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Abstract
In this study, the quantitative effect of the random distribution of the soil material properties to the probability density 
functions of the soil displacements is presented. A numerical tool of FEM model with Modified Cam Clay criterion is 
used for this scope. Various assumptions for the random distribution of the compressibility factor � , of the constitutive 
relation, the critical state line inclination c of the soil, and the permeability k have been tested and assessed with Monte 
Carlo simulation. It is portrayed that in porous problems the coefficient of variation (CV) of the output is always smaller 
than the CV of the input. Also, the output distribution remains Gaussian despite the nonlinear relation between input 
and output variables. Consequently, in porous consolidation problems, the maximum displacement of the soil can be 
predicted with smaller uncertainty and thus the soil structure interaction design is more accurate.

Keywords  Prestressed clays · Stochastic FEM · Monte Carlo simulation · Porous consolidation

1  Introduction

Time dependent displacements of structures founded in 
clayey soils due to their porous consolidation can have a 
serious effect on their structural performance. Terzaghi 
[56] was the first to investigate the consolidation prob-
lem in 1D field with elastic parameters. Subsequently, a 
number of papers have been published dealing with the 
1D linear consolidation [2, 19, 28, 48] and nonlinear con-
solidation taking into account the alteration of permeabil-
ity over time [17, 33, 60]. In order to have a more realistic 
approach to the porous consolidation of heterogeneous 
clays, 2D consolidation problems were studied by Huang 
et al. [22] . Various types of monotonic or cyclic loadings 
have been investigated with analytical solutions Kim et al. 
[29]. Numerical simulations have been also proposed lead-
ing to a variety of computational tools for estimating foun-
dation settlements and pore pressures.

The stochastic finite element method is an important 
approach for the investigation of the consolidation of satu-
rated porous media due to the uncertainties involved in 

the input parameters. Several investigations have studied 
the influence of the input variability, such as the Young 
modulus and the permeability on the actual displace-
ments, the degree of consolidation and the stress dis-
tribution in the soil domain. Kim et al. [29], Huang et al. 
[22], Bong and Stuedlein [9], Ronold [46] and Houmadi 
et al. [21]. In the stochastic finite element method there 
are two ways of describing the spatial distribution of the 
input stochastic variables [5, 8, 12, 20, 24, 35, 37–39, 42, 
49]. In the first approach the nodal points are considered 
as random variables and deterministic shape functions 
are used for providing the material spatial distribution 
[27, 39]. Subsequently, the spectral representation or the 
Karhunen Loeve expansion, has been applied for provid-
ing a random field of the variable under consideration. Ali 
et al.[3], Papadrakakis and Papadopoulos [42]. Then, for 
both methods, the standard Monte Carlo simulation can 
be implemented. Other methods to estimate variability are 
also used for porous consolidation problems, such as the 
subset simulation Houmadi et al. [21].
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All studies performed so far refer to 1D or 2D problems, 
while the material stress-state law in most cases is consid-
ered linear elastic. Furthermore, the analytical solutions pro-
posed are limited to specific loading and geometric condi-
tions. In the present article a numerical simulation approach 
is proposed in order to provide accurate and reliable quan-
titative results. The implementation of the material yield 
model proposed by Kavvadas and Amorosi [25] is adopted, 
which is considered an accurate and reliable material model 
for clays Vrakas [57]. This material model implemented in 
connection with the finite element simulation method can 
be used in any type of 3D loading and geometric condition. 
The computational cost required by the Monte Carlo simula-
tion method, which is particularly excessive for large models, 
can be addressed with efficient computational methods as 
proposed in Stavroulakis et al. [51, 52]. The goal of the pre-
sent paper is to quantify the uncertainty of the output dis-
placement in relation to the variability of the input param-
eters i.e., the spatial distribution of the material variables and 
the soil depth. The stochastic input variables to the porous 
consolidation problems are the compressibility factor � , the 
permeability k and the critical state line inclination c of the 
soil. Three spatial distributions of the material variables with 
respect to the depth Z of the soil domain are considered: The 
constant and linear variation, as well as the Karhunen Loeve 
random field with an exponential autocorrelation function. 
In the first two spatial distributions, the truncated normal 
random variable is considered at the nodal points. Different 
geometrical dimensions of the 3D soil domain and corre-
lation lengths are considered and compared with respect 
to the corresponding solid problem without considering 
the pore pressure. The qualitative and quantitative results 
obtained in the present work agree with the published work 
in the field [5, 9, 21, 22, 29, 34, 37, 46]

2 � Formulation of the dynamic 
soil‑pore‑fluid interaction

2.1 � Consolidation problem of saturated soil

The problem of consolidation of clays in saturated soils 
is the Biot problem [1, 16, 31, 36, 47, 53, 62–64] which is 
described by the following set of equations 

(1a)�
�
ij
= �ij + �ijp d�� = Dd�elastic

(1b)𝐒T� − �𝐮̈ − �f (𝐰̇ + 𝐰▽T𝐰) + �𝐛 = 𝟎

(1c)−▽p − 𝐑 − �f 𝐮̈ − �f (𝐰̇ + 𝐰▽T𝐰)∕n + �f𝐛 = 𝟎

(1d)�� = �

 where �ij is the Kronecker Delta which takes value of 1 for 
i = j and 0 otherwise, �ij and �

