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Abstract
Satellite-retrieved aerosol optical depth essentially provides an economical option for regular monitoring of particu-
late matter (PM) concentration; however, the constrains and challenges come in terms of estimation accuracy. In the 
present study, we estimated  PM2.5 and  PM10 (PM of aerodynamic diameter lesser than 2.5, 10 µm, respectively) for 
11 sites in Bangladesh using different methods. Univariate model showed destitute performance (R2 < 0.1), whereas 
integrating MODIS-AOD with surface meteorology, multivariate models enhanced accuracy (R2 > 0.6); meanwhile, 
radial kernel-based ‘eps’-type support vector regression model outperformed rest (R2 > 0.8). Furthermore, we investi-
gated variations in ground concentration of  PM2.5,  PM10 during 2013–2018 and found annual mean concentration of 
76.34 ± 34.12 µg m−3 and 136.25 ± 68.94 µg m−3, respectively. Predominant anthropogenic contribution to elevated 
pollution is well remarked by  PM2.5/PM10 ratio, highest during January (0.65 ± 0.06) and lowest during July (0.48 ± 0.11). 
Grievous pollution found in Narayanganj  (PM2.5: 100.35 ± 56.76 µg m−3,  PM10: 200.25 ± 91.79 µg m−3) and slightest in 
Sylhet  (PM2.5: 56.13 ± 26.99 µg m−3,  PM10: 103.94 ± 49.37 µg m−3). Intra-annual pattern asserts winter as sternly befouled 
and least pollution during monsoon, which may indicate significant influence of meteorology on PM pollution. We found 
that PM divulged negative correlation with air temperature  (PM2.5: −0.78,  PM10: −0.73), relative humidity  (PM2.5: −0.66, 
 PM10: −0.73) and rainfall  (PM2.5: −0.59,  PM10: −0.61). This study showed outrageous situation of PM pollution in urban 
areas in Bangladesh and proposed modest pathway for regular monitoring of PM that will help to combat pollution.
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1 Introduction

Over the last two decades, South Asian countries have 
attained a rapid economic growth, and in accordance 
with such developmental activities, excessive emergence 
of air pollutants has created a serious hazardous condition 
[1, 2]. Among major pollutants, particulate matter (PM) 
has been held responsible for several health problems 

mostly for respiratory and cardiovascular diseases [3–7]. 
PM with diameter of less than 10 µm is known as respir-
able suspended particulate matter (RSPM), while  PM2.5 has 
diameter of less than 2.5 µm, also known as suspended 
particulate matter (SPM). Depending on the meteorologi-
cal conditions,  PM2.5 and  PM10 can change their physical 
and chemical properties and able to remain suspended in 
the air for moderate to longer duration, thus having the 
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potentiality to alter the radiative balance of the atmos-
phere directly and indirectly from a local to regional scale, 
which might have an adverse effect on the climate and 
environment [8–11]. Along with meteorological condi-
tions, long-range transportation over the landmass during 
the winter season and small-range local scale dispersion 
from local sources of pollution also contribute to make 
surrounding air unhealthier [12–15]. Several studies such 
as [16–20] have reported that these PM are usually gener-
ated from daily activity-based common sources such as 
the transportation sector (vehicular emission), industrial 
sector (emissions from chimneys), household uses (usage 
of coals, woods or oil as fuel). Thus, exponential increase of 
anthropogenic activities due to rapid urbanization often 
held responsible for the deterioration of air quality during 
the last 2 decades [21–25], mostly over the urban areas 
with higher population density [26–28]. The capital of 
Bangladesh, Dhaka, witnessed such worsening of air qual-
ity since PM concentration was found to be higher than 
the Bangladesh National Ambient Air Quality Standard 
(BNAAQS) on a regular basis for more than 75% of the days 
in a year, thus, ranked among the topmost air polluted 
cities in the world [29, 30]. However, there are significant 
variations in measured PM levels over different locations 
in Bangladesh [31]. During the rainy season, the pollution 
level was noticed to be below the annual mean over most 
of the locations, while during rest of the months, the sites 
of Dhaka, Gazipur, and Narayanganj register multi-fold 
higher values than BNAAQS limit [32]. A detailed study by 
[33] found recursively high annual mean concentrations 
of  PM10 ( > 150 μg m−3) over Dhaka, Gazipur and Naray-
anganj during 2012–2015. Annual mean concentration of 
80–100 μg m−3 for  PM2.5 and 140–200 μg m−3 for  PM10 was 
recorded during 2013–2017 over Darus Salam, Narayan-
ganj and Gazipur [34]. Therefore, all of these major studies 
propound an importance of regular monitoring of PM over 
larger regional extent which can only be possible using 
satellite data, because with the ground network only point 
level or local scale information can be acquired which does 
not need to be the same over regional extent [35]. Besides, 
the variations in ground observed PM levels also need to 
be investigated in a nation-wide scale.

