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Abstract
The influence maximization problem in social networks is an optimization problem in viral marketing. This problem is 
concerned with identifying a certain number of people with the most influence in the social network level. Considering 
the NP-hard of this problem, finding an optimal solution with acceptable accuracy and the low running time is of the 
high importance. To this purpose, GIN (Group of Influential Nodes) algorithm is presented in this article which creates 
different groups of graph nodes with more connections than other groups. Then, it selects specific nodes from each 
group to reduce the search space to find the most influential nodes. Following the greedy method, it selects the seed 
nodes with the highest expected diffusion value. Experimental results show that the GIN algorithm has provided high 
influence spread along with low running time in comparison algorithms on all seven real-world datasets.
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1  Introduction

The social networks like LinkedIn, Facebook, and Twitter 
provide the grounds for people to interact with no time 
and space limitation [1]. Consequently, information diffu-
sion occurs across a wide range of social networks at high 
speed. That’s why business companies are using the speed 
of information diffusion on social networks to achieve 
widespread advertising and business optimization. Given 
the limited advertising resources, the main challenge in 
this problem is to select a specific set of influential persons 
that most effectively on other people in a short time. To 
solve this challenge, the influence maximization problem 
in social networks has been provided.

The influence maximization problem identifies the 
active nodes as seed nodes. Algorithms in this problem 
take the graph G and a number k as input and generate 
seed set, with the intention that the expected number of 
nodes influenced by the seed set by the stochastic process 

of the diffusion model, One major problem in the influence 
maximization problem to maximize the expected size of 
the final active set, given some constraints on the seed 
set. The diffusion process of the seed nodes is performed 
to maximize the influence spread. The influence of seed 
nodes is determined by the number of nodes activated. 
The influence maximization problem under both IC and LT 
models are NP-hard. In other words, the goal of the influ-
ence maximization problem is to find initial active people 
who have the most influence on other people in a short 
time under a diffusion model [2, 3].

Viral marketing [1, 4–9], terrorist attack prevention [4], 
and network control [10, 11] constitute the applications of 
the influence maximization problem that viral marketing 
has attracted researchers more than other applications. In 
viral marketing, unlike traditional marketing where infor-
mation diffusion was through newspaper advertising and 
the mass media, the focus is on peoples effective through 
family members, relatives, acquaintances, and friends by 
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word of mouth [12]. In this way, diffusion is information 
transmission from person to other person, such as virus 
transmission [1]. Domingos and Richardson were the first 
who addressed the influence maximization problem [6]. 
Kempe et al. formulated and proved that this problem is an 
NP-hard [2], who then proposed an approximation algo-
rithm called General Greedy algorithm to solve the influ-
ence maximization problem [2]. This algorithm has very 
low speed and high running time [2]. Some researchers 
proposed some algorithms to overcome drawbacks in the 
General Greedy algorithm. The existing influence maximi-
zation algorithms have several major drawbacks:

1. They have no effective methods to reduce the search 
space for influence spread calculation and do not opti-
mally select the candidate nodes.

2. They are not suitable for large-scale networks due to 
high computational time.

Handling the NP-Hardness and to optimize the seed 
selection by reducing search space while keeping the 
running time faster are important to influence maximi-
zation problem. So, to address these issues, we propose 
a new algorithm named GIN heuristic algorithm. In this 
algorithm, by the identified nodes with a more common 
number of connections and neighbors than other nodes 
of the graph, different groups of nodes are generated. By 
selecting certain nodes from each group, the search space 
where the final effective nodes are to be found is reduced. 
Its goal is to increase the speed of the algorithm. During 
this process, the nodes with the highest expected diffusion 
value are selected as the seed nodes.

The contributions of our work are as follows:
• Use a grouping method for graph nodes.
• We use candidate nodes optimally to reduce the 

search space for influence spread calculation.
• The experimental results on seven real-world networks 

show that the proposed algorithm GIN performs better 
than the other algorithms in terms of influence spread and 
running time.

The structure of this article is organized as follows. 
In Sect. 2, the related works for influence maximization 
problem is introduced. In Sect. 3, problem definition is 
expressed. Our proposed algorithm is presented in Sect. 4. 
Experiments results and evaluations are described in 
Sect. 5 and we conclude this article in Sect. 6.

2 � Related works

Identifying seed nodes is one of the key issues for influ-
ence maximization problem in social networks. This is 
one of the NP-hard problems [2] that has many chal-
lenges like high influence spread and low running time, 
especially on large-scale graphs. Therefore, researchers 

have presented different algorithms to solve the influ-
ence maximization problem. For the first time, Kempe 
et al. presented an approximate algorithm called General 
Greedy algorithm with high influence spread that has 
an optimal approximation [2]. However, this algorithm 
has a high running time, especially on large-scale graphs 
[13]. So they proposed the High Degree algorithm by 
selecting nodes with the highest degree in graph [2]. 
The High Degree algorithm is very fast, even on large-
scale graphs, but has a lower influence spread than the 
General Greedy algorithm.

