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Abstract
Here, we report an inexpensive, versatile, and environmentally benign biomass waste rice husk derived amorphous silica-
supported palladium (PdNPs/RH-SiO2) nano-catalyst for Suzuki–Miyaura and Heck–Mizoroki cross-coupling reactions. 
The proposed catalyst was prepared in two steps. In the first step, amorphous SiO2 obtained by calcination of rice husk 
and the following deposition of palladium nanoparticles by using the chemical reduction method in the second step. 
The physico-chemical properties of the catalysts were investigated by N2 adsorption–desorption, XRD, XPS, 29Si CP-MAS 
NMR, and TEM analysis. The palladium content in the catalysts has been determined by ICP-OES analysis. The 1% PdNPs/
RH-SiO2 exhibited excellent catalytic performance for Suzuki–Miyaura and Heck–Mizoroki C–C cross-coupling reactions 
to produce biaryl and stilbene compounds with >99% selectivity and excellent TON values (529 and 524). Furthermore, 
the catalyst is repeatedly used for four consecutive cycles without a significant drop in the yield.
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1  Introduction

Suzuki and Heck coupling reactions are the most pow-
erful one-step methods for carbon–carbon bond forma-
tion in organic synthesis, especially these reactions are 
employed in the preparation of a large variety of complex 
organic molecules, having prevalent applications in phar-
maceutical, crop-protection, polymers, materials, and fine 
chemical applications [1–12]. The current state-of-the-art 
process relies on precious homogeneous palladium com-
plexes with a combination of sophisticated and sensitive 
ligands [13–15]. Despite their excellent activity, selectivity, 
and tolerant to broad substrate scope, the catalyst separa-
tion and recycling of Pd are the major obstacles for large 
scale applications [16]. Moreover, these catalytic processes 
require a tedious workup procedure for the isolation of the 
product, resulting in large amounts of waste, leading to 
the expensive manufacturing process [17]. More impor-
tantly, the contamination of Pd and ligand residues in the 
end product limits their application in pharmaceutical 
industries [9, 18]. In contrast to homogeneous catalysts, 

solid catalysts are often preferred due to their easy separa-
tion and reusability [12, 19]. In this regard, a commercially 
available Pd/C catalyst was employed for Suzuki and Heck 
coupling reactions and achieved up to 36,000 ton [20]. But, 
functional group tolerance and too much leaching of Pd/C 
are the major problems [21]. Therefore, the research has 
been directed towards the development of green and eco-
friendly heterogeneous Pd catalysts for C–C coupling reac-
tions. In this sense, several methods have been developed 
for the immobilization of Pd complexes on solid supports/
polymers to combine the benefits of both homogeneous 
and heterogeneous catalysts [12, 22]. However, these cata-
lysts are also encountered with several issues pertaining 
to activity/selectivity and leaching of palladium into the 
reaction medium [22]. In addition, several chemists have 
reported heterogeneous palladium catalysts on various 
supports such as metal oxides [22–27], silica [28–32], zeo-
lites [33–35], carbon materials [36–38], polymers [39–43], 
MOFs [44–46] and others [47–53] to facilitate the recovery 
and reuse of precious Pd catalysts. But, the issues related to 
the use and cost of catalyst supporter stabilizers, reaction 
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conditions, and reproducibility are questioning the practi-
cal applicability in the industrial point of view.

On the other hand, the replacement of fossil resources 
by renewable materials has been given the top priority in 
fuel/chemical industries. In recent years, the use of renew-
able feedstocks emerges as a promising strategy for the 
production of fuels, chemicals, and materials in a more 
sustainable approach [54–56]. In this regard, highly abun-
dant and low-cost agricultural waste by-product rice husk 
has received particular attention in academia and industry. 
In general, rice husk is produced from rice, as 1-ton rice 
produces 0.2 ton rice husk. Hence, the mass production of 
rice in the world results a huge volume of rice husk, nearly 
148 million metric tons of rice husk from 740 million metric 
tons of rice annually, and treating as a low-value fuel for 
bio-refineries [57]. Rice husk is mainly composed of cellu-
lose (30–35%), hemicelluloses (20–25%), lignin (15–20%), 
and ash (10–15%). Interestingly, more than 90% of rice 
husk ash is in the form of hydrated amorphous silica. 
Since the high content of amorphous silica, rice husk is 
being considered as an excellent precursor for the prepa-
ration of nano and mesoporous silica materials [57–59]. 
Recently, rice husk derived carbon-supported catalysts 
have been developed and applied successfully for C–C 
coupling reactions [60, 61]. Therefore, the preparation of 
rice husk derived amorphous SiO2 supported Pd catalysts 
is considered to be a green and low-cost approach for C–C 
coupling reactions.

