolism [131].

Belenky et al. [18] showed the induction of common 
metabolic pathways around the central carbon metabo-
lism in E. coli in the stress of different antibiotics, e.g., 
ampicillin and kanamycin, and norfloxacin. This alteration 
of the TCA cycle leads to the production of oxidative stress, 
which results in DNA damage, nucleic acid oxidation, and 
double-stranded DNA breaks. Similarly, the TCA cycle’s 
shunting to the glyoxylate cycle provides the tolerance 
to bacteria (Pseudomonas aeruginosa) against antibiotics 
and prevents the bacteria from using the sugar molecule/
metabolites of the glyoxylate cycle rather than TCA. Nucle-
otides and peptidoglycans are the building blocks of the 
bacterial cell, but their biosynthesis or up and down in the 
metabolism of central carbon and amino acids were seen 
under the stress of antibiotics (ciprofloxacin, erythromy-
cin, fosfomycin, vancomycin, and ampicillin) (Dorries et al., 
[53]). Schelli et al. ([185], [186]) also proved that variation in 
the metabolic profile of bacteria under the different anti-
biotics’ stress. Hence, it is proved that the metabolomic 
changes are dose-dependent, and specific metabolomic 
pathways can be triggered, depending on the level of 
stress. Recent technologies and enhanced knowledge 
smoothen our efficacy in detecting and identifying the 
specific targets and susceptibility of bacteria, e.g., nuclear 
magnetic resonance and mass spectrometry-based detec-
tion and advancement ([185], [186]; [89]). The intracellular 
and extracellular analysis of bacterial populations can be 
done by using fingerprinting and footprinting of cultures, 
and it will be very useful in the prediction of antibiotic tar-
gets and action [89], and even the data acquisition is also 
easy through systems biology. Through metabolomics, 
the mode of action and the targets of antibiotics begin to 
clear and helps in finding the particular enzyme or path-
way at protein or DNA level [207]. In Gram-negative and 
Gram-positive bacterial (Staphylococcus aureus, Streptococ-
cus pneumonia, E. coli, Pseudomonas aeruginosa) studies, 
the antimicrobial peptides (AMPs) along with systems 
biology tools, became a curious subject for investigation 
[110]. Through the systems biology approach, Kozlowska 
et al., [110] revealed the induction of bacterial response 
under the stress of specific AMPs. Genes and their enzy-
matic products influence metabolism; however, they are 
also somehow governed by non-enzymatic proteins [62]. 
The exact mechanism of the drug’s action is not known. Ex 
post antibiotic growth, density-dependent changes, and 
persister cells hinder our understanding of drug-ligand 
chemical interaction and prevent the development of 
novel drugs to solve the problem of antibiotic resistance. 
The interventions of chemical reaction kinetics might 
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help in understanding the chemical network. Brynildsen 
et al. [27] have developed a genome-level approach to 
enhance the ROS production in E. coli (in the presence of 
antibiotics) to understand the potential killing of bacteria. 
The OMICS approach can help us to find the targeted and 
non-targeted biology of the bacterial cell [168] through 
genomics. [61] have developed some measurements for 
the chemical genomic interaction investigations to main-
tain the growth and kinetics of the bacterial system. Inter-
estingly, up to 200 percent increase in interactions were 
reported. This interaction is enhancing our experimental 
knowledge for the new perspectives and ideas in microbi-
ology. [224] revealed the metabolic response (ammonium 
imbalance and synthesis of deoxythymidine 5-diphos-
phate (dTDP)-rhamnose) of E. coli through metabolomics 
against many different antibiotics (amoxicillin, ampicillin, 
chloramphenicol, kanamycin, norfloxacin, nalidixic acid, 
sulfamethizole, trimethoprim, and spectinomycin) pertur-
bations. Metabolism of bacteria can change in response 
to environmental conditions and significantly helps the 
bacteria to adapt against the stress ([185], [186]). However, 
not much experimental evidence is reported until now 
[89]. The downstream metabolic pathways of bacteria are 
not very clear, and the metabolic changes in response to 
antibiotic stress can interfere with ROS production within 
the bacterial cell. E. coli being an organism whose metabo-
lism is widely explored through metabolomics ([202]; [38]). 
[95] revealed the cross interaction between the TCA cycle 
and the peptidoglycan biosynthesis through –ketoglu-
tarate influence in bacteria; Caulobacter crescentus. The 
flux balance analysis (FBA) is an increasingly useful and 
potentially good approach for modeling and predicting 
the more accurate prediction of the behavior of metabo-
lomic systems, and they were used for the prediction of 
the genetic knockout with higher synergy levels and drug 
perturbations. Although metabolomics profiling reveals 
the cellular and genetic analytical possibilities to employ 
the drug–target (cellular metabolites) interactions, it also 
uncovers the antibiotic inhibiting and enhancing factors. 
This may lead to focusing on specific target-based treat-
ment [147]. Jensen et al. [98] showed the stress-dependent 
response of bacteria through metabolomic profiling. They 
showed that the systematic and coordinated response 
under nutritional stress while the response under anti-
biotic stress was non-coordinated. However, the cost of 
fitness of genes under stress cannot be neglected, but 
transcriptional and functional coordination get disturbed 
under antibiotic stress. The microbial evaluation and the 
responsible metabolic interaction networks can be pre-
dicted through constraint-based models [23]. Based on the 
systemic and metabolic information, a novel remediation 
approach is diagrammatically described (Fig. 2) to combat 
antibiotic resistance and to overcome the antibiotic load 