′

ij
 are the total and effective 

stresses, respectively, p the pore pressure of water and D 
is the tangent consistent matrix. � is the deformation 
matrix such as �� = � ∗ �� and � is the external forces vec-
tor in means of measure of force per unit volume. ui and wi 
are the displacement of solid matrix and the average 
velocity of the water relative to the soil component, 
respectively. �f and �s are the density of the fluid and solid, 
respectively, and n is the porosity while, � = n�f + (1 − n)�s 
is the total density of the mixture. � are the viscous drag 
forces, while � denotes the permeability in matrix repre-
sentation ([length]3 [time]/[mass]). Each component k of 
� is not the same as the hydraulic conductivity k1 that has 
units of velocity. They are related with equation 
k = k1∕(�fg) where g is the gravitational acceleration. Also 
1

Q
=

n

Kf
+

�−n

Ks
 where � = 1 −

KT

Ks
 and Kf Ks and KT are the bulk 

modulus of fluid, soil and average bulk modulus of the 
solid skeleton, respectively. Bx is the part of the boundary 
B that the variable x is a known function of time. The dot 
notation stands for differentiation over time, while the 
space differentiation is described with the assistance of 
Nabla symbol.

In the case of low frequency excitations or static 
loading conditions, the full Biot problem can be simpli-
fied considerably leading to a drastic reduction of the 
computational effort. Eqs. 1b and 1e can be written, 
respectively 

Eqs. (1a, 1f, 1g, 2a, 2b) correspond to the u − p for-
mulation of the Biot simulation of consolidation, in 
which the dynamic terms are omitted in low frequency 
phenomena or in static problems. In porous consoli-
dation problems, water is assumed as incompressible. 
This assumption holds since the bulk modulus of soils is 
small compared to the bulk modulus of water. The valid-
ity of the u − p formulation depends on the relation of 
the excitation period to the natural period, taking into 
account the permeability of the soil. In the present work, 

(1e)▽T𝐰 + 𝛼𝐦𝛜̇ +
ṗ

Q
+

n𝜌̇f

𝜌f

+ ṡ = 0

(1f )B = BuUBt � = �� in Bu, � = �� = �� in Bt

(1g)
B = BpUBw p = p0 in Bp, � = �Tw = wn in Bw

(2a)𝐒T� − �𝐮̈ + �𝐛 = 𝟎

(2b)▽T𝐤(−▽p − 𝜌f 𝐮̈ + 𝜌f𝐛) + 𝛼𝐦𝛜̇ +
ṗ

Q
+ ṡ = 0



Vol.:(0123456789)

SN Applied Sciences (2020) 2:2115 | https://doi.org/10.1007/s42452-020-03894-6	 Research Article

the u − p formulation is implemented since static loading 
is applied to the clay soil domain.

2.2 � Numerical solution of the problem.

The finite element discretization of the u − p formulation 
takes the form:

where

�� is the shape functions of pore pressure in matrix rep-
resentation. ��,��,�� are the standard mass, damping 
and stiffness matrices of the solid skeleton. Furthermore, 
��,�, � are the coupling, permeability and saturation 
matrices, respectively. Finally, �� corresponds to the 
equivalent forces due to the external loading. Numerical 
schemes, such as the Newmark direct integration method, 
are implemented to obtain the solution to the problem.

(3)��̈ + ��̇ +�� = �

(4)

� =

[
�� �

� �

]
� =

[
�� �

�T
�
�

]

� =

[
�� −��

� �

]
� =

[
��

�

]
� =

[
�

�

]

(5)
�� =∫V

�T���dv � = ∫V

(▽��)T�▽��dv

� =∫�

�� 1

Q
��dv

(6)�� =∫V

(��)T▽T(��)dv

3 � The yield stress model

3.1 � Definition of plastic and bond strength 
envelope

The material model is based on the theory of incremental 
plasticity and the critical state concepts, where all stresses 
involved correspond to the effective stresses of the solid 
skeleton. The presented model is a modified Cam Clay type 
model with two characteristic surfaces: The plastic yield 
envelope (PYE) in which the stress points are in elasticity 
and the bond strength envelope (BSE) [10, 11, 23, 25, 26, 
57, 61]. It holds that PYE is always inside BSE and the mag-
nitude of the bond envelope is directly associated with the 
structure of the microtiles of the clay. If a stress point lies in 
BSE, the structure degradation rate of the clay is maximum. 
Both envelopes have ellipsoidal shape as depicted in Fig. 1. 
The mathematical representation of BSE is given by

where ph is the hydrostatic component of the stress tensor, 
s is the deviatoric component of the stress tensor, c is the 
critical state line inclination and a is the half-size of the 
large diameter of the ellipse

Furthermore, PYE is described by the function

where pL is the hydrostatic component of the centroid of 
PYE , �� is the deviatoric component of the centroid of PYE 
and � is the similarity factor

(7)F(ph, �, a) =
1

c2
� ∶ � + (ph − a)2 − a2 = 0

(8)
f (ph, �, pL, ��, a)

=
1

c2
(� − ��) ∶ (� − ��) + (ph − pL)

2 − (�a)2 = 0

Fig. 1   Graphical representa-
tion of the constitutive model
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Finally, inside PYE the isotropic poroelasticity theory 
applies, where the bulk and shear moduli have constant 
ratio, with the assumption of constant Poisson ratio. The 
bulk modulus is given by:

where � is the specific volume of the soil

3.2 � Isotropic and kinematic hardening

Hardening, softening and plastic behavior can be simu-
lated by this constitutive model.