During the last 2 decades, satellite-retrieved aerosol 
optical depth (AOD) has been extensively used as a tool 
for measuring air pollution [36–43]. Satellite-based AOD 
has been regularly retrieved from different sensors from 
polar orbiting platform such as moderate-resolution imag-
ing spectroradiometer (MODIS), visible infrared imaging 
radiometer suite (VIIRS), cloud-aerosol lidar with orthogo-
nal polarization (CALIOP), multi-angle imaging spectrora-
diometer (MISR), ozone monitoring instrument (OMI) and 
polarization and directionality of the earth’s reflectance 
(POLDER) [44–48]. AOD is retrieved from each sensors 

using different algorithms for processing. MODIS employs 
3 different aerosol retrieval algorithms for AOD: dark target 
over land [49] for dark surfaces (vegetation), dark target 
over ocean [50] and deep blue which was initially devel-
oped for bright surfaces [51], later redeveloped for global 
land surface also [52]. A new generic aerosol algorithm, 
the multiangle implementation of atmospheric correction 
(MAIAC), which uses MODIS L1B time series measurements 
since 2000 and image processing to retrieve AOD at 1 km 
spatial resolution over land [53–55], 2018) has been opera-
tional with MODIS collection 6 products which is available 
as MCD19A2 (https ://modis -land.gsfc.nasa.gov/MAIAC 
.html). The present study used this latest AOD product as 
well as it has been validated using ground observations 
over AErosol RObotic NETwork (AERONET) site in Dhaka for 
the study period of 2013–2018. Meanwhile, few investiga-
tions have used different local meteorological parameters 
to better correlate PM and AOD [56–62]. Hence, various 
methods have been implied in order to estimate PM, such 
as linear regression model [63–65], multiple linear regres-
sion model [66–70], generalised additive models [71–73], 
mixed effect model [74–76], geographically weighted 
regression [35, 76–78], while machine learning algorithm 
such as support vector regression (SVR) is least explored. 
However, SVR is found to be useful to resolve various geo-
physical complexity as this technique overcomes the limi-
tations of linear dependency of input variables to estimate 
the output variable [79–81]. Therefore, in order to perform 
regular spatial monitoring, there is a need of a suitable 
technique to establish so that PM estimation can be done 
with better reliability. Till date, the PM pollution studies in 
Bangladesh had rarely focused on PM estimation using sat-
ellite dataset and surface meteorology. The present study 
aims to analyse and explore different methods with special 
preference to SVR model to estimate PM using  MODISAOD 
and local meteorology as well as looked in to the varia-
tions in ground measured PM and its dependency on local 
meteorology.

2  Data and methodology

2.1  CAMS site locations and ground data

The Department of Environment in Bangladesh has set 
up 11 continuous air quality monitoring stations (CAMS) 
in 8 different cities (Dhaka, Gazipur, Narayanganj, Sylhet, 
Chittagong, Barisal, Rajshahi and Khulna) in Bangladesh 
(Fig. 1). These monitoring network has been established 
over the major cities in Bangladesh where the population 
is more than 1 million and population density is more than 
7500 person  km−2, i.e. more than 6 times higher of the 
national average (1253 person  km−2) [82]. The detailed 

https://modis-land.gsfc.nasa.gov/MAIAC.html
https://modis-land.gsfc.nasa.gov/MAIAC.html
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site descriptions are available in technical report by [83]. 
CAMS measures surface concentration of major air pol-
lutants such as  PM2.5,  PM10, CO,  SO2,  NOx and  O3 as well 

as keep records of meteorological parameters (e.g. solar 
radiation, temperature, humidity and rainfall). However, 
among these 11 locations, only 5 monitoring stations have 

Fig. 1  Location of CAMS sites in Bangladesh. In background spatial 
distribution of annual mean MODIS-AOD during 2013–2018 over 
Bangladesh is shown. Number of monthly data used from each 

station, the validation (scatter graph) of MODIS-AOD with AERON-
ETAOD over Dhaka and the seasonal pattern of MODIS-AOD over 
CAMS sites are shown in small graphs inside
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more than 80% of regular observation during January 
2013 to December 2018, while the rest of the stations have 
50–80% of observations during the same period. Hence, 
ground data from each station were screened on the basis 
of continuity of measurements and only those monthly 
data were taken when the continuity was at least 70%. The 
present study only incorporates meteorological data of air 
temperature (AT), relative humidity (RH) and rainfall (RF) 
with surface measurements of  PM2.5 and  PM10.

