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Abstract
By utilizing the three distinctive approaches specifically, the extended Fan sub-equation method, the exp[−G(�)]-func-
tion expansion method, and the fractional transformation method, the traveling waves and soliton solutions of the 
(4+1)-dimensional nonlinear Fokas equation are extracted. Meanwhile, some parametric constraint conditions are 
described. The acquired solutions are singular and nonsingular soliton solutions, periodic solutions, breather solution, 
rational solutions, trigonometric periodic wave solutions, hyperbolic solutions, Weierstrass, and Jacobi elliptic doubly 
periodic wave solutions. The dynamics of some of the obtained solutions are investigated and described in 2-dimensional 
figures by choosing appropriate parameter values. The comparison of our obtained results with the other solutions 
in literature shows that the obtained solutions of this paper are new and have not been formulated before by other 
techniques. We believe that all these results are useful to enrich the knowledge of the important physical phenomenon 
characterized by the Fokas equation. The reported solutions illustrate the straightforwardness, reliability, and effective-
ness of the used techniques that can be further employed to higher-dimensional nonlinear evolution equations.

Keywords  Soliton · Traveling wave solution · Jacobi elliptic function solution · The extended sub-equation method · The 
exp[−G(�)]-function expansion method · The fractional transformation method

1  Introduction

The nonlinear evolution equations (NLEEs) transpire in 
a wide spectrum of physical problems such as plasma 
physics, fluid dynamics, solid mechanics, nonlinear 
optics, oceanography, engineering, chemistry, biology, 
quantum field theory, and several others. It is requisite 
to extract traveling wave solutions of NLEEs to identify 
the mechanisms of the nonlinear physical phenom-
ena characterized by these equations. Over the years 
much care has been paid by the research scholars for 
this purpose and evolved many powerful, reliable, and 
compact techniques for handling NLEEs. These are the 
inverse scattering transform method, auto Bäcklund 

transformation method, Hirota’s bilinear transforma-
tion method, the tanh-coth function method, the pro-
jective Riccati equation method, the ansatz method, the 
F-expansion method, the simplest equation method, the 
modified and extended simplest equation method, the 
extended sinh-Gordon equation expansion method, 
the auxiliary equation method, the (G�

∕G) -expansion 
method and it’s extended versions, the fractional trans-
formation, the extended and modified auxiliary equation 
method, the trial function method, the reductive pertur-
bation method, the extended modified rational expan-
sion method, the modified extended mapping method, 
the extended sub-equation method and the exp[−G(�)
]-function expansion method [1–32] and many more. 
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Essentially, there is no common integrated scheme that 
can be applied to all types of NLEEs. Generally, it is a 
challenging task to realize the exact solutions of NLEEs. 
Fan [33] developed a new sub-equation method to attain 
analytical exact solutions of NLEEs. Numerous authors 
presented the extended Fan sub-equation method by 
employing various sub-equations and realized plentiful 
new exact solutions of nonlinear equations [34–36].

In the contemporaneous work, we observe more 
prevailing traveling wave solutions to the subsequent 
higher-dimensional integrable (4+1)-dimensional non-
linear Fokas equation, restructures in the dimensionless 
form as

which achieved in the important integrable generaliza-
tions of the Davey–Stewartson (DS) and Kadomtsev–Pet-
viashvili (KP) Eq.  [37]. The KP and DS equations princi-
pally utilized to represent the internal tides and surface 
waves effect in canals and 3-dimensional progression of 
the wavefront on the water of measurable depth, respec-
tively [38]. The higher-dimensional nonlinear Fokas equa-
tion with the increasing number of physical variables may 
incorporate more facts, information, and properties con-
cerning the natural phenomena [37]. Fokas at el. stretched 
their investigation to the nonlinear integrable partial dif-
ferential equations in multi-dimensions [39].