Dafalias and Popov [15], Zienkiewicz and Shiomi [62], 
Dafalias [14], Kavvadas and Amorosi [25] and Kalos [23]. 
The hardening phenomenon consists of the isotropic 
hardening of the half-axis a of BSE and the kinematic hard-
ening of the variation of the critical state line inclination 
and the translation of the centroid L of PYE.

The isotropic hardening rule illustrates the evolution 
of BSE and PYE in relation to the load history and the 
plastic strains. The variable a is given by the generalized 
expression:

where B0 and Bres are the initial and final values of the ratio 
B =

a

a∗
 and a∗ is the halfsize of the intrinsic strength enve-

lope (ISE). This is the smallest possible BSE for a certain 
reference clay point. Furthermore, �p and �pq are the total 
volumetric and deviatoric plastic strains and are expressed 
as follows:

(9)Kbulk =
�ph

�

(10)
a = a∗[(B0 − Bres + �

p
v
|�p| + �

p
q
|�p

q
|)

(exp(−(�p
v
|�p| + �

p
q
|�p

q
|))) + Bres]

where �� is the deviatoric plastic strain tensor, while �pv  �pq 
�
p
q  �pv  are constitutive calibration parameters. �pq  and �pv  are 

responsible for the smoother transition from B0 to Bres [23, 
25, 55]. �pv  and �pq are governing the degradation of bond-
ing attributed to the volumetric and deviatoric plastic 
strain component, respectively. For the computation of 
half-size a, the half-size a∗ of the ISE needs to be calculated. 
The exponential relation is applied

Kavvadas and Amorosi [25], Kavvadas and Belokas [26] and 
Kalos [23], where Niso∗ is the specific volume of the soil for 
ph = 1 KPa.

The kinematic hardening of the proposed criterion con-
sists of two components. The critical state line inclination 
alteration and the translation of the secondary anisotropy 
tensor �

L
 . The critical state line inclination is an exponen-

tial function of the deviatoric plastic deformation. Further-
more for �

L
 , two distinct loading cases need to be consid-

ered. The BSE and the position of PYE evolve due to plastic 
straining and tend to the conjugate point. Consequently, 
in order to describe the kinematic hardening associated 
with �

L
 it is essential to define the conjugate point M’ on 

the BSE curve, depicted in Fig. 2 and is given by

where I is the identity Tensor.
The two cases portrayed in Fig. 2 for the evolution of �L : 

(a) The stress state lays simultaneously on BSE and PYE, the 

(11)𝜖
p
v
= 𝜖

p
xx
+ 𝜖

p
yy
+ 𝜖

p
zz

𝜖̇
p
q
=

√
2

3
̇�� ∶ ̇��

(12)a∗ =
1

2
exp

(
Niso∗ − � − � ln ph

� − �

)

(13)�
M′ = aI +

1

�

(� − �
L
)

Fig. 2   Definition of the conju-
gate point M′
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conjugate point coincides with the absolute stress point 
M”. Therefore, �L is computed directly in closed form.

(b) the stress state lays on PYE but inside BSE, the evolu-
tion of the plastic yield envelope center �L depends on the 
isotropic hardening parameter a and the evolution of the 
stress state toward the conjugate point, which is governed 
by Eq. (13). The following equation is implemented

where � = MM’ and the scalar variable d � is given by

3.3 � Plastic hardening modulus

For the case (a) of the stress state, the calculation of plas-
tic hardening modulus H is obtained by the closed form 
expressions 

and

For the case (b) an ellipsoidal law of computing H in 
relation to the plastic hardening modulus of the conjugate 
point M′ is adopted. This law takes into consideration the 
relative position of the stress state � with the conjugate 
point �

M′ and the stress state at the onset of yielding �
0
 . 

H is given by 

(14)�L = (1 − �)� + �aI

(15)d�L =
da

a
�L + �d�

(16)

d� =

1

c2
(s − s

L
) ∶

(
ds −

da

a
s) + (ph − pL

)(
dph −

da

a
ph

)

�a2 −
[

1

c2

(
s − sL

)
∶ s + (ph − pL)(ph − a)

]

(17a)H = 2�phh0, h0 = h1 + h2 + h3

(17b)h1 =
�

� − �

a∗Phydr(Part Exponent + Bres)

(17c)h2 =a
∗(�p

v
|Phydr| + �

p
q

√
2

3
(Pdev ∶ Pdev))Exponent

(17d)

h3 = −a∗(Part Exponent)(�p
v
|Phydr| + �

p
q

√
2

3
(Pdev ∶ Pdev))

(17e)
Part = B0 − Bres + �

p
v
|�p| + �

p
q
|�p

q
| ,

Exponent = exp
(
−(�p

v
|�p| + �

p
q
|�p

q
|)
)

(17f )PHydr =
�f

�p
, PDev =

�f

�s

where �∗ and � comprise constitutive calibration param-
eters and

The constitutive model is valid for clays, for static and 
dynamic loads, regardless of the overconsolidation ratio. 
Clays of friction angle between 17◦ and 30◦ can be simu-
lated with accuracy. This range of friction angles corre-
sponds to the majority of the natural clayey soils. Further-
more, it is proved to be numerically stable because the 
majority of the equations of the criterion are in a closed 
form.