Leskovec et al. proposed the CELF algorithm [14]. This 
algorithm uses lazy evaluation in functions that have the 
submodularity, significantly reduces influence spread 
evaluation. Although the CELF algorithm is faster than 
the General Greedy algorithm, it does not have acceptable 
speed. Then, Chen et al. proposed the NewGreedyIC algo-
rithm to improve the CELF algorithm [15]. This algorithm 
computes the influence spread by creating sample graphs 
from the original graph. However, the NewGreedyIC algo-
rithm improves the running time of the CELF algorithm, 
but this algorithm still needs to improve the running time, 
especially on large-scale graphs.

Chen et al. presented the DegreeDiscount algorithm 
to improve the running time of the CELF algorithm [15]. 
This algorithm uses a degree discount method for influ-
ence spread computations. The DegreeDiscount algorithm 
has a better running time than the CELF algorithm but 
does not guarantee optimal approximation. Also, Jiang 
et al. presented an evolutionary algorithm SA to improve 
the DegreeDiscount algorithm [16]. This algorithm has 
gained more influence spread than the DegreeDiscount 
algorithm, with a high number of iterations and increased 
running time. Then presented the SAEDV algorithm to 
reduce the running time of the SA algorithm [16]. In this 
algorithm, the seed nodes are selected with the maximum 
expected diffusion value based on the SA algorithm. The 
SAEDV algorithm has a lower running time than the SA 
algorithm.

Goyal et  al. introduced the SIMPATH algorithm to 
improve the running time of the CELF algorithm [17]. This 
algorithm computes the influence spread without using 
Monte Carlo simulation and using simple paths count. The 
SIMPATH algorithm has a low memory overhead but does 
not guarantee optimal approximation. Another algorithm 
proposed to solve the influence maximization problem is 
the MIA algorithm [18]. This algorithm was proposed by 
Wang et al. to improve the computation of the influence 
spread of the DegreeDiscount algorithm. In the MIA algo-
rithm, using the Dijkstra algorithm, the shortest maximum 
influence path for each node of the graph is calculated. 
Although the MIA algorithm has an acceptable running 
time by eliminating the number of Monte Carlo simulation, 
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the disadvantage of this algorithm is the high memory 
overhead.

Jung et al. proposed the IRIE algorithm to improve the 
MIA algorithm [19]. In this algorithm, the influence spread 
is calculated recursively based on the influence spread of 
the neighbors of each node in the graph. In the IRIE algo-
rithm, the memory overhead is very low, but the influence 
spread is low compared to the General Greedy algorithm. 
In the following, He et al. presented the CLDAG algorithm 
to improve the General Greedy algorithm [20]. The focus 
of this algorithm is on blocking the influence maximiza-
tion problem. Thus, the most important advantage of this 
algorithm is not dependent on the number of seed nodes, 
and its main disadvantage is the high memory overhead.

Tang et al. proposed the TIM algorithm to improve the 
SIMPATH algorithm [21]. In this algorithm, the first set of 
RR-Set includes nodes that have paths to each other, and 
then the seed nodes are selected using graph nodes cov-
ering. Benefits of TIM algorithm are low running time and 
low memory overhead. Then, Lu et al. developed the RR-
CIM algorithm to improve the High Degree algorithm [22]. 
This algorithm solves the influence maximization problem 
by using complementary products. The parameters of this 
algorithm close the influence maximization problem to 
the real-world, but the algorithm has a high running time.

In the following, He et al. presented a new algorithm 
based on community detection to improve the High 
Degree algorithm [23]. In this algorithm, each commu-
nity is considered as one node. Then influential nodes are 
selected based on the red-black tree. This algorithm avoids 
the rich-club phenomenon but has a high running time. 
Also, Morone et al. Presented the CI algorithm based on 
localization of influence spread computation [24]. In this 
algorithm, the influence spread computation in a circle 
is limited to the radius L. The main advantage of the CI 
algorithm is to provide acceptable influence spread into 
high-density social networks, however, that the calcula-
tion of influence spread and running time of the CI algo-
rithm depends on the parameter L and the number of seed 
nodes.

Then the topology-based algorithm LIR is presented by 
Liu et al. to improve DegreeDiscount and NewGreedyIC 
algorithms [25]. First, in this algorithm is calculated the LI 
of each node, which is indicated the local index of each 
node that avoids the Rich-club Effect but does not guar-
antee optimal approximation. The CoFIM algorithm is also 
based on community detection proposed by Shang et al. 
to improve High Degree algorithm [26]. In this algorithm, 
first, the influence spread is calculated based on diffusion 
between communities and then diffusion inside communi-
ties. The advantage of this algorithm is low running time, 
but the overlapping nodes are not considered. Then Wu 
et al. developed the LAIM algorithm to improve CoFIM 

algorithm [27]. By this algorithm, the influence is esti-
mated locally. The main advantage of the LAIM algorithm 
is its very low running time, and its main disadvantage is 
that it does not guarantee optimal approximation.