Several authors investigated Eq. (1) by numerous ana-
lytic methodologies such as the Exp-function method, 
the parameter limit method [40], the (G�

∕G)-expansion 
method [41], the modified and the extended version 
of simplest equation method [23], the Hirota’s bilinear 
transformation method [5, 6], the extended F-expansion 
method [42]. Very recently, we reported localized soliton 
solutions of Eq. (1) in Ref.[43] using the Jacobian elliptic 
function method, the semi-inverse variational technique, 
the Padés type transformation, and the triangle function 
approach, respectively.

To our best knowledge, Eq. (1) is not studied else-
where by means of the extended Fan sub-equation pro-
cedure, the exp[−G(�)]-function expansion technique, 
and the fractional Möbius transformation method. 
Therefore in this work, we find some new traveling wave 
solutions to Eq. (1) by utilizing the above-mentioned 
schemes.

The sections are arranged as follows: A brief narra-
tive of the extended Fan sub-equation method, the exp-
function expansion method, and the fractional Möbius 
transformation method are conferred in Sect.  2. In 
Sect. 3, we solve the (4+1)-dimensional Fokas equation 
by application of different methods, and different kinds 
of solutions namely hyperbolic, trigonometric, rational, 

(1)4Utx − Uxxxy + Uxyyy + 12UxUy + 12UUxy − 6Uzw = 0,

Weierstrass, and Jacobian doubly periodic solutions are 
reported. In Sect. 4, graphical representations of some 
of the obtained solutions of Eq. (1) are portrayed and 
discussed. Section 5, allotted for conclusions.

2 � Overview of the methods

2.1 � Outlines of the extended Fan sub‑equation 
approach

The key footsteps of the extended Fan sub-equation 
method are given as [44, 45]:

For a given nonlinear partial differential equation (PDE)

where L is a polynomial of v(x, y, t) and its partial deriva-
tives in which the highest order derivatives and nonlinear 
terms are contained.

Step1 Change of variables v(x, y, t) = v(�) , where 
� = �x + �y + �t + �0 turn PDE (2) into a nonlinear ordinary 
differential equation (ODE) as

where � is identified as the wave speed of propagation and 
� , � , �0 are arbitrary undetermined parameters. F is defined 
as a polynomial of v(�) and its partial derivatives with 
prime (�) = d

d�
.

Step 2 We adopt the solution of Eq. (3) in the following 
extended form

and � satisfies the following sub-equation

here cj , ai , bi (j = 0, 1, 2, 3, 4;i = 0, 1, 2, 3, ...,N) are constants 
to be reviewed later. Therefore, the necessary derivatives 
are given as

(2)L(v, vt , vx , vy , vtt , vxx , vyy , ...) = 0,

(3)F(v, �v
�

, �v
�

, �v
�

, �2v
��

, �2v
��

, �2v
��

, ...) = 0,

(4)v(�) =

N∑
i=0

ai�
i +

N∑
i=1

bi�
−i ,

(5)�
�2
(�) =

4∑
j=0

cj�
j ,

(6)dv

d�
=�

√√√√ 4∑
j=0

cj�
j dv

d�
,

(7)
d2v

d�2
=
1

2

4∑
j=1

jcj�
j−1 dv

d�
+

4∑
j=0

cj�
j d

2v

d�2
,
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where � = ±1 . The first order Eq. (5) provides various types 
of fundamental solutions [45]. From these solutions, more 
new type of exact solutions of Eq. (2) can be achieved.

Step 3 Find the positive number N in Eq. (3) by balanc-
ing the highest order derivatives and the nonlinear terms.

Step 4 Replace Eq. (4) into Eq. (3) along with Eq.(5) 
resulting in a polynomial of �i(�)(i = 0, 1, 2, ...) . Gathering 
all terms of same powers and setting them to be zero, pro-
vide a set of algebraic equations which can be resolved 
for unknown parameters with the help of Maple or Math-
ematica. Subsequently, the exact solutions to nonlinear 
Eq. (1) are retrieved.