4 � Random fields and the truncated normal 
variables

4.1 � The Karhunen Loeve series

A random field can be constructed either considering 
the nodal point values as random variables with deter-
ministic shape functions, or by using stochastic random 
fields computed by Karhunen Loeve expansion [24], Liu 
et al. [58], Li and Kiureghian [32], Pryse and Adhikari [44], 
Peng et al. [43], Calamak and Yanmaz [13], Yue et al.  [59] 
and Papadopoulos and Giovanis [41]. In this work, in 
order to compare each approach influence in the output 
variability, both approaches are considered for the mate-
rial variables in discussion. For the first method, which is 
analyzed plainly in Liu et al. [58] the random function f 
is approximated with the usage of shape functions Ni by

where N0 is the total number of shape functions and the 
fi are the values of f in the nodal points which can be ran-
dom variables following a probability density function 
(PDF). In the present work, Ni are linear functions and the 
fi follows the truncated normal distribution which is ana-
lyzed in Sect. 4.3.

For the Karhunen–Loeve implementation, let H1(�,�) be 
a zero-mean random field based on a known autocovariance 
function Ch(��, ��) = �(��)�(��)�(��, ��) , where �(��, ��) is 
the correlation function and �(��) is the standard deviation 

(18a)H = HM� +

(
�f

��
∶ C

e
∶

�f

��

)
�
∗
(

Nominator 1

Denominator 1

)�

(18b)Nominator 1 =
1

c2
(s

M′ − s) ∶ (s
M′ − s) + (pM� − p)2

(18c)Denominator 1 =
1

c2
(s

0
− s) ∶ (s

0
− s) + (p0 − p)2

(19)f (x) =

N0∑

i=1

Ni(x)fi
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of �� . There is an orthogonal basis of eigenvalues �i and 
eigenfunctions �i such that

This basis is the solution of the integro-differential Fred-
holm problem which is stated as

where �ij is the Kronecker Delta function. Therefore any 
realization H1 of the field can be expanded as:

where �i is a set of random variables of zero mean and 
covariance function E(�i , �j) = �ij . Finally, for a Gaussian 
random field, as implemented in the present study, the �i 
functions are a set of standard normal random variables.

4.2 � An analytical Karhunen Loeve expansion

An analytical solution of the Fredholm problem is presented 
below along with the K–L expansion Karhunen [24], Pryse 
and Adhikari [44]. Let the autocovariance function Ch be 
denoted as

where b is the correlation length. Assuming a symmetrical 
space [ −�,� ] for x1 and x2 , the Fredholm integral of Eq. (21) 
becomes

In Eq. (24) there is an analytical solution.
For i = odd

where �i is the solution of the equation

(20)Ch(��, ��) =

∞∑

i=1

�i�i(��)�i(��)

(21)
∫
�

Ch(��, ��)�i(��)��� = �i�i(��) , ∫
�

�i(��)�j(��)��� = �ij

(22)H1(�,�) = �(�) +

∞�

i=1

√
�i�i(�)�i(�)

(23)Ch(x1, x2) = �
2
d
e

x1−x2
b

(24)∫
�

−�

�
2
d
e

x1−x2
b �i(x2)dx2 = �i�i(x1)

(25)

�i =
2�2

d
b

1 + (�ib)
2
, �i(x) = �i cos(�ix) ,

�i =

(
� +

sin(2�i�)

2�i

)−0,5

(26)
1

b
− �i tan(�i�) = 0

in the range [(i − 1)
�

�

, (i − 0, 5)
�

�

]

For i = even

where �i is the solution of the equation

in the range [(i − 0, 5)
�

�

, i
�

�

]

If the space is not symmetrical, which is applied in most 
random field realizations, the Fredholm integral is solved 
over the symmetrical space �s = [b1 − T , b2 − T ] where 
�s is the symmetrical equivalent space of � = [b1, b2] and 
T =

b1+b2

2
.

For M number of eigenfunctions the random field is cal-
culated as

This type of expansion is the most common because it is 
strong and robust. If the Fredholm equations cannot be 
solved analytically, and this occurs when the autocovari-
ance function is more complicated, numerical methods 
can be applied such as the Galerkin method [20, 44].

4.3 � The truncated normal distribution

Due to physical restrictions for the material variables, the 
samples in the present study are in a closed space. The ratio 
�z=max

�z=0

 , which is considered as random in the present study, is 

in the space [0, 1]. Furthermore, the critical state line inclina-
tion should be in a closed space in order to be in the limits 
of validity for clays, as stated in the last paragraph of Sect. 3. 
In addition the experimental results fit to a Gaussian PDF of 
each material variable [4, 6]. Therefore, the truncated normal 
distribution is adopted.

Let X be a random variable normally distributed with 
mean � and standard deviation �d , defined into the space 
of [ −∞,∞ ], and let Y be equal to X in the subspace [a,b] and 0 
elsewhere. The total area of the probability density function 
equals to 1, then for the PDF of Y it holds

(27)

�i =
2�2

d
b

1 + (�ib)
2

, �i(x) = �i sin(�i x) , �i =

(
� −

sin
(
2�i�

)

2�i

)−0,5

(28)
1

b
tan(�i�) + �i = 0

(29)H1(�,�) = �(�) +

M�

i=1

√
�i�i(� − T )�i(�)

(30)g1(x) = A1

1
√
2��d

exp
−(x−�)2

2�d
2 IA≤x≤B
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where A1 is constant and g1 is the PDF of Y. Also, IA≤x≤B is 
the indicator function for the subspace [a, b]. Then g1 is 
calculated [7, 45] as

where �(X0) and �(X0) are the standard normal probability 
and cumulative distribution function for X0 , respectively, 
and A =