Cui et al. presented an evolutionary algorithm called 
DDSE to improve the running time of the CELF algorithm 
[28]. In this algorithm, using the genetic algorithm and 
local and global search, the seed nodes are selected with 
the highest expected diffusion value. The DDSE algorithm 
has influence spread very close to the CELF algorithm on 
some small datasets. Xie et al. developed the IRR algo-
rithm based on the MBIC model [29]. This algorithm uses 
the same idea as the DegreeDiscount algorithm. The main 
advantage of the IRR algorithm is the use of different states 
based on real-world criteria for nodes, but this algorithm is 
dependent on the number of nodes in the graph.

The C2IM algorithm is presented by Singh et  al. to 
improve the time-efficiency of the TIM algorithm for the 
influence maximization problem [10]. This algorithm uses 
the user’s interests and community framework to find 
effective seed nodes. Also, Ahmadi Beni et al. presented 
an algorithm called TI-SC based on community detection 
to improve the influence spread of the DegreeDiscount 
algorithm [30]. This algorithm selects seed nodes by exam-
ining the relationships between the core nodes. The TI-SC 
algorithm is useful to reduce the overlap in selecting the 
seed nodes, but this algorithm has not an efficient perfor-
mance in large-scale networks.

3 � Problem definition

The social networks’ graph is mapped as G (V, E), where V 
and E are described as follows:

•	 V = {v1, v2, …, vn} is a set of graph nodes, where vi is the 
individuals, and n is the number of nodes in the graph.

•	 E = {e1, 2, e1, 3, …, e1, n, e2, 1, e2, 3, …, en, n − 1} is a set of graph 
edges, where, ei, j is the relationship between two indi-
viduals or an edge between each pair of nodes (i ≠ j).

Considering G  (V, E) to find k seed nodes for influ-
ence maximization problem, the subset S select from 
V = {v1, v2, …, vn} due to the diffusion model. The process 
of seed nodes selection is done until ∣ S ∣  = k so that the 
influence spread of S, σ(S) is maximized by Eq. (1) under 
the given diffusion model [31]:

The influence spread is calculated due to the diffusion 
model for influence maximization problem. One of the 
most widely used information diffusion models is the 

(1)S∗ = argmaxS⊂V ,|S|=k𝜎(S)
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independent cascade model proposed by Kempe et al. 
The independent cascade model has two important 
properties in the influence spread function which these 
properties are submodularity and monotonicity. A set 
function f : 2V → ℝ is submodular if, for any S ⊆ T ⊆ V sub-
sets and anyv ∈ V\T element , the marginal contribution 
of v element, when added to a T set can not exceed the 
marginal contribution of v element when added to a 
S ⊆ T subset due to Eq. (2) [31]:

The objective function f : 2v → ℝ is monotone if we 
have f(S) ≤ f(T) for eachS ⊆ T ⊆ V subset [31].

4 � Proposed algorithm

In GIN algorithm, a heuristic method is proposed to 
identify the influential nodes for the influence maximi-
zation problem. In this algorithm, different graph nodes 
are created to identify nodes with more communication 
and more common neighbors than other graph nodes. 
Then, certain nodes are selected from each group. This 
process is done to create new search space and reduce 
the number of influence spread calculations. At last, the 
final influential nodes are selected among the nodes 
in the new search space which maximize the expected 

(2)f (S ∪ {v}) − f (S) ≥ f (T ∪ {v}) − f (T )

diffusion value as the seed nodes. Figure 1 shows an 
overview of the general levels of GIN algorithm.

According to Fig. 1, the GIN algorithm consists of three 
levels: (1) grouping graph nodes, (2) creating new search 
space, and (3) selecting seed nodes.

4.1 � Grouping graph nodes

The first level of algorithm GIN is due to AntCBO [32] algo-
rithm by modification. This level of GIN algorithm includes 
the process of creating different groups of graph nodes 
with more communication and common neighbors than 
other nodes. This level consists of six basic steps:

Step 1 For every node of graph, an available variable 
is defined which determines the available or non- avail-
able of each node. The value of this variable is either True 
or False. At first, the value of this variable is considered 
True for all graph nodes. If the node has an available = True 
value, it will be available; so, it can be selected for calcula-
tions, otherwise non-available; thus, it cannot be selected 
for calculations. Figure 2 shows a graph consists of 16 
nodes with available = True variable for all graph nodes.

Step 2 The graph nodes are sorted from highest to low-
est degree in descending order in an undirected graph, or 
out-degree in a directed graph and placed in list L. Thus, in 
the first place of list, the node is with the highest degree, 
and in the last place, the node is with the lowest degree 
from graph, according to Fig. 3.

Fig. 1   General levels of the GIN 
algorithm
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Step 3 The group gi = {} is created (i = {1, 2, 3, …, l}). Then, 
the first node from list L which has an available = True value, 
is selected and added to gi group (gi ∪ {vi}). Then, the avail-
ability value of this node changes into available = False. 
In the following, vj node with the highest degree among 
vi node ’s neighbors which has the available = True value, 

is selected and added to gi group (gi ∪ {vj}). The availability 
value of vj node is changed into available = False (Fig. 4).

Step 4 If vi and vj nodes do not have common neighbors, 
the computation continues from the previous step for the 
next node from L list with the value of avalable = True.