2.2 � Outlines of the exp[−G(�) ] function expansion 
approach

Step 1 The solution of Eq. (3) can be specified as

where integer N is determined by balancing procedure 
from Eq. (3).

Step 2 The function G(�) satisfies the following differ-
ential equation:

where s and r are constants.
The solutions of Eq. (9) read as

(8)v(�) =

N∑
i=0

ai[exp(−G(�))]
i ,

(9)
dG(�)

d�
= exp(−G(�)) + s exp(G(�)) + r,

(10)G(𝜉) = ln
�
−

r

2s
−

√
r2 − 4s

2s
tanh

�√r2 − 4s

2
(𝜉 + 𝜉0)

��
, s ≠ 0, r2 − 4s > 0,

(11)G(𝜉) = ln
�
−

r

2s
−

√
r2 − 4s

2s
coth

�√r2 − 4s

2
(𝜉 + 𝜉0)

��
, s ≠ 0, r2 − 4s > 0,

(12)G(𝜉) = ln
�
−

r

2s
+

√
4s − r2

2s
tan

�√
4s − r2

2
(𝜉 + 𝜉0)

��
, s ≠ 0, r2 − 4s < 0,

(13)G(𝜉) = ln
�
−

r

2s
−

√
4s − r2

2s
cot

�√
4s − r2

2
(𝜉 + 𝜉0)

��
, s ≠ 0, r2 − 4s < 0,

Step 3 Replacing Eq. (8) into (3)along with Eq.(9) and com-
paring the same powers of exp(−G(�)) to zero, we get 
polynomial equations which are solved for undetermined 
constants using Maple software.

Step 4 With the help of solutions of Eq. (9) from (10–13), 
the exact solutions of Eq. (1) are described.

2.3 � Outlines of the fractional transformation 
approach

Step 1 Eq. (3) assumes the following form of solution as

where l is defined as an integer, ã, b̃ and d̃ are unde-
termined real constants, and the modulus parameter 
m(0 ≤ m ≤ 1) in a Jacobian elliptic function f (�,m) defines 
the degree of localization.

Step 2 Using the balance principal, the positive integer 
l can be evaluated. In Eq. (14), the function f (�,m) can 
be described as f (�,m) = sn(�,m) , f (�,m) = cn(�,m) or 
f (�,m) = dn(�,m).

Step 3 Replace Eq. (14) into Eq. (3) and relating the coef-
ficients of same powers of one of the selected Jacobian 
elliptic function f (�,m) to zero results in a set of polyno-
mial equations which further can be solved for unknown 
parameters and constants. Subsequently substituting the 
determined parameters into Eq. (14) and the forms of the 
function f (�,m) , the localized solutions of Eq. (1) can be 
attained.

(14)𝜙(𝜉) =
ã + b̃f (𝜉,m)l

1 + d̃f (𝜉,m)l
,
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3 � Applications of the methods

3.1 � Exact solutions of Eq. (1) via extended Fan 
sub‑equation method

For the traveling wave solutions of Eq. (1), we adopt the 
subsequent wave transformation as

where � , � , � , � and � are assumed to be nonzero constants 
and �0 is an arbitrary constant. On substituting Eq. (15) into 
Eq. (1), we get the following form of reduced ODE:

Here � represent the velocity of propagation. On integrat-
ing Eq. (16) twice w.r.t. � and allowing integration con-
stants to be zero, we obtain

One can easily show that balancing the highest order 
derivative term U′′ having exponent N + 2 with the leading 
nonlinear term U2 with exponent 2N in Eq. (17) provides 
N = 2 . Henceforth, the solution of Eq. (17) has the follow-
ing form

On replacing U(�) and its derivatives along with Eq. (5) into 
Eq. (17) and relating all the coefficients of equal powers 
of �j , j = [−4, 4] to be zero, we realise a set of algebraic 
equations: 

(15)
U(x, y, z,w, t) = U(�), � = �x + �y + �z + �w + �t + �0,

(16)(��3 − �3�)U
����

+ (4�� − 6��)U
��

+ 12��(UU
�

)
�

= 0.