2.2  Prevailing meteorology over CAMS sites

Since all the monitoring stations are typically urban sites, 
the role of local meteorology must be considered [84–86]. 
Bangladesh is located in tropical monsoon region; hence, 
climatic pattern over CAMS sites also characterized by 
seasonal variation of meteorology during 4 distinct sea-
sons (1) winter (December–February), (2) summer or 
premonsoon (March–May), (3) rainy season or monsoon 
(June–September) and (4) autumn or postmonsoon 
season (October–November) [87, 88]. The meteorologi-
cal observations recorded over these monitoring sta-
tions are averaged and shown in Fig. 2a and b. It depicts 
hot and humid weather during summer, while cold and 

dry conditions during winter over those selected sites. 
Monthly mean of AT, RH and RF varies within a range of 
18.25–30.51 °C, 55.55–87.29%, 0.04–12.67 cm, respectively, 
with an average of 26.65 °C, 72.51%, 3.77 cm during the 
study period. The maximum AT recorded in the month of 
June 2013, while the highest RH and RF were recorded 
in August 2015. Over these sites, the summer weather is 
distinguished by comparatively higher AT (28.09 °C) and 
RH (68.30%) but lesser RF (3.03  cm), while during the 
rainy season, AT drops very little (27.97 °C), but RF and 
RH increase significantly (8.05 cm, 80.99%, respectively). 
Autumn is characterized by 26.26 °C of AT, 1.31 cm RF and 
72.70% RH, while the winter experience lesser AT, RF and 
RH (20.85 °C, 0.64 cm and 65.84%, respectively).

2.3  Satellite AOD

The MAIAC processing algorithm incorporates MODIS top-
of-atmosphere L1B reflectance on a fixed grid of 1 km reso-
lution as well as uses different band combinations, includ-
ing 0.47, 0.55, 0.65 and 2.13 μm, depending on the surface 
brightness and the detected aerosol type [89], while the 
column water vapour (CWV) from MODIS NIR measure-
ments at 0.94 μm [90] is used for atmospheric correction. 

Fig. 2  (a) Prevailing meteorological conditions and (b) PM concentration over CAMS sites in Bangladesh
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The MAIAC uses location-based aerosol models depending 
on the aerosol climatology obtained from AERONET. The 
current MAIAC aerosol models are static; hence, these do 
not consider seasonal variations of the aerosol properties, 
which is one of the limitations of the MAIAC C6 aerosol 
product. In this study, MODIS level-2 gridded (L2G) AOD 
data of 1 km. resolution was accessed from the Land Pro-
cesses Distributed Active Archive Center (LP DAAC) for the 
study period.

2.4  Validation of satellite AOD

AERONET is a global ground-based sun photometer net-
work which provides cloud screened AOD at several wave-
lengths between 340 and 1640 nm with high temporal 
resolution (5–15 min) [91]. Henceforth, AERONET version 2 
level 2.0 quality-controlled AOD data at 500 nm were inter-
polated to 550 nm using angstrom exponent at 440 nm 
and 870 nm wavelength pair with the help of Eq. 1 and 
Eq. 2. Since MODIS provides spatial data of AOD once in 
a day, i.e. during the satellite overpass time only, thus, in 
order to compare the  AERONETAOD with the  MODISAOD, 
averaging has been done for  AERONETAOD over a temporal 
window of  ± 60 min around the satellite overpass time and 
for  MODISAOD over a spatial window of 3 × 3 pixels centred 
at the AERONET site in Dhaka. Only the highest quality 
AOD data have been used to avoid cloud contamination 
and other errors that might held during the AOD retrieval. 
Here, we used the expected error (EE) of  ± (0.05 + 0.20 
 AERONETAOD).

where ��1 , ��2 are the AOD at the wavelength �1 , �2 , respec-
tively, � is angstrom exponent.