from the environment. In Fig. 2, a proposed schematic dia-
gram on the perspectives of antibiotics bioremediation is 
described. The chemistry of any compound provides us 
with its molecular formula, chemical structure, the atoms 
involved, bonding pattern, and bond energies. However, 
we need to create a database which consists of all the 
chemical information of antibiotics and should be con-
nected to another database, having the information on 
bacterial strains. This will help us to select the antibiotic 
degrading bacteria by providing us with necessary bio-
physical and biochemical information. Then after switch-
ing on another database, which consists of all the proteins 
information of bacteria and their characterization, we 
would get the protein of our interest, to degrade the par-
ticular antibiotic, and for that, we will perform reverse tran-
scription to get the exact DNA sequence through in silico 
approaches and clone it in the cloning vector to amplify 
the necessary protein. The amplified protein would extract 
out, concentrate and stored after lyophilization. Hence, on 
demand supply of potential proteins could be possible 
through these approaches and through field applications, 
can get the clear field site after remediation. By comparing 
the similar strains, we can exactly find out the potential 
degrader against the particular contamination. Hence, the 
genomic analysis through the proposed databases will be 
a milestone in the field of biodegradation.

9  Initiatives and implementation 
of the policies of the twenty‑first century

The global report of surveillance of WHO has summarized 
the drug resistance among bacterial communities, while 
in May 2015, Federal Ministry of Health, Press Releases [59] 
issued their global plan to overcome antibiotic resistance, 
focused on food security and animal health. In addition to 
WHO initiatives and plans, European countries have also 
taken some decisions to combat antibiotic resistance, e.g., 
Germany launched Deutsche Antibiotika-Resistenz-Strat-
egie (DART), to aim the minimization and prevention of 
antibiotic resistance [47]. Germany even amended their 
drug law in concern of high antibiotic use for growth pro-
motion in livestock, in July 2014, and they are commit-
ted to keeping a record of the data of farm animals under 
antibiotic treatment [10] which shows their seriousness 
towards the global antibiotic resistance. Accelerated cases 
and emerging global problem of resistance leads to the 
WHO issue of “global plan of action to combat antibiotic 
resistance” and “global report of surveillance”. The German 
government already amended its drug law in July 2014 
to reduce antibiotic use in livestock [59]. While in devel-
oping countries like India, Brazil, etc., due to nonstrict or 
non-availability of exact policies for expired drug disposal, 
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antibiotics find their way to domestic or industrial waste. 
The public should know the consequences of antibiotic 
intakes, especially in developing countries, tackling the 
problem of antibiotic resistance. However, in European 
countries, Canada, and the United States, an annual anti-
biotic awareness day is declared, and it shows the strong 
commitment of developed countries to at least decrease 
the cases of resistance. Antibiotics were started to be given 
as feed additives for growth promotion of broilers, which 
have been shown to sacrifice their growth under Strep-
tococcus faecium infection [63]. But due to increased and 
accelerated resistance, the optional enzymatic deployable 
strategies were adopted at some places as the alternatives 
of antibiotics. When phytases, proteases, and xylanase are 
added to poultry diets, they result in stimulating the bio-
chemical pathways, which can lead to certain enzymatic 
reactions necessary for preventing the infections. The 
enzyme may be used as antimicrobial agents to hydro-
lyze the bacterial cell wall or weaken the glycocalyx and 
prevent bacterial infections. This is an emergent area for 
in-depth research in antimicrobial advancement [43].

10  Conclusion and future perspectives

Industrialization and modernization have likewise gen-
erated novel contaminants that could harm the environ-
ment. Pharmaceuticals are heavily used in medical thera-
peutics and veterinary, have been detected frequently in 
drinking water, soils, sediments, and surface water. Anti-
biotics are not fully metabolized by living beings and are 
recalcitrant to degradation, therefore cause adverse toxic-
ity to living beings. The traditional water treatment plants 
are ineffective in the removal of the antibiotic. Hence, the 
risk to the environment and human health has increased 
and there is an urgent need for developing effective tech-
nologies to remove antibiotics from water. There is an 
urgent need for the improvement of WWTPSs and STPs 
to reduce the concentration of antibiotics discharged 
into the environment to reduce the toxicity. Therefore, 
it is recommended to use the combined treatment and 
tertiary treatment for increasing the removal efficiency of 
antibiotics. Although, antibiotics and resistance run simul-
taneously; hence, the spread of antibiotic resistance is an 

Fig. 2  Proposed schematic diagram on the perspectives of antibiotics bioremediation
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add-on of these countries to the whole world. European 
countries share their data about annual antibiotics con-
sumption, the situation is worst in developing countries, 
e.g., India, where even actual consumption data are not 
available, and many folds lower production and consump-
tion of antibiotics have been reported. It is also clear that 
the drugs, which were banned in Europe and America, 
are still sold in developing countries, even without the 
prescription of medical practitioners. Bacterial infections 
are the major cause of death in European countries, and 
the development of modern medicine and antibiotics 
should be needed for securing the future. Hence, we have 
to stop the antibiotic contamination either at the source 
stage (e.g., hospital effluent, poultry manure, veterinary 
effluents, etc.) or the sinking stage (e.g., wastewater) by 
their remediation through non-chemical remedies. Edible 
plants and crops are the major reservoir and carrier of anti-
biotic residues and may be used to remediate the contami-
nated site to secure the food web. Irradiated degradation 
of antibiotics from the hospital’s effluents is suggested.
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