(17)(��3 − �3�)U
��

+ (4�� − 6��)U + 6��U2 = 0.

(18)U(�) = a0 + a1� + a2�
2 + b1�

−1 + b2�
−2.

(19a)12a2��(c4�
2 − c4�

2 + a2) = 0,

(19b)
24

{(
−

1

6
c4a1 −

5

12
a2c3

)
�2

+
(
5

12
a2c3 +

1

6
c4a1

)
�2 + a1a2

}
�� = 0,

(19c)
�(−3c3a1 − 8a2c2)�

3 + ((3c3a1 + 8a2c2)�
3

+ (12a2
1
+ 24a0a2)� + 8�a2)� − 12��a2 = 0,

(19d)
− 2�(3a2c1 + c2a1)�

3 + ((2c2a1 + 6a2c1)�
3

+ (24b1a2 + 24a1a0)� + 8a1�)� − 12a1�� = 0,

(19e)

− �(4a2c0 + 4b2c4 + b1c3 + a1c1)�
3

+ ((4a2c0 + 4b2c4 + b1c3 + a1c1)�
3

+ (24a1b1 + 12a2
0
+ 24a2b2)� + 8a0�)�

− 12��a0 = 0,

 Solving the resulting set of algebraic equations (19a–19h) 
self consistently with the help of Maple and considering 
the different types of fundamental solutions of Eq. (5) [45], 
we obtain the subsequent cases which leads to different 
kinds of solutions of considered model equation.

Family 1 If c0 = c1 = c3 = 0 . We have the following 
results

Combining Eq. (20) with Eq. (18) and utilizing the solutions 
of sub-equation, we get, solitary wave solutions, singular 
periodic solutions and rational solution of Eq. (1) as:

Family 2 If c1 = c3 = 0 . We have the subsequent results
Set(i)

(19f )

− 2�(3b
2
c
3
+ b

1
c
2
)�3 + ((2b

1
c
2
+ 6b

2
c
3
)�3

+ (24b
2
a
1
+ 24a

0
b
1
)� + 8�b

1
)�

− 12��b
1
= 0.

(19g)
�(−8b2c2 − 3b1c1)�

3 + ((8b2c2 + 3b1c1)�
3

+ (12b1
2 + 24a0b2)� + 8�b2)� − 12��b2 = 0,

(19h)

24�
{(

−
5

12
b2c1 −

1

6
b1c0

)
�2

+
(
1

6
b1c0 +

5

12
b2c1

)
�2

+ b1b2

}
� = 0.

(20)
a1 =b1 = b2 = 0, a0 =

−2�� + 3��

3��
,

a2 =c4(�
2 − �2), c2 =

−2�� + 3��

2��(�2 − �2)
.

(21)

U(𝜉) =
−2𝛼𝜂 + 3𝜒𝜆

3𝛼𝛽
+ c4(𝛼

2 − 𝛽2)

[√
2𝛼𝜂 − 3𝜒𝜆

2𝛼𝛽(𝛼2 − 𝛽2)c4
sech

(√
−2𝛼𝜂 + 3𝜒𝜆

2𝛼𝛽(𝛼2 − 𝛽2)
𝜉

)]2
,

c2 > 0, c4 < 0.

(22)

U(𝜉) =
−2𝛼𝜂 + 3𝜒𝜆

3𝛼𝛽
+ c4(𝛼

2 − 𝛽2)

[√
2𝛼𝜂 − 3𝜒𝜆

2𝛼𝛽(𝛼2 − 𝛽2)c4
sec

(√
2𝛼𝜂 − 3𝜒𝜆

2𝛼𝛽(𝛼2 − 𝛽2)
𝜉

)]2
,

c2 < 0, c4 > 0.