2.5  Model approach for PM estimation

In order to investigate the interrelationship between AOD 
and PM, as well as the importance of meteorology to esti-
mate the PM, several models had been critically explored. 
The selected dataset of 620 monthly observations from 
altogether 11 stations was subdivided into 3 parts—(a) 
training dataset, which accounts 70% of the total data-
set used to construct each of the models, (b) 15% of the 
dataset included in testing dataset which is used to verify 
whether the constructed model is performing and (c) the 
rest 15% of dataset used for generation scatter plot for the 
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validation purpose. Broadly, the experimented models can 
be categorized into 3 groups.

(1)  Univariate model—here, interdependency of satellite 
AOD and PM had been checked using simple linear 
regression model (M1) (Eq. 3).

(2)  Multivariate model—besides AOD, many studies 
carried over different places across the world have 
used several meteorological parameters with satellite 
AOD to estimate PM and found improved accuracy 
[92–94]. In the present study, we used  MODISAOD, AT, 
RH and RF to estimate PM in M2 (Eq. 4). This approach 
helped to know whether the multiple linear regres-
sion is useful to estimate PM in the context of Bang-
ladesh 

where i is intercept of the model, �AOD , �AT , �RH , �RF are 
the coefficient of AOD, AT, RH, RF, respectively.

(3)  SVR model—the SVR, first introduced by [95], is one 
of the 2 main categories of support vector machine, 
after developed by [96], which implements a learning 
algorithm to the input data to recognize and general-
ize subtle patterns in any complex data set with the 
help of different kernels, thereafter predicting the 
depended variable of previously unseen data [97]. 
The fundamental concept of SVR is based on the com-
putation of a regression function in a high-dimen-
sional feature space where the input data are mapped 
via a nonlinear function. Overview of different algo-
rithms used in SVR has been discussed in [98]. In the 
present study, we have used ‘R’ platform, where 2 dif-
ferent types of SVR—‘nu’ and ‘eps’ were performed 
with 3 different kernels—linear, radial and polyno-
mial, as well as in each case tenfold cross-validation 
was performed and accordingly the cost and gamma 
values were set. Basically, linear kernel (Eq. 5) is useful 
when dealing with large sparse data vectors, hence, 
most used in regression, while polynomial kernel 
(Eq. 6) is mostly used in such cases where the variance 
is not too high among neighbouring pixels and the 
input is normalized within a certain range value [99]. 
On the other hand, radial kernels (Eq. 7) transform a 
nonlinear dataset into several linear combinations in 
such a way that regression can be performed in sev-
eral hyperplane over linearly transformed data. Thus, 
the kernels are simply different in case of making the 
hyperplane decision boundary among different input 
parameters [100], since these kernel functions map 
the original dataset into a higher-dimensional space 

(3)PM = i + �AODAOD

(4)
PM = i + �AOD × AOD + �AT × AT + �RH × RH + �RF × RF
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with a view to make it linear [101]. Usually linear 
and polynomial kernels are less time-consuming to 
perform but provide less accuracy than radial kernel 
[102, 103]. However, no such study has been carried 
to point out particularly which kernel is best for PM 
estimation. Therefore, incorporating these 3 kernels, 
SVR models (M3–M8) were analysed for estimating 
the PM. M3–M5 used 3 different kernels with ‘eps’ type 
of regression, while M6–M8 used the same 3 kernels 
with ‘nu’ type of regression.

where K is the corresponding kernel function, d is the 
degree of polynomial, and γ is the gamma function.

2.6  Statistical measures

Table 1 shows the descriptive statistics (mean, median, 
mode, standard deviation, standard error, range, minimum 
and maximum) of input variables used for regression anal-
ysis. Since values of  PM2.5 significantly differ from  PM10, 
thus to compare the accuracy by the same model for 2 
different predicted variables having different value ranges, 
normalized statistical parameters would be meaningful to 
evaluate. Therefore, for assessing the estimation accuracy, 
coefficient of determination (R2), normalized root-mean-
square error (NRMSE) and normalized mean bias (NMB) 
have been used, and all of them vary between 0 and 1. 
R2 signifies the explained variance of the model, NRMSE 
shows how much the data are scattered, thus indicating 
the absolute value of error while predicting the depend-
ent variable, and NMB is used to estimate the average bias 
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produced by the model and to decide the margin of pre-
diction towards higher or lower than observation, i.e. the 
magnitude of overestimation or underestimation.