Step 5 If vi and vj nodes have common neighbors, Com-
Nei set will be created including common neighbors of vi 
and vj nodes (ComNei = {v1, v2, …, vm}) which {v1, v2, …, vm} 
will be always belonging to ComNei for each vi and vj. The 
vm node is selected from ComNei set with available = True 
value randomly and is added to gi group (gi ∪ {vm}). Then, 
the availability value of this node is changed to avail-
able = False. If the neighbors of vm node do not have any 
common with nodes within ComNei set , the availability 
of next node from ComNei set will be checked which is 
added to gi group ; otherwise, Z set including the com-
mon nodes of vm’s neighbors and ComNei  set is cre-
ated  (Z = neighbor(vm) ∩ ComNei). Then, ComNei  set is 
replaced with Z set . This process is repeated until Com-
Nei = {}, or the nodes in this set have available = false value 
(Fig. 5).

Fig. 2   Example of the graph 
containing 16 nodes with the 
available = True variable

Fig. 3   Example of placing nodes in list L 

Fig. 4   An example of placing graph nodes in the first group

Fig. 5   An example of adding other nodes to the first group
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Step 6 The previous described steps are repeated until 
the created groups reach a specified number (Itrgi = l). l 
is the maximum number of groups created; also, that is 
constant.

4.2 � Creating new search space

In this level, the two nodes vi and vj which include the 
first and second added nodes are selected from each gi 
group. The first node selected from each gi group is the 
node vi with the highest degree in that group, and the sec-
ond node selected is the vj node with the highest degree 
among the neighbors vi. Each group gi contains at least 
one vi node. If there exists no node vj in a gi, that group 
has only one node, thus the only vi node is selected. Also, 
if there are multiple nodes vi that have the same maxi-
mum degree value in each gi group, and similarly, if there 
are such multiple nodes vj, these are selected randomly. 
In this way, by identifying and selecting these nodes from 
each group, the search space to find influential nodes is 
reduced. This level is repeated until the selected nodes 
reach a specified number (Ncandidate = m). m is the maxi-
mum number of candidate nodes selected.

4.3 � Selection of seed nodes

In this level, the selection of seed nodes from a new search 
space is done by the greedy method. Thus, according to 
Eq. (3), the Expected Diffusion Value (EDV) of these nodes 
is calculated. This equation has also been used in other 
studies [16, 28]. The first time, Jiang et al. proposed the 
expected diffusion value to estimate the actual influence 

spread under the independent Cascade model and 
employed it in their algorithm to replace Monte Carlo 
simulation [16]. The EDV approximates the spread by 
computing how many direct neighbors of the nodes in 
the candidate node set S are expected to be activated. 
According to the Eq. (3), k is the number of seed node, p is 
the activation probability the non-seed nodes, Nl

S
∖S is the 

neighbors of the nodes S except the nodes of set S, and τ (i) 
is the number of neighbors of i node in set S.

Consequently, by applying the greedy selection 
method, a node from the new search space which 
causes maximization of the marginal gain function 
(EDV(S ∪ {w}) − EDV(S)) as the seed node added to the set 
S. This process is repeated until ∣ S ∣  = k. Then, the influence 
spread of seed nodes is calculated using the independent 
cascade model. Algorithm1 shows the pseudo-code of the 
GIN algorithm.

(3)EDV (S) = k +
∑

i�Nl
S
�S
1 − (1 − p)�(i)

Table 1   Specifications of seven real-world social networks

Dataset Statistic characteristics

# Node # Edge Type

Email 1133 5451 Undirected
NetScience 1461 2742 Undirected
Power 4941 6594 Undirected
NetHEPT 15,233 58,891 Undirected
NetPHY 37,149 231,507 Undirected
Epinions1 75,879 508,837 Directed
Slashdot0902 82,168 948,464 Directed
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5 � Experiments and evaluation 
of the proposed algorithm

The GIN algorithm has been evaluated on seven real data-
sets. Then the results of influence spread and running time 
of algorithms evaluated under the independent cascade 
model in a similar system. Influence spread means the 
number of final nodes activated by the seed nodes in the 
diffusion process. The running time means the time has 
passed to find the seed nodes. All the codes are written 
in C#, and all algorithms are performed on a Windows 
10 operating system with 2.20 GHz CPU (Intel® Core (TN) 
i5-5200U) and 8 GB of RAM.

5.1 � Description of the datasets

The GIN algorithm is implemented on seven datasets of 
different sizes. The characteristics of these datasets are 
shown in Table 1.

Email [33]: This dataset is a network of emails at URV 
University that includes professors, administrators, tech-
nicians, researchers, and graduates. In this dataset, each 
node represents the email address, and the link between 
the emails is an edge.

NetScience [34]: This dataset contains a collaboration 
network of scientists working on network theory. New-
man compiles this dataset in the year 2006. The nodes in 
this dataset represent the authors of the articles, and the 
edges indicate the collaboration between the authors in 
a common article.
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Power [35]: This dataset contains information about the 
power grid of the Western States of the United States of 
America that a node is either a generator, a transformator, 
or a substation. Also, an edge represents a power supply 
line.

NetHEPT [15]: This dataset contains arXiv articles in 
the “High Energy Physics Theory” section, published in the 
years 1991 to 2003. The nodes in this dataset represent the 
authors and, if they work together in an article, an edge is 
created between them.