(23)
U(𝜉) =

−2𝛼𝜂 + 3𝜒𝜆

3𝛼𝛽
+

(𝛼2 − 𝛽2)

𝜉2
,

c2 = 0, c4 > 0.
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Substituting Eq. (24) with Eq. (18) and utilizing the solu-
tions of Fan sub-equation we get the hyperbolic function 
wave solution, a trignometric solution and three Jacobi 
elliptic periodic wave solutions with double period.

Set(ii)

Proceeding as before we substitute Eq. (30) in Eq. (18). As 
a result we obtain

(24)a0 = a1 = a2 = b1 = 0,� = −
2��

3�
, � + � = 0.

(25)

U(𝜉) =b2

[
±

√
−

c2

2c4
tanh

(√
−
c2

2
𝜉

)]−2
,

c2 < 0, c4 > 0, c0 =
c2
2

4c4
.

(26)

U(𝜉) = b2

[
±

√
c2

2c4
tan

(√
c2

2
𝜉

)]−2
,

c2 > 0, c4 > 0, c0 =
c2
2

4c4
.

(27)

U(𝜉) = b2

[√
−

c2m
2

c4(2m
2 − 1)

cn

(√
c2

2m2 − 1
𝜉

)]−2
,

c2 > 0, c4 < 0, c0 =
c2
2
m2(1 −m2)

c4(2m
2 − 1)2

.

(28)

U(𝜉) = b2

[√
−

m2

c4(2 −m2)
dn

(√
c2

2 −m2
𝜉

)]−2
,

c2 > 0, c4 < 0, c0 =
c2
2
(1 −m2)

c4(2 −m2)2
.

(29)

U(𝜉) = b2

[
±

√
−

c2m
2

c4(m
2 + 1)

sn

(√
−

c2

m2 + 1
𝜉

)]−2
,

c2 < 0, c4 > 0, c0 =
c2
2
m2

c4(m
2 + 1)2

.

(30)

a1 =b1 = b2 = 0, a2 = (�2 − �2)c4,

c2 =
(�2 − �2)2c0c4 + 3a2

0

(�2 − �2)a0
,

� =
��(�2 − �2)2c0c4 − 3��a2

0
+ 3��a0

2�a0
.

(31)

U(𝜉) = a0 + (𝛼2 − 𝛽2)c4

[
±

√
−
(𝛼2 − 𝛽2)2c0c4 + 3a2

0

2c4(𝛼
2 − 𝛽2)a0

tanh

(√
−
(𝛼2 − 𝛽2)2c0c4 + 3a2

0

2(𝛼2 − 𝛽2)a0
𝜉

)]2
,

c2 < 0, c4 > 0, c0 =
c2
2

4c4
.

(32)

U(𝜉) = a0 + (𝛼2 − 𝛽2)c4

[
±

√
(𝛼2 − 𝛽2)2c0c4 + 3a2

0

2c4(𝛼
2 − 𝛽2)a0

tan

(√
(𝛼2 − 𝛽2)2c0c4 + 3a2

0

2(𝛼2 − 𝛽2)a0
𝜉

)]2
,

c2 > 0, c4 > 0, c0 =
c2
2

4c4
.

(33)

U(𝜉) = a0 + (𝛼2 − 𝛽2)c4

[√
−
[(𝛼2 − 𝛽2)2c0c4 + 3a2

0
]m2

c4(2m
2 − 1)(𝛼2 − 𝛽2)a0

cn

(√
(𝛼2 − 𝛽2)2c0c4 + 3a2

0

(2m2 − 1)(𝛼2 − 𝛽2)a0
𝜉

)]2
,

c2 > 0, c4 < 0, c0

=
[(𝛼2 − 𝛽2)2c0c4 + 3a2

0
]2m2(1 −m2)

c4(2m
2 − 1)2(𝛼2 − 𝛽2)2a2

0

.