3  Results and discussion

3.1  PM concentration over CAMS sites

The average PM concentrations over selected sites during 
study period are shown in Fig. 2b. It depicts that the PM 
values tend to increase in those particular months when 
RH is comparatively lesser. Annual average  PM2.5 and  PM10 
concentrations over the sites were 76.34 ± 34.12 µg m−3 
and 136.25 ± 68.94  µg  m−3, respectively. Meanwhile, 
 PM2.5 found highest (197.19  µg  m−3) during January 
2013 and  PM10 was highest (296.52  µg  m−3) during 
January 2019. CAMS-5 site in Narayanganj recorded 
highest annual mean concentration of  PM2.5 and  PM10 
(100.35 ± 56.76 µg m−3 and 200.25 ± 91.79 µg m−3), while 
lowest annual mean  PM2.5 and  PM10 concentration was 
recorded over CAMS-8 site in Sylhet (56.13 ± 26.99 µg m−3 
and 103.94 ± 49.37 µg m−3). It reveals that all monitoring 
stations are located in severely polluted areas, since the 
lowest concentrations were also much higher than the 
annual limit prescribed by BNAAQs (15 µg m−3 for  PM2.5 
and 50 µg m−3 for  PM10). PM ratio (PMr), i.e. ratio of  PM2.5 
and  PM10, signifies the amount of  PM2.5 contributing 
within  PM10 concentration. It stipulates the substantial 
anthropogenic contribution to the PM concentration, 
since finer particles  (PM2.5) are generated more due to 
human activities than relatively coarser particles  (PM10). 
During our study period, average PMr over all stations was 
varied between 0.40 (during July 2016) and 0.78 (during 
January 2013). PMr values were noted higher than 0.5 over 
9 out of 11 sites; specifically, it was above 0.6 over the sites 
in Barisal (0.65), Dhaka (0.61) and Gazipur (0.60) which 
reveal that anthropogenic activities are more responsible 
for air pollution particularly at these sites. On the other 
hand, PMr value was lesser than 0.5 over Narayanganj 
(0.45) and Rajshahi (0.44) depicts higher meteorological 

Table 1  Descriptive statistics 
of parameters used model 
experiments

Descriptive statistics PM2.5 PM10 AT RF RH AOD

Mean 89.13 152.17 25.19 2.41 70.74 0.96
Median 79.98 151.06 25.78 1.03 70.48 0.86
Mode 113.00 247.00 19.80 0.08 70.40 1.94
Standard deviation 56.26 84.68 3.70 3.03 9.32 0.62
Standard error 3.36 5.06 0.23 0.20 0.56 0.04
Range 244.30 366.70 15.80 12.66 47.26 2.10
Minimum 14.70 34.30 16.70 0.01 45.44 0.11
Maximum 259.00 401.00 32.50 12.67 92.70 2.21
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influence on PM concentration. It is worth to mention 
these particular 2 sites are located within 1 km distance 
from large river bodies (Rajshahi on the bank of Padma 
river and Narayanganj on the bank of Shitalakshya river); 
therefore, continuous supply of water vapour with latent 
heat coming from river bodies might lead to secondary 
formation of PM and  PM2.5-PM10 conversion that results 
PMr value to be lesser than 0.5.

3.2  MODISAOD over CAMS sites

More than 65%  MODISAOD were found comparable to 
 AERONETAOD within EE followed in this study. Valida-
tion between  MODISAOD and  AERONETAOD shows good 
matching over Dhaka (R2 = 0.72, RMSE = 0.23). Spatial dis-
tribution of annually mean  MODISAOD during 2013–2018 
(Fig. 1) shows comparatively high values over Rajshahi 
subdivision (0.69 ± 0.06) followed by Khulna (0.66 ± 0.09) 
and Dhaka (0.65 ± 0.08), while least over Chittagong 
(0.45 ± 0.14) followed by Sylhet (0.55 ± 0.08), therefore 
depicting higher pollution level in central and west Bang-
ladesh. Seasonal mean of  MODISAOD ranges 0.29–0.83. The 
CAMS sites located in Dhaka and Chittagong register the 
seasonal pattern of AOD as  AODsummer > AODautumn > AOD-
winter, whereas the sites in Gazipur and Narayanganj expe-
rience  AODsummer > AODwinter > AODautumn; however, the 
sites in Khulna and Rajshahi register  AODwinter > AOD-
summer > AODautumn. Thus, it depicts the influence of varying 
meteorological conditions on the spatial variability of AOD 
in different seasons. It also indicates that around industrial 
area the pollution level increases when the temperature 
is lower (winter), while traffic-induced pollution levels 
accelerate in megacities during comparatively hotter days 
(summer). During the rainy season, since high-quality AOD 
data pixels are very less due to cloud contaminations, most 
of the AOD values were missing.