NetPHY [15]: This dataset contains arXiv articles in the 
“Physics” section. In this network, each node is an author, 
and the edges between two nodes represent the collabo-
ration of two authors in one article.

Epinions11: This dataset is an online social network 
trust-based, collected from www.epini​ons.com. Each node 
in this dataset represents customers who are users of the 
site, and each edge represents a secure connection.

Slashdot09022: This dataset is a version of the popu-
lar site www.slash​dot.org about technology news where 
users can tag other users as friends or foes. The network 
was collected in February 2009.

5.2 � The compared algorithms

The GIN algorithm is compared with various algorithms, 
including General Greedy, High Degree, SAEDV, LIR, and 
DDSE algorithms based on two criteria of influence spread 
and running time. The algorithm is implemented with 
parameter l = 150, Monte Carlo simulation R = 10000, and 
the activation probability p = 0.01.

Table 2   The influence spread of GIN algorithm with different num-
bers of l on Email dataset

Seed nodes Number of groups

l = 100 l = 150 l = 200 l = 250

5 8.2679 8.2595 8.295 8.2717
10 15.5823 15.6284 15.5704 15.6157
15 22.7254 22.7354 22.7309 22.7035
20 29.5863 29.6679 29.5751 29.5901
25 36.3615 36.2817 36.2673 36.2868
30 42.7783 42.8733 42.7996 42.7962
35 49.2754 49.3008 49.2544 49.2541
40 55.4953 55.509 55.4815 55.5318
45 61.7827 61.8008 61.6706 61.6959
50 67.7524 67.753 67.7057 67.7358

Table 3   The influence spread of GIN algorithm with different num-
bers of l on NetScience dataset

Seed nodes Number of groups

l = 100 l = 150 l = 180 l = 200

5 6.3036 6.3608 6.35 6.3358
10 12.303 12.3133 12.3096 12.2741
15 18.0436 18.0881 18.0548 18.0213
20 23.6001 23.6807 23.6243 23.6576
25 29.1569 29.1871 29.1906 29.1561
30 34.6915 34.7668 34.6975 34.6549
35 40.1395 40.1623 40.1432 40.1577
40 45.5781 45.6042 45.5842 45.5854
45 51.02 51.0576 51.0198 50.9824
50 56.304 56.6203 56.2735 56.3542

Table 4   The influence spread of GIN algorithm with different num-
bers of l on Power dataset

Seed nodes Number of groups

l = 100 l = 150 l = 200 l = 250

5 5.8198 5.8205 5.8055 5.8106
10 11.4745 11.4658 11.4727 11.4791
15 17.0807 17.0843 17.0934 17.0735
20 22.6347 22.6825 22.6381 22.6704
25 28.1598 28.1442 28.1626 28.1487
30 33.6792 33.6978 33.6612 33.6942
35 39.1785 39.195 39.1695 39.1915
40 44.6525 44.6766 44.6573 44.6417
45 50.1167 50.1749 50.1231 50.1651
50 55.5309 55.5962 55.5603 55.5219

Table 5   The influence spread of GIN algorithm with different num-
bers of l on NetHEPT dataset

Seed nodes Number of groups

l = 100 l = 150 l = 200 l = 250

5 26.1731 26.0955 26.1535 26.0446
10 41.2602 41.3175 41.3776 41.3197
15 54.9883 54.8802 54.9348 54.8401
20 67.8898 67.8937 67.6899 67.7233
25 79.8648 79.9642 79.9536 80.0444
30 90.6858 90.6806 90.6263 90.6541
35 102.075 102.3536 102.2648 102.1021
40 112.525 112.7438 112.5794 112.6274
45 122.8239 123.1066 122.7608 122.9495
50 133.0002 133.369 133.2169 133.0452

1  https​://snap.stanf​ord.edu/data/soc-Epini​ons1.html
2  https​://snap.stanf​ord.edu/data/soc-Slash​dot09​02.html

http://www.epinions.com
http://www.slashdot.org
https://snap.stanford.edu/data/soc-Epinions1.html
https://snap.stanford.edu/data/soc-Slashdot0902.html


Vol.:(0123456789)

SN Applied Sciences (2020) 2:2067 | https://doi.org/10.1007/s42452-020-03812-w	 Research Article

General Greedy According to 2], this algorithm is evalu-
ated by Monte Carlo simulation R = 10,000 and the acti-
vation probability p = 0.01 under independent cascade 
model.

High Degree According to [2], in this algorithm, the influ-
ence spread of k seed nodes with the highest degree of 
the graph is calculated under the independent cascade 
model.

SAEDV According to [16], in this algorithm, choose to 
initialize a node set randomly and optimize it with itera-
tions. The parameters for SAEDV algorithm are set as fol-
lows: the initial temperature T0 = 500000, the final temper-
ature Tf = 100000, the number of inner loop q = 10 and the 
temperature drop after each inner loop ∆T = 2000.