�−�

�d

 and B =
�−�

�d

 with X0 =
x−�

�d

 . The cumulative 

distribution of g1(x) is

The mean and standard deviation of Y denoted My and �y 
are given by

The material random variables expressed by the PDF of 
Eq. (31) and the random fields realizations that occur from 
Eq. (29) influence the finite element system of Eqs. (3). The 
corresponding matrices � , � , and � are changing due to 

(31)g1(x) =
�(X0)

�d(�(B) −�(A))

(32)G(x) =
�(X0) −�(A)

�(B) −�(A)

(33)My = � + �d

�(A) − �(B)

�(B) −�(A)

(34)�y = �d

√

(1 +
A�(A) − B�(B)

�(B) −�(A)
− (

�(A) − �(B)

�(B) −�(A)
)2)

the randomness of the compressibility factor � , the critical 
state line inclination c and the permeability k.

5 � Numerical tests on stochastic 
consolidation with random linear 
and nonlinear material properties

5.1 � Description of the problem

The presented approach is applied to porous problems, 
which are governed by the set of Eq. (3). The geometry of 
the problem is depicted in Fig. 3. A uniform vertical load 
q = 150 kPa is applied which leads to significant plastic 
deformations in nearly the whole soil domain. Three dif-
ferent depths are considered h = 20, 40, 50 m. The dis-
cretization of the soil domain is performed with 8 node 
hexahedral finite elements with linear shape functions for 
u and p, which is considered an adequate discretization for 
obtaining the requested results [40, 54]. The length in X 
and Y directions of the domain is taken 4 times the depth, 
in order to secure the full transfer of the load in the center 
of the field. The initial stresses due to geostatic loading 
are assumed as �v = �z , �x = �y = 0.85�v corresponding 
to stress point L of Fig. 1. The duration of the simulation in 
all cases is 0.5 d in order to have quasi-static conditions. 
The other deterministic properties of the soil defined in 
Sect. 3 are given in Table  1.

Table 1   Deterministic 
parameters of the soil domain

Niso
∗ �

�

B0 Bres OCR �0
2G

Kbulk
�
p
v �

p
q �

p
v �

p
q

� �
∗

� � KN
m3

a∗ Kpa

2.15 10 4 1 4 1.627 0.75 75 75 0 0 0.05 5 1 20 400

Fig. 3   Graphical representa-
tion for the linear spatial 
distribution of the compress-
ibility factor



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:2115 | https://doi.org/10.1007/s42452-020-03894-6

Here �0 stands for the initial specific volume of the 
soil. It should be noted that in all cases � and � are pro-
portional. The boundary conditions are as follows: 
�x(z = h) = �y(z = h) = �z(z = h) = � and the rest bound-
ary surfaces are free of constraints. The stochastic material 
variables are the compressibility factor � , the critical state 
line inclination c and the permeability k.

For the compressibility factor � , a linear and a constant 
spatial distribution along the depth of the soil domain is 
assumed. For the linear distribution of the compressibility 
factor denoted as �L , �z=0 = 0.008686 and the ratio 
R =

�z=max

�z=0

 follows the truncated normal distribution with 

PDF as described in Eq. (31). The mean value of the ratio is 
�R = 0.469  a n d  �R = 0.25�R  ,  l e a d i n g  t o 
�z=max, mean = 0.004074 , which is chosen such as the mean 
compressibility of the soil to account for a shear velocity 
of 200 m

s
 and can be depicted in Fig. 3. Here it should be 

noted that since the bulk and shear moduli are assumed 
proportional, as a consequence of constant Poisson ratio, 
� is directly related with the shear velocity. For the case of 
constant distribution of � along the depth, denoted as �C , 
the mean value of � is �

�
= 0.004074 and the standard 

deviation is �
�
= 0.25�

�
.

In the case of a constant spatial distribution of the criti-
cal state inclination c along the depth, two possible 
numerical values for c are considered. In the first case, 
denoted as cR , the friction angle � follows the truncated 
normal distribution PDF of Eq.  (31). The mean value is 
�
�
= 23◦ and the standard deviation is �

�
= 2◦ . These val-

ues are chosen in order for the friction angle � to be within 
an acceptable range for clays [25, 26]. Consequently, the 
samples of � are generated and c is calculated from 
c =

√
2

3

6 sin(�)

3−sin(�)
 . In the second case, denoted as cD , the criti-

cal state line inclination has a deterministic value of 
c=0.7336 for friction angle �

�
= 23◦.

Two types of analyses are considered. The solid 
analyses, where the pore pressure of the soil domain is 
neglected and the porous analyses, where the water flow 
is calculated. The solid analyses performed, indicated with 
( � ) are given in Table 2, combining linear (L) or constant (C) 
distribution for � and deterministic (D) or random variable 
(R) cases for c. The porous analyses performed are depicted 
in Table 3, combining linear (L), constant (C), and random 
field (RF) distribution for � , deterministic (D), random vari-
able case (R) and random field (RF) distribution for c and 
random field distribution (RF) for k.