Inspiring from the aforementioned works, herein, we 
demonstrate a simple and facile method for the prepara-
tion of inexpensive and environmentally benign biomass 
waste rice husk derived amorphous silica-supported pal-
ladium nano-catalyst (PdNPs/RH-SiO2). These RH-SiO2 sup-
ported Pd nanoparticles to create a stable and reusable 
catalyst for Suzuki–Miyaura and Heck–Mizoroki C–C cross-
coupling reactions under mild reaction conditions.

2 � Experimental section

2.1 � Materials

Unless otherwise noted, all chemicals were purchased 
from M/s. Sigma–Aldrich and used as received. Gel-Silica 
(G-SiO2) with 60–120 mesh purchased from M/s. SD Fine 
Chemicals Pvt. Ltd. Rice-Husk was obtained from the 
local rice mill, Telangana. 35.4% HCl purchased from M/s. 
Rankem Pvt. Ltd. Phenylboronic acid (98%) purchased 
from M/s. Alfa Aesar, sodium carbonate (99.5%), Hydra-
zine (99%) purchased from M/s. SD Fine Chemicals Pvt. Ltd.

2.2 � Preparation of catalysts

2.2.1 � Preparation of rice‑husk derived silica support 
(RH‑SiO2)

RH-SiO2 support was prepared according to the reported 
procedure with modifications and details are shown 
in Scheme 1 [57, 60]. In a typical procedure, a required 
amount of raw rice husk was added to 0.1 M HCl solution 
and stirred at 100 °C for 6 h. Then, the mixture was cooled 
down to room temperature, and the solids were filtered 
and washed with distilled water to reach the pH ~ 7. The 
resultant solids were oven-dried at 100 °C for 12 h. The 
dried solids were calcined at 600 °C for 3 h under airflow 
with a 90 ml/min flow rate and yielded the RH-SiO2 sup-
port. The obtained silica was symbolized as RH-SiO2.

2.2.2 � Preparation of RH‑SiO2‑supported palladium 
nanoparticles (PdNPs/RH‑SiO2)

The PdNPs/RH-SiO2 catalysts with 0.5%, 1%, and 1.25% 
Pd on RH-SiO2 support were prepared as per the reported 
method [62]. Typically, the required amount of PdCl2 was 
dissolved in distilled water, and 2–3 drops of HCl were 
added. Then, the requisite amount of RH-SiO2 support 
was added to the above solution and stirred at room 

Scheme 1   Preparation of rice husk derived silica (RH-SiO2)
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temperature for 30 min. Subsequently, hydrazine hydrate 
was added drop wise under vigorous stirring for 1 h. The 
resulted reaction mixture was left for stirring for another 
2 h, and the reaction mixture turns into black. The dark 
solids were filtered and washed several times with water 
followed by methanol and diethyl ether, respectively. The 
black solids were dried under vacuum at 100 °C for 12 h. In 
a similar procedure, 1% Pd on G-SiO2 (1% Pd/G-SiO2) and 
F-SiO2 (1% Pd/FM-SiO2) catalysts were prepared.

2.3 � Catalytic activity

2.3.1 � Procedure for Suzuki cross‑coupling reaction

All reactions were performed in a 25 ml round bottom 
flask. In a typical experiment, Bromobenzene (1 mmol), 
phenylboronic acid (1.25 mmol), and Na3PO4 (1 mmol) 
were added to 2  ml EtOH:H2O (1:1  v/v) solvent. Then, 
20 mg of the respective catalyst was added to the reac-
tion mixture and stirred at 80 °C for the required time. After 
the reaction, the catalyst was recovered by simple filtration 
and washed numerous times with ethyl acetate followed 
by drying.