(34)

U(𝜉) = a0 + (𝛼2 − 𝛽2)c4
[√

−
m2

c4(2 −m2)
dn

(√
(𝛼2 − 𝛽2)2c0c4 + 3a2

0

(2 −m2)(𝛼2 − 𝛽2)a0
𝜉

)]−2
,

c2 > 0, c4 < 0, c0

=
[(𝛼2 − 𝛽2)2c0c4 + 3a2

0
]2(1 −m2)

c4(2 −m2)2(𝛼2 − 𝛽2)2a2
0

.
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In the limit case when m → 1 ,  cn(�, 1) = sech (�) , 
sn(�, 1) = tanh(�) and dn(�, 1) = sech (�) and this exhibits 
that some of the above obtained solitary wave solutions 
are obtained as the limiting case of the Jacobian elliptic 
doubly periodic wave solutions.

Family 3 If we select c0 = c1 = c4 = 0 . We have the fol-
lowing set of results

Therefore, we determined a bell-shaped solitary wave 
solution, a triangular form solution and a rational type 
solution as:

Family 4 If we set c2 = c4 = 0 , c3 > 0 and c0 ≠ 0, c1 ≠ 0 . The 
set of algebraic equations (19a–19g) provide the follow-
ing results:

Set(i)

Accordingly, we have the Weierstrass elliptic solution of 
Eq. (1) as:

(35)

U(𝜉) = a0 + (𝛼2 − 𝛽2)c4

[
±

√
−
[(𝛼2 − 𝛽2)2c0c4 + 3a2

0
]m2

c4(m
2 + 1)(𝛼2 − 𝛽2)a0

sn

(√
−
(𝛼2 − 𝛽2)2c0c4 + 3a2

0

(m2 + 1)(𝛼2 − 𝛽2)a0
𝜉

)]2
,

c2 < 0, c4 > 0, c0

=
[(𝛼2 − 𝛽2)2c0c4 + 3a2

0
]2m2

c4(m
2 + 1)2(𝛼2 − 𝛽2)2a2

0

.

(36)

a2 = b1 = b2 = 0, a0 =
−2�� + 3��

3��
,

a1 =
(�2 − �2)c3

4
, c2 =

−4�� + 6��

��(�2 − �2)
.

(37)

U(𝜉) =
−2𝛼𝜂 + 3𝜒𝜆

3𝛼𝛽

[
1 −

3

2
sech

2

(√
−2𝛼𝜂 + 3𝜒𝜆

2𝛼𝛽(𝛼2 − 𝛽2)
𝜉

)]
, c2 > 0.

(38)

U(𝜉) =
−2𝛼𝜂 + 3𝜒𝜆

3𝛼𝛽

[
1 −

3

2
sec2

(√
2𝛼𝜂 − 3𝜒𝜆

2𝛼𝛽(𝛼2 − 𝛽2)
𝜉

)]
, c2 < 0.

(39)U(�) =
−2�� + 3��

3��
+

(�2 − �2)

�2
, c2 = 0.

(40)

a2 = b1 = b2 = 0,

a0 =
−2�� + 3��

6��
,

a1 =
(�2 − �2)c3

4
,

c3 = −
4

3

[4�2�2 − 12���� + 9�2�2]

c1�
2�2(�2 − �2)2

.

where g2 =
3c2

1
�2�2(�2−�2)2

4�2�2−12����+9�2�2
 and g3 =

3c0c1�
2�2(�2−�2)2

4�2�2−12����+9�2�2
.

Set(ii)

Subsequently, we get the Weierstrass elliptic solution of 
Eq (1) as:

where g2 =
−12c2

1
�2�2(�2−�2)2

4�2�2−12����+9�2�2
 and g3 = −

12c0c1�
2�2(�2−�2)2

4�2�2−12����+9�2�2
.