In the random field distributions the mean values are: 
�mean = 0.008686 , cmean = 0.7336 and kmean = 10−8

m3 s

Mgr
 [1, 

47, 53, 64]. The standard deviations are: �
�
= 0.25�mean , 

�
�
= 2◦ and �k = 0.25kmean . The autocorrelation function 

in all fields is taken according to Eq. 23, with correlation 
lengths b = 75 (kRF75 ) and b = 100 (kRF100 ). The linear (L) and 

constant (C) spatial distributions for � as well as the ran-
dom variable (R) distributions for all material variables 
refer to a random variable case analysis. Also, for c has 
been considered a constant deterministic analysis. The 
random field (RF) distributions correspond to the Kar-
hunen Loeve series and are described by the set of 
Eqs. (20–22). This set combined with the autocovariance 
function, described in Eq.  23, becomes the set of 
Eqs.  (25–29) which provide realizations of the random 
field.

All the analyses are static, while the number of eigen-
functions considered is eight. Each Monte Carlo simulation 
was applied for 500 samples, which were found sufficient 
in achieving convergence for the mean value and standard 
deviation of the monitored displacements.

5.2 � Presentation of the results

The results are depicted in Tables 4, 5, 6 and 7 and in Figs. 5, 
6, 7 and 8. In these tables the mean values of output dis-
placements in the middle of the soil domain, depicted by 
point A in Fig. 4 are presented together with the standard 
deviation, the coefficient of variation (CoV), the maximum 
and minimum value of the Monte Carlo simulation.

When the pore pressure is ignored, larger mean dis-
placements and smaller CoV are obtained when �L is 

Fig. 4   Geometry of the problem ( h = 20, 40, 50 m)

Table 2   Non porous (solid) analyses performed

� c Abbreviation

Constant Deterministic �-�C-cD
Linear Deterministic �-�L-cD
Constant Random �-�C-cR
Linear Random �-�L-cR
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assumed compared to �C , as can be observed from col-
umns �-�L-cD , �-�C-cD of Table 4 for both depths consid-
ered. In the numerical tests performed, the largest possible 
CoV of the output is similar to the corresponding variation 
of the input, as can be seen in Table 4, columns �-�C-cD . The 
mean value of the output displacement for the case �-�L
-cD compared to the mean value in the �-�C-cD analysis of 
h = 50 m is about 76 % greater, while the CoV of the output 
was found to be 5 times smaller. Similar conclusions can 
be drawn for the corresponding analyses of depth 20 m. 
Consequently, the critical spatial distribution of � for the 
CoV of the output is the �C case and for the mean displace-
ments is the �L distribution. The PDF’s of solid analyses are 
depicted in Fig. 5a, b. Between the �L and �C assumptions 
for � , the �L case gives greater mean displacements with 
less variability. This difference can be explained by the fact 
that in the �L case the upper layers of the soil, which are 
the most compressible, have low CoV of � leading to low 
CoV for both displacements and strains.

The CoV of the monitored displacements in porous 
analyses was found to be affected by the change in the 
considered depth, unlike the solid problems, as can be 
seen in Tables 4 and 5. Also, for the same depth and analy-
sis, in porous medium, smaller variability of the output 
is obtained compared to the non-porous medium. The 
largest output CoV in the case of porous problems was 
found 36 % lower than the CoV of the input for the case of 
h = 20 m, and 46 % lower than the variability of the input 
for h = 50  m, as opposed to zero variability reduction 
for the corresponding solid analyses. In the �− �L-cD-kRF 
analyses, the output CoV is negligible in all depths. Thus, 
when considering the pore pressure in the soil domain, a 
reduction of the variability of the displacements occurs in 
all cases examined. This is in accordance with the results 
obtained in Huang et al. [22] This result is attributed to the 
fact that the bulk modulus, as described by Eq. 9 in porous 
problems, is smaller than the respective solid case. As a 
consequence, since the applied load is the same, lower 
values for deformations and displacements are expected 

Table 3   Porous analyses 
performed

� c k Abbreviation

Constant Deterministic Random field, b = 75 �-�C-cD-kRF75
Linear Deterministic Random field, b = 75 �-�L-cD-kRF75
Constant Deterministic Random field, b = 100 �-�C-cD-kRF100
Linear Deterministic Random field, b = 100 �-�L-cD-kRF100
Constant Random Random field, b = 75 �-�C-cR-kRF75
Linear Random Random field, b = 75 �-�L-cR-kRF75
Constant Random Random field, b = 100 �-�C-cR-kRF100
Linear Random Random field, b = 100 �-�L-cR-kRF100
Random field, b = 75 Random field, b = 75 Random field, b = 75 �-�RF-cRF-kRF75
Random field, b = 100 Random field, b = 100 Random field, b = 100 �-�RF-cRF-kRF100

Table 4   Monte Carlo results for the output displacement (m) for 
non-porous medium

h = 20 m h = 50 m

�− �C-cD �L-cD �C-cD �L-cD

Mean 0.0270 0.0429 0.0387 0.0681
Stdev 0.0068 0.0035 0.0097 0.0034
CoV 0.251 0.081 0.250 0.050
MAX 0.0492 0.0540 0.0705 0.0792
MIN 0.0073 0.0325 0.0105 0.0581
MAX

MIN
1.82 1.26 1.82 1.16

Fig. 5   PDFs of displacements of solid analyses
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and also lower variability. This observation is also depicted 
in Fig. 6a, b for the PDFs of �− �L-cD-kRF75−100 and �− �C-cD
-kRF75−100 analyses.