LIR According to [25], in this algorithm, nodes with 0-LI 
are selected for the NetScience, NetHEPT, NetPHY, Epin-
ions1, and Slashdot0902 datasets, while in the Email data-
set, nodes with 0-LI are low, then nodes are selected with 
1-LI. Influence spread calculations are performed by Monte 
Carlo simulation R = 10,000 and the activation probability 
p = 0.01 under independent cascade model.

DDSE According to [28], the results of this algorithm 
are obtained with the size of the population Npop = 10, 
mutation probability OPMutation = 0.1, Crossover prob-
ability OPCrossover = 0.4, Number of generation the evolu-
tion lasts MaxIt = 200 and the diversity of the population 
Diversity = 0.6.

5.3 � Diffusion model

Researchers have proposed various types of information 
diffusion models [2, 36–40]. One of the most widely used 
diffusion models is the independent cascade model, which 
has been used in most studies [2, 5, 37, 41, 42]. Our algo-
rithm focuses on the influence maximization problem 
under the independent cascade model too. This model 
was introduced by Goldenberg et al. [5]. In this model, the 
nodes are either in an active or inactive state. Each edge 
between two nodes v and u has the activation probability 
Pvu that means inactive node u is active by node v. Each 
active node v at time t can only activate its neighbor’s inac-
tive node once. And then, nodes that are activated at time 
t − 1 can activate their neighbor inactive nodes. Thus, if 
every active node v at time t with probability Pvu activates 
its neighbor inactive nodes, then at time t + 1 considered 
as an active node. The diffusion process will stop when no 
more new nodes are activated.

5.4 � Experimental results

According to the description of the proposed algorithm, 
first, l groups are created. Here, the GIN algorithm is tested 

Table 6   The influence spread of GIN algorithm with different num-
bers of l on NetPHY dataset

Seed nodes Number of groups

l = 100 l = 150 l = 200 l = 250

5 79.2958 79.6139 80.169 80.0705
10 133.6122 133.9336 133.8765 133.8068
15 163.5793 163.4865 162.8304 162.949
20 189.8483 191.1813 190.3365 190.7536
25 213.0976 212.5837 213.0566 212.7283
30 235.4313 236.9035 236.1157 235.8644
35 257.4762 256.9975 257.1422 257.4434
40 274.1901 274.2439 274.079 273.9996
45 297.3691 297.4009 296.6467 296.7144
50 312.5917 312.6715 311.8995 311.0109

Table 7   The influence spread of GIN algorithm with different num-
bers of l on Epinions1 dataset

Seed nodes Number of groups

l = 100 l = 150 l = 200 l = 250

5 297.5951 296.5954 298.7346 297.5165
10 386.8471 386.6091 386.9116 386.9241
15 443.5619 443.6522 443.1479 443.5492
20 495.6272 496.7142 496.3577 496.4521
25 531.0407 530.365 529.8079 530.0372
30 561.9917 561.391 561.741 562.222
35 596.5624 596.6392 596.4791 595.4423
40 617.033 617.4826 615.7071 616.8711
45 644.4913 643.5229 643.6808 643.9246
50 668.1688 668.1874 668.4707 666.7429

Table 8   The influence spread of GIN algorithm with different num-
bers of l on Slashdot0902 dataset

Seed nodes Number of groups

l = 100 l = 150 l = 200 l = 250

5 797.9882 798.2574 798.0206 800.7689
10 904.4977 902.3836 900.3276 904.5713
15 967.3272 967.9448 967.1864 969.4299
20 1031.35 1033.427 1030.27 1032.101
25 1078.159 1078.335 1078.108 1075.829
30 1115.339 1115.513 1114.212 1114.561
35 1153.326 1155.722 1155.516 1155.113
40 1190.819 1191.583 1194.431 1194.35
45 1226.905 1228.293 1228.11 1228.263
50 1255.015 1255.91 1255.753 1255.092
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with different l to selecting the best value of parameter 
l with the highest influence spread on each seven real-
world datasets. The influence spread results of this algo-
rithm with different l are shown in Tables 2, 3, 4, 5, 6, 7, 
and 8 on Email, NetScience, Power, NetHEPT, NetPHY, Epin-
ions1, and Slashdot0902 datasets respectively. According 
to these results, obviously, the influence spread of the dif-
ferent l is very close to each other algorithms, but the influ-
ence spread of the GIN with l = 150 is higher than other 
values of the parameter l in most of the k nodes. Thus, to 
compare the influence spread of the proposed algorithm 
with other algorithms is used parameter l=150 for the GIN 
algorithm on all of seven datasets.

The results of the evaluated algorithms in terms of influ-
ence spread and running time are shown in Fig. 6. These 
algorithms were implemented with fixed activation prob-
ability (p = 0.01) and varying sizes of the seed set with the 
range from k = 5 to k = 50 based on the independent cas-
cade model. The x-axis indicates the seed nodes, and the 
y-axis indicates the influence spread.

The influence spread of the evaluated algorithms on 
the Email dataset is shown in Fig. 6a. In this figure, the 
results of the algorithms General Greedy and GIN are close 
to each other. The influence spread in the SAEDV algorithm 
is higher than the High Degree and DDSE algorithms. The 
influence spread in the DDSE algorithm from k = 5 to k = 20 
is very close to that of the High Degree algorithm, and 
from k = 25 to k = 50, it follows a gradual reduction. The LIR 
algorithm has the lowest influence spread than the other 
algorithms in the Email dataset.