2.3.2 � Procedure for Heck–Mizoroki coupling reaction

A mixture of iodobenzene (1 mmol), styrene (1.2 mmol), 
Na2CO3 (1 mmol), and 20 mg of catalyst in 2 ml of DMF 
solvent was taken into 25  ml round bottom flask and 
stirred at 120 °C for the required time. After completion of 
the reaction, the reaction mixture cooled down to room 
temperature and diluted with ethyl acetate solvent. The 
catalyst was recovered by filtration and washed with ethyl 
acetate and dried.

The products of all the above reactions were analyzed 
and identified by HP-GC and GC–MS (QP-2010 model, M/s. 

Shimadzu Instruments, Japan) equipped with EB–5 MS 
capillary column (30 m × 0.25 mm × 0.25 μm).

3 � Result and discussions

Pd/RH-SiO2 nano-catalyst were prepared by a simple 
two-step method, (1) in the first step; rice husk biomass-
derived SiO2 support was obtained by calcination of rice 
husk biomass under airflow at 600 °C, (2) secondly, the pal-
ladium nanoparticles (PdNPs) were deposited on RH-SiO2 
support by chemical reduction with hydrazine hydrate.

3.1 � Catalyst characterization

In order to understand the structure-activity of the 1% 
Pd/RH-SiO2 nano-catalyst for selective C–C coupling 
reactions, the catalyst was extensively characterized 

Table 1   Textural properties of 
different SiO2 and supported 
Pd catalysts

a Pore volume
b Pore diameter
c From theoretical values
d From ICP-OES

Entry Catalyst SBET (m2/g) va (cm3/g) db (nm) Pdc (wt%) Pdd (wt%)

1 RH-SiO2 127 0.1 11.8 – –
2 FM-SiO2 318 0.3 3.2 – –
3 G-SiO2 552 0.5 3.1 – –
4 1% PdNPs/RH-SiO2 81 0.1 9.8 1 0.92
5 1% PdNPs/FM-SiO2 238 0.1 3.0 1 0.94
6 1% PdNPs/G-SiO2 218 0.3 3.0 1 0.91
7 0.5% PdNPs/RH-SiO2 110 0.2 9.5 0.5 0.48
8 1.25% PdNPs/RH-SiO2 95 0.2 9.7 1.25 1.17

Fig. 1   Wide-angle XRD patterns of different SiO2 and supported Pd 
catalysts
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with comprehensive analytical techniques such as XRD, 
XPS, BET, TEM, solid-state 29Si CP-MAS NMR, and ICP-OES 
analysis.

3.1.1 � N2 adsorption–desorption analysis

The textural characteristics of various silica-based catalysts 
are determined by N2 adsorption–desorption analysis. The 
BET surface area, pore-volume, and pore diameter and are 
depicted in Table 1. The commercially available Fumed-
silica (F-SiO2) and G-SiO2 have the BET surface area of 552 
and 318 m2/g with 0.3, 0.5 cm3/g pore volume and 3.2, 
3.1 nm pore diameters (Table 1, entry 2 and 3). However, 
the rice husk derived SiO2 support has a low BET surface 
area (127 m2/g) and pore volume (0.1 cm3/g), but a large 
pore diameter (11.8 nm) was noticed with respect to com-
mercial SiO2 supports (Table 1, entry 1). Further, a decrease 
in the surface area of all SiO2 supports has been observed 
after the introduction of PdNPs. A similar trend has been 
monitored for pore volume and pore diameter, respec-
tively (Table 1, entry 4–8). These results suggest the pore 
blockage by the deposition of PdNPs. The Pd content in 
the catalysts was determined by ICP-OES analysis, and the 
results are close to the theoretical values (Table 1, entry 
4–8).