The porous analysis with random field representations 
for all material variables is subsequently performed as a 
more general case, since it takes into consideration the 
spatial randomness of the material properties of the soil. 
In the case of porous random field analyses, the largest 
CoV of the output, was found 53 % lower in relation to the 
input variability as can be seen in Table 6, �− �RF-cRF-kRF100 . 
In soil depth 50 m the monitored displacement variation is 
even smaller. The choice of the correlation length appears 
to have no significant effect on the PDF of the output dis-
placement in all porous analyses. Furthermore, the com-
parison between the �− �RF-cRF-kRF analyses and the previ-
ous porous analyses indicate that the corresponding CoV 
of the monitored displacement is between the �− �L-cD

Table 5   Monte Carlo results for the output displacements (m) for porous analyses with linear and constant distribution for �

h = 20 m kRF75 kRF100

�- �C-cD �L-cD �C-cD �L-cD

Mean 0.0137 0.0192 0.0137 0.0192
Stdev 0.0022 0.0006 0.0022 0.0006
CoV 0.161 0.033 0.161 0.033
MAX 0.0199 0.0209 0.0199 0.0209
MIN 0.0055 0.0165 0.0055 0.0165
MAX

MIN

1.45 1.09 1.45 1.09

h = 50 m kRF75 kRF100

�- �C-cD �L-cD �C-cD �L-cD

Mean 0.0146 0.0205 0.0146 0.0205
Stdev 0.0020 0.0002 0.0020 0.0002
CoV 0.135 0.009 0.135 0.009
MAX 0.0198 0.0210 0.0198 0.021
MIN 0.0070 0.0199 0.0070 0.0199
MAX

MIN

1.35 1.03 1.35 1.03

Fig. 6   PDFs of displacements of porous analyses �− �L-cD-kRF75−100 , 
�− �C-cD-kRF75−100

Table 6   Monte Carlo results for the output displacements (m) for 
porous analyses with random field representation for all stochastic 
material variables

h = 20 m �RF-cRF - kRFb h = 50 m �RF-cRF-kRFb

�- b = 75 m b = 100 m �- b = 75 m b = 100 m

Mean 0.0208 0.0211 Mean 0.0214 0.0214
Stdev 0.00233 0.00248 Stdev 0.00063 0.00061
CoV 0.112 0.117 CoV 0.030 0.029
MAX 0.0261 0.0258 MAX 0.0230 0.0230
MIN 0.0088 0.0096 MIN 0.0196 0.0200
MAX

MIN
1.25 1.22 MAX

MIN
1.08 1.07
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-kRF and the �− �C-cD-kRF analyses, as it is shown in Tables 5 
and 6. Consequently, the critical spatial distribution of � is 
the assumption of constant variation over depth.

The mean value in porous analyses is greater in �− �RF
-cRF-kRF simulations, with maximum mean value 0.0214 m 
in �− �RF-cRF-kRF100 analysis of depth 50 m (see Table 6). This 
mean value compared to the mean value for the �− �C-cD
-kRF100 is about 47 % larger, while in the �− �L-cD-kRF100 anal-
ysis is about 4 % larger. Similar conclusions can be drawn 
with soil depth of 20 m. As a result, the critical spatial distri-
bution of � for maximizing the mean output displacement 
corresponds to the assumption of the random K–L field.

The PDFs of �− �RF-cRF-kRF analyses depicted in Fig. 7a, 
b confirm the small influence of the correlation length b 
on the variability of the output. Comparing the PDFs of 
Fig. 7a, b with the corresponding of the rest porous analy-
ses, in which for different correlation lengths the output 
probability density functions are identically the same, it 
can be concluded that the K–L random field represen-
tation for � influences to a lesser extent the PDF of the 
output.

These quantitative results, obtained from the afore-
mentioned analyses, provide an insight into the effect 
of the randomness of each material parameter in porous 

consolidation problems. The poroelastic parameter � , 
influences the most both the mean value and the stand-
ard deviation of the displacement. This influence is more 
pronounced when the distribution of � is considered con-
stant along the depth of the domain in both solid and 
porous problems. This can be explained by the fact that 
the poroelastic variable � is directly associated with the 
bulk modulus and therefore has a direct influence on the 
strains and displacements.

The porous variable of permeability k has a small effect 
to the monitored displacement. The numerical results 
indicate that the spatial variability of k does not affect the 
CoV of the output in all possible combinations for � and c. 
This is because, for the same porous consolidation prob-
lem with the same depth, load and other deterministic 
parameters, the monitored output displacements are not 
influenced by the permeability since the pore pressures 
are fully dissipated.

Finally, the variability of critical state line inclination c of 
the material model appears to have a negligible effect on 
the probability density function of the output, regardless 
its spatial distribution and type of analysis. For this reason 
only the cD case has been included in Tables 4, 5 and 6. This 
is explained by the fact that the deviatoric component of 
the stresses is sufficiently low due to the relatively small 
shear stresses in comparison to the normal stresses. As a 
consequence, there are negligible deviatoric strains and 
the volumetric strains, which are influenced by the bulk 
modulus, are not associated with c.