3.3  Intra‑annual pattern of PM, AOD 
and meteorology

Within 6  years of observation, no significant trend 
or interannual pattern can be perceived. However, 
analysis of intra-annual (monthly) pattern for these 
parameters shows better perspective. Monthly pat-
tern of PM (Fig.  3a) reveals that January is the most 
polluted month  (PM2.5 = 167.75 ± 35.81  µg  m−3

, 
 PM10 = 257.83 ± 53.37  µg  m−3) and August is the 
least polluted month  (PM2.5 = 23.77 ± 5.26  µg  m−3, 
 PM10 = 47.5 ± 11.08 µg m−3). Earlier, [104] showed with 
the help of clustered trajectories that winter season in 
Bangladesh usually experienced significantly elevated 
concentration of secondary particulate matter due to the 
incursion of transboundary pollution through the inflow 

of continental air masses mostly from the Ganga–Brah-
maputra plain in India. Concurrently, the monthly mean 
value of PMr was found highest during January (0.65) 
and lowest during July (0.47) with an annual average of 
0.53. It indicates a higher anthropogenic contribution to 
the air pollution during winter days in this country and 
hence agreed to [105]. Monthly pattern of  MODISAOD and 
RH (Fig. 3b) shows highest values of AOD during May (0.98) 
and lowest during August (0.36), whereas RH was highest 
during July (82.68%) and lowest during March (62.59%). 
It is worth to mention that AOD found to be decreased 
with rise in RH during June–September but increased 
during March–May in spite of increase in RH. In addition, 
December was identified as the driest and coldest month 
(mean RF = 0.30 cm, mean AT = 20.59 °C), while June as the 
warmest month (mean AT = 28.76 °C) and July as the most 
humid month (mean RF = 9.05 cm, mean RH = 82.68%) 
(Fig. 3c). Thus, the monthly pattern suggests that during 
January–April, the difference between  PM2.5 and  PM10 
concentration was > 90 µg m−3, i.e. 1.5 times higher than 
any other month in a year, during those particular months, 
AT was rising at rate of > 1.5 °C/month, but average RH 
remains lesser than 65% and 1.2 cm, respectively, therefore 
suggesting that the prevailing meteorological conditions 
during this particular transitional period (from winter to 
summer) are highly affecting the physio-chemical trans-
formation of  PM2.5 to  PM10 as there is least chance of dust 
influence in Bangladesh; rather than that, the large net-
work of rivers and other inland water bodies might have 
provided immense supply of heat and moisture during 
these months which might trigger secondary formation 
of  PM10; hence, such high rise in  PM10 was observed in 
these months.

3.4  Model experiments for PM estimation

The performance of experimented 8 regression models, 
in terms of R2, NRMSE, NMB, is shown in Table 2. The sim-
ple linear regression (M1) shows considerably lower value 
of R2 ( < 0.05) and higher NRMSE ( > 0.5) for both of  PM2.5 
and  PM10, therefore signifying that the ground-level PM 
cannot be estimated only by using AOD (Fig. 4a). Multi-
ple linear regression model (M2) accounts meteorologi-
cal parameters along with AOD and showed R2 value of 
0.64 for  PM2.5 and 0.67 for  PM10 (Fig. 4b) which suggest 
an unavoidable importance of meteorological param-
eters while estimating the PM. However, it exhibits higher 
estimation error—NRMSE of 0.42 for  PM2.5 and 0.32 for 
 PM10. Thereafter, SVR models were experimented where 
both of ‘nu’ and ‘eps’ type of regression techniques were 
tested for each 3 kernels. Using linear kernel, M3 (Fig. 4c) 
and M6 (Fig. 4d) showed moderate estimation accuracy 
(0.5 ≤ R2 ≤ 0.6); hence, it indicates the nonlinearity in the 
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dataset, while applying the polynomial kernel of 3rd 
degree in M4 (Fig. 4e) and M7 (Fig. 4f ), the estimation 
accuracy reduced drastically (0.15 ≤ R2 ≤ 0.30). The poorer 
performance of polynomial kernel probably suggests that 

the observations in training dataset are not standardized; 
in other words, higher degrees of fluctuations exist in the 
dataset. The radial kernel-based ‘eps’ regression model 
(M5) is found to be the outperformer (Fig. 4g) among all 