3.1.2 � XRD analysis

The wide-angle XRD pattern of 1% Pd/RH-SiO2, 1% Pd/G-
SiO2, and 1% Pd/F-SiO2 nano-catalysts are shown in Fig. 1. 
The 1% Pd/RH-SiO2 nanocatalyst exhibits a broad peak 

between 20° and 30° on the 2θ scale, which is a character-
istic peak of amorphous silica. The 1% Pd/RH-SiO2 nano-
catalyst displays a diffracted peak at 2θ = 40.1°, 2θ = 44.8° 
are referred to (111) (200) planes of palladium in zero 
oxidation state (JCPDS #05-0681). However, the peak cor-
responding to (220) plane is not observed, indicating the 
fine and homogeneous distribution of PdNPs throughout 
the SiO2 matrix. The similar XRD patterns observed with 
G-SiO2 and F-SiO2 supported Pd nanocatalysts, respec-
tively (Fig. 1).

3.1.3 � XPS analysis

XPS analysis was performed to ascertain the oxidation 
state of palladium and metal-support interactions in the 
different SiO2 supported Pd catalysts, and the correspond-
ing spectrum is shown in Fig. 2. As shown in Fig. 2, the 
Pd 3d spectra of 1% PdNPs/RH-SiO2 catalyst display two 
peaks, the binding energies centered at 343.2 and 337.8 eV 
are attributed to 3d5/2 and 3d3/2 of palladium in zero oxida-
tion state, which is consistent with the reported values for 
palladium in zero-valent [60]. In the case of 1% PdNPs/FM-
SiO2 and 1% PdNPs/G-SiO2 catalysts, the Pd 3d peaks are 
shifted to lower binding energies (342.9, 337.1 eV and 341, 
336 eV). These results are indicating that the 1% PdNPs/
RH-SiO2 nanocatalyst has strong metal-support (Pd–SiO2) 
interactions.

3.1.4 � Solid‑state 29Si CP‑MAS NMR

The 29Si CP-MAS NMR analysis provides information 
regarding the structural environment of silicon atoms in 
the SiO2 matrix. The 29Si CP-MAS NMR spectra of the dif-
ferent SiO2 samples are shown in Fig. 3. The spectrum of 

Fig. 2   XPS patterns of PdNPs/RH-SiO2, PdNPs/FM-SiO2, and PdNPs/
G-SiO2 catalysts Fig. 3   29Si CP-MAS NMR of a G-SiO2, b FM -SiO2, and (c) RH-SiO2
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RH-SiO2 can be fitted into two peaks at −100 and −110 ppm 
ascribed to silanol groups [Q3, Si(Si–O)3(OH)] and (Si–O)4 
of the silica framework [Q4, Si(Si–O)4] [63]. FM-SiO2 and 
G-SiO2 also exhibited the same NMR pattern (Fig. 3) but, 
the lines are with much larger line widths.

3.1.5 � TEM analysis

The size and morphology of Pd nanoparticles in 1% PdNPs/
RH-SiO2, 1% PdNPs/FM-SiO2, and 1% PdNPs/G-SiO2 cata-
lysts were investigated by using transmission electron 
microscopic (TEM) analysis, and the resultant TEM image is 
displayed in Fig. 4a. The Pd particles in 1% PdNPs/RH-SiO2 
catalysts are spherical with an average particle diameter in 
the range of 3–5 nm and uniformly dispersed throughout 
the RH-SiO2 matrix. In the case of 1% PdNPs/G-SiO2 and 1% 
PdNPs/FM-SiO2 catalysts, the aggregation of Pd particles 
was observed in (Fig. 4b, c).

3.2 � Catalyst screening

The catalytic activity of as-prepared 1% Pd/RH-SiO2 
nanocatalyst was systematically examined for the 
Suzuki–Miyaura cross-coupling reaction with bromoben-
zene (BB) and phenylboronic acids as model substrates 
and the corresponding results are shown in Table  2. 