In Fig. 6b, the influence spread of the evaluated algo-
rithms on the NetScience dataset is shown. In this figure, 
the influence spread of General Greedy, GIN, and DDSE 
algorithms are higher than other algorithms and are close 
to each other. The influence spread in LIR and SAEDV algo-
rithms is less than the High Degree algorithm. Also, the 
influence spread of the comparable algorithms on the 
Power dataset is shown in Fig. 6c. According to Fig. 6c, 
General Greedy and GIN have higher influence spread than 
other algorithms. The highest influence spread belongs to 
DDSE after than the General Greedy and GIN algorithms. 
Then, the influence spread from high to low belongs to the 
High Degree, LIR, and SAEDV in most k nodes, respectively.

The influence spread of the evaluated algorithms on 
the NetHEPT dataset is shown in Fig. 6d, where the highest 
influence spread is for General Greedy and then GIN algo-
rithm. The influence spread in the GIN algorithm, for k = 5 
to k = 25, is very close to the General Greedy algorithm. The 
DDSE algorithm has a higher influence spread than the 

High Degree, LIR, and SAEDV algorithms. Of course, the 
results of the DDSE algorithm from k = 5 to k = 20 are close 
to the GIN algorithm. After the DDSE algorithm, the high-
est influence spread is for the High Degree algorithm and 
then the LIR algorithm. The influence spread of the SAEDV 
algorithm is very low on the NetHEPT dataset.

The influence spread of the evaluated algorithms on 
the NetPHY dataset is shown in Fig. 6e. In this figure, the 
influence spread of General Greedy and then GIN are 
higher than other algorithms. Also, the influence spread 
from most to less is for the DDSE algorithm and then the 
High Degree, LIR, and SAEDV algorithms. Also, the influ-
ence spread of the evaluated algorithms on the Epinions1 
dataset is shown in Fig. 6f. Epinions1 is a large-scale data-
set, and the General Greedy algorithm cannot run on it 
because this algorithm has a high running time. Therefore, 
the run of the General Greedy algorithm on the Epinions1 
dataset is ignored. As observed in Fig. 6f, the GIN and High 
Degree algorithms have higher influence spread than 
other algorithms. However, GIN and High Degree algo-
rithms have very close results in some k nodes, but the GIN 
algorithm in most k nodes has a higher influence spread 
than the High Degree. Then the influence spread of the 
DDSE algorithm is more than SAEDV and LIR algorithms.

In Fig. 6g, the influence spread of the algorithms on the 
Slashdot0902 dataset is shown. This dataset, like the Epin-
ions1 dataset, has a large-scale, and the General Greedy 
algorithm cannot run on it because this algorithm has 
a high running time. Therefore, the run of the General 
Greedy algorithm on the Slashdot0902 dataset is ignored. 
According to Fig. 6g, the influence spread of the GIN algo-
rithm is higher than other algorithms. Of course, the High 
Degree and DDSE algorithms in some k nodes have results 
close to the GIN algorithm. But in general, the GIN algo-
rithm in the Slashdot0902 dataset has shown more influ-
ence spread than the compared algorithms. The SAEDV 
algorithm and then the LIR algorithm in this dataset has 
the lowest influence spread.

The speedup % (in terms of influence spread) of the 
GIN algorithm over other algorithms is shown in Table 9. 
In this table, the General Greedy algorithm called GG and 
the High Degree algorithm called HD. Due to the General 
Greedy lack of scalability, its results are not reported for 
Epinions1 and Slashdot0902 datasets. Table 9 shows the 
speedup % (in terms of influence spread) of our proposed 
algorithm GIN over other algorithms. The speedup is com-
puted using Eq. (4). We can see that the GIN algorithm has 
a positive speedup over other algorithms in this table.

(4)Speedup = ((� − �)∕�) × 100

Fig. 6   Diagram of the influence spread on (a) Email dataset, (b) 
NetScience dataset, (c) Power dataset, (d) NetHEPT dataset, (e) Net-
PHY dataset, (f) Epinions1 dataset and (g) Slashdot0902 dataset

◂
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According to the Eq. (4), α is the influence spread of the 
GIN algorithm, and β is the influence spread of the other 
algorithms for different k seed nodes.

The results of the running time algorithms are shown 
in Fig. 7 on the seven datasets Email, NetScience, Power, 
NetHEPT, NetPHY, Epinions1, and Slashdot0902. These 
results are for k = 50 and the number of the Monte Carlo 
simulation R = 10000 under the independent cascade 
model per second. According to Fig. 7, the High Degree 
and LIR algorithms have the lowest running time in all 
seven datasets. Of course, the High Degree and LIR algo-
rithms have low the influence spread on more comparable 

datasets. Then, the running time from lowest to highest 
belongs to the GIN, DDSE, SAEDV algorithms, and then to 
the General Greedy algorithm.