Fig. 3  Intra-annual pattern of (a) ground measured PM concentration, (b) MODIS - AOD, (c)  meteorology over CAMS locations. Error bars 
represent ± 1σ for each monthly mean observation
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the experimented models, slightly better than ‘nu’-based 
regression model (M8) (Fig. 4h). In M5, R2 value achieved 
for  PM2.5 and  PM10 was 0.84 and 0.85 successively, whereas 
for M8 it was 0.77 and 0.79 sequentially. The NRMSE and 
NMB were also lesser than 0.25 and ± 0.05, respectively, 
in M5. Noteworthy,  PM10 was able to estimate with a little 

better accuracy than  PM2.5. Therefore, it conjectured that 
using SVR models, estimation accuracy does not vary 
much over the type of regression, rather the selection of 
kernel matters. It also surmises that due to stationary prop-
erty, radial kernel yields the input values in much higher 
dimensions than other kernels do as well as it trains the 

Table 2  Evaluation of 
experimented models

Model No Model type PM2.5 estimation PM10 estimation

R2 NMB NRMSE R2 NMB NRMSE

M1 Univariate 0.01 0.03 0.61 0.04 0.01 0.53
M2 Multivariate 0.64 0.05 0.42 0.67 0.05 0.32
M3 SVR-eps-linear kernel 0.50 −0.02 0.41 0.58 0.03 0.42
M4 SVR-eps-polynomial kernel 0.15 0.06 0.45 0.28 0.07 0.48
M5 SVR-eps-radial kernel 0.84 0.01 0.20 0.85 0.02 0.23
M6 SVR-nu-linear kernel 0.49 0.01 0.45 0.60 0.02 0.40
M7 SVR-nu-polynomial kernel 0.18 −0.02 0.46 0.24 −0.01 0.47
M8 SVR-nu-radial kernel 0.77 0.01 0.21 0.79 0.02 0.28

Fig. 4  Validation of experimented models
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model taking Euclidean distance from each respective 
data point, thus improving the estimation accuracy in such 
complex coherence of AOD, PM and meteorology.

3.5  Interrelation of meteorological parameters 
with PM and AOD

Model experiments have firmly declared that higher PM 
estimation accuracy can be achieved only when the mete-
orological parameters are included as input; however, it 
is also important to check how much each meteorologi-
cal parameters are influencing the model accuracy. Thus, 
the best performed model, i.e. M5, was re-experimented 
with several iterations keeping each one alternative input 
parameter off (Table 3). Considering only AOD as input, R2 
value found to be very poor in M5a (0.11 for  PM2.5 and 0.10 
for  PM10). By including only AT with AOD as input (M5b), 
the R2 value increased up to 0.60 and 0.54 for  PM2.5 and 
 PM10 estimation, respectively, while taking only RH with 
AOD as input (M5c), R2 value increased up to 0.46 and 0.52 
for  PM2.5 and  PM10 estimation successively. However, com-
paratively lesser improvement in R2 value (0.25 for  PM2.5 
and 0.26 for  PM10 estimation) was noticed when RF and 
AOD were considered as input (M5d). Moreover, with an 
input combination of AOD-AT-RH (M5e), 0.80 of R2 value 
was achieved for both of  PM2.5 and  PM10 estimation, which 
was better than AOD-AT-RF (M5f) and AOD-RH-RF (M5g) 
combinations. The accuracy increased further, while all 
3 meteorological parameters with AOD had been taken 
as input (M5), thus depicting that AT has major impor-
tance followed by RH and RF. Interestingly, all meteoro-
logical parameters were found to be negatively correlated 
with ground measurement of  PM2.5 (Fig. 5a–c) and  PM10 
(Fig.  5d–f ) over CAMS locations, likewise observed by 
[106]. Correlation with AT for both of  PM2.5 (r = −0.80) and 
 PM10 (r = −0.73) concentration was found to be better than 

RH (r = −0.66, r = −0.73) and RF (r = −0.59, r = −0.61), respec-
tively. Analysis also reveals that  PM10 is better associated 
with RH and RF than  PM2.5, while AT is more sensitive to 
 PM2.5 than  PM10. Hence, it limned that during cooler and 
drier days, the PM concentration tends to increase, while 
higher precipitation and humidity result in significant 
improvement (decrease) in PM pollution. On the other 
hand, over the monitoring stations,  MODISAOD registered 
positive correlation with AT (r = 0.66) (Fig. 5g), but negative 
correlation with RH (r = −0.59) (Fig. 5h) and RF (r = −0.72) 
(Fig. 5i), thus signifying that  MODISAOD exhibits tendency 
to show higher values on drier and hotter days but lesser 
values in humid conditions. During the warmer days, due 
to the gas-particle transformation occurred high above 
the surface results in higher concentration of aerosol 
which could be depicted by columnar measurement of 
AOD [107], while at the same time, due to higher surface 
air temperature, the convection process near the ground 
amplifies, and thus the convective air lugged the surface 
PM concentration away [108] which results into compara-
tively lesser value of surface PM.