Control experimental data shows that the reaction did 
not proceed in the absence of a catalyst (Table 2, entry 
1). Similarly, no reaction was observed when SiO2 sup-
ports were directly used as catalysts (Table 2, entry 2–4), 
indicating the need for active metal species to perform 
the reaction. The yield of biphenyl (BP) was only 42% with 
1% PdNPs/G-SiO2 catalyst, while the biphenyl yield was 
increased to 57% with 1% PdNPs/FM-SiO2 catalyst (Table 2, 
entry 5 and 6). To our delight, the reaction with 1% PdNPs/
RH-SiO2 at 80 °C for 6 h using Na3PO4 base in H2O: Ethanol 
solvent mixture, the yield was significantly increased to 
>99% and without the formation of any undesired side 
products (Table 2, entry 7). The remarkable catalytic activ-
ity of 1% PdNPs/RH-SiO2 catalyst can be attributed to the 
formation of small-sized nanoparticles (3–5  nm) with 
uniform distribution on the RH-SiO2 surface and strong 
metal-support interactions. In order to optimize the reac-
tion parameters, the reaction has been performed in dif-
ferent solvents (Table 2, entry 8–10). In non-polar tolu-
ene solvent, only 41% yield obtained (Table 2, entry 8), 
while the yields were improved to 68–78% in polar DMF 
and ethanol solvents (Table 2, entry 9 and 10). The maxi-
mum biphenyl yield (>99%) was achieved in H2O:Ethanol 
solvent mixture within the 6 h of reaction time (Table 2, 
entry 7). Next, we evaluated the effect of the base on the 
product yields. In general, the base plays a crucial role in 

Fig. 4   TEM images of a 1PdNPs/RH-SiO2, b 1PdNPs/FM-SiO2, c 1PdNPs/G-SiO2 catalysts
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the product yields and selectivity in Suzuki–Miyaura C–C 
coupling reactions [64]. From Table 2, we found that the 
reaction in inorganic bases proceeded smoothly than the 
organic base and obtained good to excellent desired prod-
uct yields (Table 2, entry 11–14). Furthermore, the selectiv-
ity and yields depend on the strength of the base, as the 
yield was increased with decreasing the strength of the 
base. Further, we studied the effect of Pd loading on RH-
SiO2 support for the Suzuki cross-coupling reaction of bro-
mobenzene (BB) and phenylboronic acid (Table 2, entry 15 
and 16). With an increase, the Pd loading on the RH-SiO2 
support, the desired biphenyl product yields were also 
increased and obtained a maximum of >99% yield with 
1% Pd loading (Table 2, entry 7). A further increase in the 
Pd loading, from 1 to 1.5 wt%, there is a significant drop 
in the biphenyl yield observed (Table 2, entry 16), which 
could be due to the aggregation of Pd nanoparticles on 
the surface of RH-SiO2 support with increasing Pd loading.

With an optimized reaction condition in hand, 
Suzuki–Miyaura C–C cross-coupling of aryl halides and 
phenylboronic acids with a diverse functional group in 
the presence of 1% PdNPs/RH-SiO2was evaluated, and 

the results are depicted in Table 3. The reaction with sim-
ple iodobenzene proceeds smoothly and obtained 99% 
conversion and selectivity within 3 h of reaction time, 
whereas the bromobenzene required 6 h reaction time 
(Table 3, entry 1 and 6). No reaction was observed with 
chlorobenzene (Table 3, entry 15). This result suggest-
ing the iodobenzene has more reactivity than the Bromo 
and chlorobenzene, which is due to the –I is better leav-
ing group than the –Br and –Cl groups. Next, we inves-
tigated the electronic effect of substituted aryl halides 
on the activity and selectivity of 1% PdNPs/RH-SiO2 cata-
lyst. The aryl halides with electron-withdrawing groups 
at para-position need short reaction times for complete 
conversion with 99% selectivity (Table 3, entry 4, 7, 10). In 
contrast, the electron-donating groups require a longer 
reaction time (Table 3, entry 3, 9, 14). Further, the aryl hal-
ides with electron-withdrawing/donating groups at ortho-
position are less reactive than the para-position (Table 3, 
entry 2, 8, 11, 13). This phenomenon could be due to the 
substitute groups at the ortho position create a steric hin-
drance, which further restricts the reactivity of aryl halides. 
Also, the –OCH3 substituted phenylboronic acids were 