Given the results of influence spread and running time 
of the compared algorithms in Figs. 6 and 7, it is quite 
obvious that the GIN algorithm has high influence spread 
along with low running time in all seven datasets.

Table 9   Speedup % (in terms of influence spread) on different datasets

Datasets Seed set size Algorithms

GIN GG GIN DDSE GIN SAEDV GIN LIR GIN HD

Email 10 −0.92 0.93 −0.61 0.614 −0.4 0.45 2.13 −2.09 −0.46 0.46
20 0.35 −0.35 1.37 −1.35 0.34 −0.34 14 −12.3 0.40 −0.40
30 0.48 −0.48 1.62 −1.60 0.93 −0.92 18.7 −15.7 0.74 −0.73
40 0.51 −0.50 1.98 −1.94 0.32 −0.32 20.3 −16.9 0.84 −0.83
50 0.17 −0.17 2.69 −2.62 0.38 −0.38 20.5 −17 0.63 −0.63

NetScience 10 0.28 −0.28 0.53 −0.53 10.1 −9.24 0.67 −0.67 0.38 −0.38
20 −0.17 0.17 0.21 −0.21 10.6 −9.62 1.36 −1.34 4.42 −4.23
30 −0.25 0.25 0.51 −0.51 6.08 −5.73 4.06 −3.90 7.58 −7.04
40 −0.04 0.04 0.53 −0.53 4.86 −4.63 5.35 −5.07 5.05 −4.81
50 0.04 −0.04 0.13 −0.13 6.02 −5.67 5.18 −4.92 3.75 −3.61

Power 10 0.03 −0.03 4.48 −4.29 14.1 −12.3 9.68 −8.83 3.54 −3.42
20 0.33 −0.33 3.03 −2.91 6.82 −6.39 4.78 −4.56 2.53 −2.47
30 0.30 −0.30 2.02 −1.98 5.27 −5.01 3.06 −2.97 5.21 −4.95
40 0.60 −0.60 1.53 −1.51 4.18 −4.01 2.38 −2.32 1.30 −1.28
50 0.56 −0.56 1.01 −1.01 3.85 −3.70 3.75 −3.61 2.28 −2.23

NetHEPT 10 −0.55 0.56 2.208 −2.16 62.7 −38.5 4.88 −4.65 23.152 −18.80
20 −0.02 0.02 1.973 −1.93 67.7 −40.3 10 −9.13 21.541 −17.72
30 −1.97 2.01 2.721 −2.64 53.8 −35 14.9 −12.9 12.124 −10.81
40 −1.39 1.41 6.519 −6.12 37.8 −27.4 18.1 −15.3 9.799 −8.92
50 −0.93 0.94 5.835 −5.51 44.4 −30.7 21.4 −17.6 8.747 −8.043

NetPHY 10 −6.06 6.45 −7.30 −6.197 70.3 −41.2 6.15 −5.79 16.676 −14.29
20 −3.95 4.12 7.411 −6.90 53.7 −34.9 12 −10.7 7.931 −7.348
30 −2.07 2.11 5.480 −5.195 86.7 −46.4 16.5 −14.2 8.366 −7.720
40 −1.96 2 4.741 −4.527 99.8 −49.9 25.6 −20.4 12.171 −10.85
50 −0.59 0.59 7.882 −7.306 142 −58.7 38.4 −27.7 18.858 −15.86

Epinions1 10 – – 1.416 −1.396 13.3 −11.8 31.3 −23.8 −0.009 0.009
20 – – 2.296 −2.245 27.7 −21.7 60.5 −37.7 −0.388 0.390
30 – – 4.101 −3.940 44.5 −30.8 75.6 −43 0.484 −0.482
40 – – 3.738 −3.603 22.5 −18.4 87.3 −46.6 0.395 −0.393
50 – – 4.610 −4.407 23.8 −19.2 96.1 −49 0.987 −0.977

Slashdot0902 10 – – 1.161 −1.148 3.59 −3.47 0.90 −0.89 −0.283 0.284
20 – – 1.907 −1.871 8.17 −7.55 10.2 −9.32 −0.178 0.178
30 – – 0.563 −0.559 7.32 −6.82 17.4 −14.8 0.106 −0.106
40 – – 1.418 −1.399 9.13 −8.37 23.9 −19.3 0.109 −0.109
50 – – 0.954 −0.945 7.49 −6.96 29.2 −22.6 0.452 −0.450
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6 � Conclusion

Influence maximization is a problem that has been 
addressed in social networks analysis and viral marketing. 
The purpose of this problem is to find the k individual that, 
by activating them, the highest number of people in a 
social network can be activated at an acceptable time. For 
this purpose, the GIN algorithm is presented in this article. 
In this algorithm, the process of creating different groups, 
including graph nodes with more number of connections 
and more common neighbors than other groups, is per-
formed. Hence, the search space to find the final influen-
tial nodes is reduced. This process reduces the number of 
computations and increases the speed of the proposed 
algorithm. Next, nodes from the new search space that 
maximize the marginal gain function of the expected dif-
fusion value are selected as the seed node. Experimental 
results show that the GIN algorithm, in comparison algo-
rithms on all seven real-world datasets, has provided high 
influence spread along with low running time.
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