For justifying the assumption that the output displace-
ment follows the truncated normal distribution, the his-
tograms of three Monte Carlo simulations for the output 
displacement with the normal distribution fitting are pre-
sented in Fig. 8. As can be seen graphically, the probabil-
ity density functions estimated by the histograms can be 
approximated by the truncated normal PDF described in 
Eq. (31). The maximum and minimum values indicated in 
Tables 4, 5 and 6 are reliable values to set the subspace 
[a, b] of Eq. (31). Also, for providing a numerical justifica-
tion of the aforementioned assumption, the Kolmogo-
rov–Smirnov test is implemented [18, 30, 50]. In all output 
probability density functions, the null hypothesis H0 , at the 
5 % significance level is satisfied, as can be seen in Table 7, 
where for three randomly selected cases of Monte Carlo 
simulations performed are presented. In Table 7 the largest 
absolute difference from the data cumulative distribution 
function (CDF) and the theoretical CDF of the Monte Carlo 
simulations in Fig. 8 are presented and compared to the 
critical difference for accepting H0 . Since the largest abso-
lute difference in all three analyses is less than the critical 
value, the samples can be approximated by the truncated 
normal distribution. This comes in agreement with the pre-
vious research results [9, 22]

Fig. 7   PDFs of displacements of �− �RF-cRF-kRF analyses
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Some additional observations regarding the results 
of the presented analyses are subsequently presented. 
The largest displacement of the simulations is 7.9  cm 
(see Table 4 column �− �L-cD depth 50 m) leading to an 
effective shear strain of 1.5 × 10−3 , which is in the limit of 
validity for linear geometric analysis. The smallest displace-
ment of the analyses is 0.55 cm and is found in columns 
�− �C-cD-kRF75−100 of Table 5. This magnitude of displace-
ment is capable in a typical structure-foundation system 
to change significantly the internal forces of the structure. 
Therefore for all analyses the soil-structure interaction 
phenomenon cannot be neglected. The largest ratio of 
maximum to mean value, which is common in all depths, 
is 1.82 and is found in solid problems in �− �C-cD (see 
Table 4). Consequently, a safety ratio of 2 is sufficient in 
static problems in order to predict the displacements in 

the most unfavorable situation and perform a soil-struc-
ture interaction analysis.

Furthermore, as the depth of the soil increases, all cor-
responding CoV values of the output decrease and the 
mean value increases. Specifically, in pure solid analyses, 
by increasing the depth by a factor of 2.5 the largest CoV is 
practically the same as the input variability of 0.25 and the 
largest mean value is 1.6 times greater. In porous analyses, 
by increasing the depth from 20 to 50 m the largest CoV 
is decreased by 20% and the largest mean displacement 
is practically the same. This can be explained by the fact 
that as the depth increases the soil domain is less stiff and 
therefore larger displacements are expected. Finally, the 
effect of randomness in the stress distribution was found 
to be negligible in all analyses and this applies to both 
normal and shear stresses of all three directions as the 
maximum CoV in Gauss points stresses is less than 0.01.

6 � Conclusions

In the present work a stochastic analysis is presented 
for studying the consolidation phenomenon of clayey 
soils taking into consideration the pore pressure-soil 

Fig. 8   Histograms of output 
displacement in m and the 
normal distribution fitting for 
3 randomly selected analyses. 
a Solid analysis of depth 20 m 
with linear distribution for � 
and deterministic analysis for c 
referring to Fig. 4a continuous 
line. b Porous analysis of depth 
20 m with constant distribu-
tions for � , deterministic 
analysis for c and random field 
representation for k referring 
to Fig. 5a dotted line. c Porous 
analysis of depth 20 m with 
random field representations 
for all stochastic material vari-
ables and b = 75 m referring to 
Fig. 6a continuous line

Table 7   Kolmogorov–Smirnov test results for the Monte Carlo sim-
ulations of Fig. 8

Largest absolute differ-
ence

Figure 8a Figure 8b Figure 8c Critical

0.0335 0.0451 0.0600 0.0608
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interaction. The goal of the present paper is to present, 
not only qualitative insights, but reliable quantitative 
results on the prediction of the response for porous con-
solidation of 3D clay domains under uncertainty con-
ditions on soil material properties. Also, the proposed 
model provides a more general numerical tool for inves-
tigating the uncertainty quantification of porous con-
solidation regardless of the geometry of the problem or 
other simplistic assumptions that are necessary for an 
analytical solution. In this context, a detailed finite ele-
ment simulation, alongside with a sophisticated material 
constitutive model, is adopted.

The numerical results obtained indicate that the 
randomness of material poroelasticity plays the most 
important role in the output displacement, especially 
when it has a constant distribution along the depth of 
the soil domain. When a random Karhunen Loeve field 
is assumed for the material variables, greater mean 
displacements are obtained. The CoV of the output in 
porous problems was found to be less than the corre-
sponding variability of the solid problems, indicating the 
smaller effect of k in the monitored displacements. The 
output variability reduction in relation to the respective 
variability of the input varies between 35 and 50 %.

The spatial variability of permeability expressed with 
the correlation length appears to have a minor influence 
on the monitored displacements. Furthermore, the ran-
domness of a plasticity variable, such as the critical state 
line inclination, was found to have a negligible effect 
on the output displacement. In both solid and porous 
considerations, the truncated normal distribution was 
proved to be an adequate approximation for the prob-
ability density function of the output displacement 
estimated by the histograms. Thus, the Gaussian nature 
of the output value can be assumed to be preserved 
despite the material nonlinearity. As the depth of the 
domain increases, the CoV of the output decreases and 
the mean value increases in all corresponding analyses. 
The variability reduction of the output in porous analy-
ses when the depth of the soil domain increases is about 
20% . Consequently, the most critical layers for monitored 
displacement variability are in the vicinity of the surface.
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