Table 2   Suzuki–Miyaura C–C cross-coupling reaction of bromobenzene (BB) and phenylboronic acids over different supported Pd catalysts

Br B
OHHO

Bromobenzene (Bb) Phenylboronic acid Biphenyl (BP)

Catalyst

Reaction conditions: aBromobenzene (1 mmol), Phenylboronic acid (1.25 mmol), catalyst (20 mg), Na3PO4 (1 mmol), 80 °C, 6 h. bToulene, 
cethanol, dDMF. eNa2CO3, fK2CO3, gCS2CO3, hEt3N. TON-Turn over Number

Entry Catalyst Conversion (%) Selectivity (%) TON

1 Blank – – –
2a RH-SiO2 – – –
3a G-SiO2 – – –
4a FM-SiO2 – – –
5a 1% PdNPs/G-SiO2 42 99 222.5
6a 1% PdNPs/FM-SiO2 57 99 302
7a 1% PdNPs/RH-SiO2 99 99 529.94
8b 1% PdNPs/RH-SiO2 41 99 217.2
9c 1% PdNPs/RH-SiO2 68 99 360.3
10d 1% PdNPs/RH-SiO2 78 99 413.3
11e 1% PdNPs/RH-SiO2 65 99 344.4
12f 1% PdNPs/RH-SiO2 55 99 291.4
13g 1% PdNPs/RH-SiO2 44 99 233
14h 1% PdNPs/RH-SiO2 37 99 196.7
15a 0.5% PdNPs/RH-SiO2 58 99 307.3
16a 1.25% PdNPs/RH-SiO2 79 99 418.6
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successfully applied for the Suzuki–Miyaura C–C cross-
coupling reaction in the presence of 1% PdNPs/RH-SiO2 
catalyst (Table 3, entry 5, 12).

In the present context, the exact mechanism is not 
clear. However, according to the literature and the cur-
rent results, we have proposed the plausible mechanism, 
as shown in Scheme 2. Initially, oxidative addition of aryl 
halide to Pd(0)/RH-SiO2 (I) to form a phenyl Pd halide 
complex (II). Next, the trans-metalation step involves the 
transfer of phenyl group from phenylboronic acid to phe-
nyl Pd halide complex (II) to form complex III. Finally, the 
reductive elimination step leads to the formation of the 
desired biphenyl product and regeneration of Pd(0)/RH-
SiO2 (I) catalyst.

3.2.1 � Heck–Mizoroki coupling

Since the remarkable activity and selectivity of 1% 
PdNPs/RH-SiO2 catalyst for C–C bond formation via 
Suzuki–Miyaura cross-coupling reaction of aryl halides 
with phenylboronic acids, we further investigated the 
activity of 1% PdNPs/RH-SiO2 catalyst for Heck–Mizoroki 

coupling reaction of iodobenzenes with styrene for the 
preparation of stilbenes. The reactions were carried out at 
120 °C in DMF solvent using Na2CO3 base over 1% PdNPs/
RH-SiO2 catalyst for required reaction time, and the results 
are shown in Table 4. The catalyst is tolerant of a variety 
of iodobenzene derivatives and afforded good yields of 
stilbenes with excellent selectivity (Table 4, entry 1–5).

3.3 � Reusability

To assess the stability and activity of the 1% PdNPs/RH-
SiO2 for Suzuki–Miyaura C–C cross coupling reaction of 
aryl bromide with phenylboronic acid, the catalyst was 
separated by centrifugation and washed several times 
with ethyl acetate followed by acetone solvents. The cata-
lyst was vacuum dried at 60 °C, reused four times under 
the optimized reaction conditions (Fig. 5). Within repeated 
cycles, there is a little drop in the bromobenzene (Bb) con-
version observed, but the selectivity  of biphenyl (Bp) 
remains constant up to four successive cycles. Palladium 
leaching test was conducted by hot filtration method, in 
which the reaction was carried out for half of the reaction 