4  Conclusion

The overall study based on ground observations of PM 
exhibits that the annual mean  PM2.5 and  PM10 concen-
tration is approximately 1.2–1.75 times higher than the 
BNAAQS (50 µg m−3 for  PM2.5 and 100 µg m−3 for  PM10) 
over all the monitoring locations; therefore, the people 
residing in those urban areas around CAMS sites are inhal-
ing extremely bad air, especially during the nonrainy sea-
sons when PM concentrations are recorded approximately 
2–5 times higher than the given BNAAQs safety limit. 
The adverse effect of such terrible air quality has already 
been noticed over Dhaka, since the cardiac diseases are 

Table 3  Experiments with 
several combinations of 
meteorological input to 
estimate PM and their 
evaluation

Model no M5a M5b M5c M5d M5e M5f M5g M5
Parameters AOD AOD AOD AOD AOD AOD AOD AOD

AT RH RF AT AT RH AT

RH RF RF RH

RF

PM2.5

R2 0.11 0.60 0.46 0.25 0.80 0.62 0.49 0.84
NMB 0.07 0.04 0.01 0.05 0.02 0.04 0.01 0.01
NRMSE 0.29 0.22 0.25 0.16 0.28 0.22 0.24 0.23
PM10

R2 0.10 0.54 0.52 0.26 0.80 0.60 0.57 0.85
NMB 0.06 0.02 0.01 0.04 0.01 0.02 0.03 0.02
NRMSE 0.34 0.19 0.29 0.22 0.27 0.29 0.25 0.23
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noted to be increased in the city [109]. The shortening of 
life expectancy caused by the hazardous air quality has 
been reported throughout the world [110–114]. In Bang-
ladesh, more than 80 million population are young aged 
[82]; hence, there is very high chance that majority of 
the peoples in Bangladesh got affected by different dis-
eases caused directly or indirectly by air pollution. How-
ever, all of the CAMS sites are located in urban areas only; 
therefore, the PM variations over rural sites could not be 
explored in the present study. In the study by [115], we 
have noticed the rapid urban expansion of major cities 
in Bangladesh, which also make a crucial impact in sever-
ity of air pollution. Thus, the current scenario urges high 
attention of policy makers to take preventive measures 
precociously in order to get control over such worse pol-
lution scenario, especially during winter.

The present study has drawn a crystal clear con-
clusion about nonsignificant correlation between 

satellite-measured AOD and ground-observed PM as 
well as illustrates the essentiality to take meteorology in 
to consideration in order to improve the accuracy of PM 
estimation in the context of Bangladesh. Greater cover-
age of ground network would have given more detailed 
information about PM-AOD interrelationship. Therefore, 
with proper network of meteorological observations and 
utilizing satellite data it will be very helpful to monitor air 
pollution level over any specific region. Intra-annual pat-
tern reveals that high RF and RH cause the PM and AOD 
level to decrease by the aerosol scavenging process only 
when there is no such variation in AT [116, 117], but during 
the autumn and winter months when all of AT, RF and RH 
decrease continuously, the pollution level got increased 
due to lesser deposition. During summer months when 
there was rapid increase in both of AT and RH, but compar-
atively less increase in RF, the physio-chemical transforma-
tions in PM also got increased which results increase in PM 

Fig. 5  Interrelation between meteorological parameters and (a–c)  PM2.5, (d–f)  PM10, (g–i) MODIS-AOD
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level with remarkably high increase of AOD. However, sta-
tistically significant negative correlation for both of  PM2.5 
and  PM10 with each meteorological parameters agreed 
previous studies carried by [118–120]. Moreover, the study 
has found AT to be better correlated with  PM2.5 than  PM10, 
while RH and RF correlated better with  PM10 than  PM2.5. 
Analysis propounds that the radial kernel-based SVR can 
be able to surmount the complexity of PM estimation and 
sequel the importance of meteorology as AT > RH > RF. 
Thus, it recommends usefulness of machine learning 
technique in air quality studies over the spatial context 
of Bangladesh. It can be used as operational method for 
daily or even real-time estimation of PM, depending on the 
retrieval process of AOD and frequency of meteorological 
observations with proper network of ground coverage
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