Table 3   Substrate scope of Suzuki cross-coupling over 1% PdNPs/RH-SiO2 catalyst

X B OHHO

+ 1%Pd/RH-SiO2

H2O: EtOH, Na3PO4 R1 R2
80 °C

R1 R2

1 2 3

Reaction conditions: Substituted iodobenzene = 1  mmol, substituted phenylboronic acid = 1.25  mmol, Pd = 0.0019 (20  mg) mmol, 
Na3PO4 = 1 mmol, solvent = 1 ml EtOH:H2O (1:1) Temperature: 80 °C. X = a = Iodine, X = b = Chlorine. R2 = OCH3

Entry X R1 R2 Time (h) Conversion (%) Selectivity (%) TON

1a I H H 03 99 99 524.6
2 I 2-CH3 H 24 93 99 492
3 I 4-CH3 H 18 99 99 524.6
4 I 4-NO2 H 05 99 99 524.6
5 I H -OCH3 18 72 99 381
6 Br H H 06 99 99 524.6
7 Br 4-NO2 H 08 99 99 524.6
8 Br 2-CH3 H 24 68 99 360.3
9 Br 4-CH3 H 24 99 99 524.6
10 Br 4-CHO H 10 99 99 524.6
11 Br 2-CHO H 10 75 99 397.4
12 Br H -OCH3 24 99 99 524.6
13 Br 2,5-OCH3 H 12 20 99 105
14 Br 4-OH H 08 45 99 238.4
15b Cl H H 12 – – –
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time (after 3 h) and separated the catalyst from the prod-
uct mixture by centrifugation and continued the reaction 

Scheme 2   Proposed mechanism for Suzuki–Miyaura coupling over PdNPs/RH-SiO2 catalyst

Table 4   Substrate scope of Heck-coupling over 1% PdNPs/RH-SiO2 
catalyst

I

+
1%Pd/RH-SiO2

120 °C
RR

Iodobenzenes Substituted stilbine
Na2CO3, DMF

Styene

Reaction conditions: Styrene (1.2  mmol), Iodobenzene (1  mmol), 
1% PdNPs/RH-SiO2 (20  mg, 0.0019  mmol), DMF (2  ml), Na2CO3 
(1 mmol), 120 °C

Entry R Time (h) Conver-
sion (%)

Selectivity (%) TON

1 H 12 99 99 524.6
2 4-NO2 24 92 99 487.5
3 4-OCH3 16 57 99 302
4 4-NH2 20 99 99 524.6
5 3,4-OCH3 14 42 99 222.5

Fig. 5   Reusability of 1% PdNPs/RH-SiO2 catalyst. Reaction con-
ditions: Bromobenzene  (Bb): 1  mmol, phenylboronic acid 
(1.25 mmol), catalyst (20 mg), Na3PO4 (1 mmol), 80 °C, 6 h
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for 6  h, but no conversion or product formation was 
observed. Further, the reaction solution was analyzed by 
ICP-OES and found no trace of Pd suggesting the no leach-
ing of Pd nanoparticles during the reaction. From these 
results, it is concluded that this catalyst involves in a com-
plex heterogeneous mechanism [52].

4 � Conclusions

In summary, we have developed a green and environ-
mentally benign biomass waste rice husk derived amor-
phous silica-supported palladium (1% PdNPs/RH-SiO2) 
nanocatalyst via the deposition of PdNPs on rice husk 
derived amorphous silica obtained by chemical reduction 
method with an average particle size of 3–5 nm. This novel 
catalyst exhibits an excellent activity for Suzuki–Miyaura 
and Heck–Mizoroki C–C cross-coupling reactions for the 
selective preparation of biaryl and stilbene compounds 
under mild reaction conditions. Furthermore, the catalyst 
is tolerant of various functional groups under the opti-
mized reaction conditions and reused four times for the 
Suzuki–Miyaura C–C coupling reaction of bromobenzene 
and phenylboronic acid. However, a little drop in the con-
version was monitored, but the selectivity remains con-
stant in all four cycles.
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