Family 5 If c0 = c1 = c2 = 0 . We obtain the following 
results:

We obtain rational type solution and exponential type 
solutions of (4+1)D nonlinear Fokas Eq. (1) as:

(41)

U(�) =
−2�� + 3��

6��

+
(�2 − �2)c3

4
℘

�√
c3

2
, g2, g3

�
,

(42)

a2 = 0, a0 =
−2�� + 3��

6��
, a1 =

(�2 − �2)c3

4
,

b1 =
4�2�2 − 12���� + 9�2�2

12c3�
2�2(�2 − �2)

,

b2 = −
(�2 − �2)c0

4
,

c3 =
4�2�2 − 12���� + 9�2�2

3c1�
2�2(�2 − �2)2

.

(43)

U(�) =
−2�� + 3��

6��
+

(�2 − �2)c3

4
℘

�√
c3

2
, g2, g3

�

+
4�2�2 − 12���� + 9�2�2

12c3�
2�2(�2 − �2)

�
℘

�√
c3

2
, g2, g3

��−1

−
(�2 − �2)c0

4

�
℘

�√
c3

2
, g2, g3

��−2
,

(44)
b1 = b2 = 0, a0 =

−2�� + 3��

3��
, a1 =

(�2 − �2)c3

4
,

a2 = (�2 − �2)c4,� =
2��

3�
, � + � = 0.

(45)

U(�) =
−2�� + 3��

3��
+

(�2 − �2)c2
3

c2
3
�2 − 4c4

+
16(�2 − �2)c4c

2
3

(c2
3
�2 − 4c4)

2
, c4 ≠ 0.
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Family 6 If we set c3 = c4 = 0 and c0 =
c2
1

4c2
 . We have the fol-

lowing results
Set(i)

Replacing Eq. (47) in Eq. (18), we get the following expo-
nential solution

(46)

U(𝜉) =
−2𝛼𝜂 + 3𝜒𝜆

3𝛼𝛽
+

(𝛼2 − 𝛽2)c2
3

8c4
exp

�
𝜂c3

2
√
−c4

𝜉

�

+
(𝛼2 − 𝛽2)c2

3

4c4
exp

�
𝜂c3√
−c4

𝜉

�
, c4 < 0.

(47)

a1 = a2 = 0, a0 =
−2�� + 3��

3��
, b1 =

c1

2
(�2 − �2),

b2 =
c2
1
(�2 − �2)2��

−16�� + 24��
, c2 =

−4�� + 6��

��(�2 − �2)
.

(48)

U(𝜉) =
−2𝛼𝜂 + 3𝜒𝜆

3𝛼𝛽

+
2c1(𝛼

2 − 𝛽2)(−2𝛼𝜂 + 3𝜒𝜆)

−c1𝛼𝛽(𝛼
2 − 𝛽2) + 4e

𝜂
√
2
√
−2𝛼𝜂+3𝜒𝜆𝜉

√
𝛼𝛽

√
(𝛼2−𝛽2) (−2𝛼𝜂 + 3𝜒𝜆)

+
2c2

1
𝛼𝛽(𝛼2 − 𝛽2)2(−2𝛼𝜂 + 3𝜒𝜆)

(−c1𝛼𝛽(𝛼
2 − 𝛽2) + 4e

𝜂
√
2
√
−2𝛼𝜂+3𝜒𝜆𝜉

√
𝛼𝛽

√
(𝛼2−𝛽2) (−2𝛼𝜂 + 3𝜒𝜆))2

,

c2 > 0.

Set(ii)

We can proceed in the similar manner as above and obtain 
the triangular periodic wave and hyperbolic solutions.

Family 7 If c0 = c1 = 0 and c4 > 0 . We have the subsequent 
results

Set(i)

Hence, a triangular wave and two solitary wave solutions 
are attained :

(49)
a1 = a2 = b2 = c0 = 0, a0 =

−2�� + 3��

3��
,

b1 =
c1

4
(�2 − �2), c2 =

−4�� + 6��

��(�2 − �2)
.

(50)

U(𝜉) =
−2𝛼𝜂 + 3𝜒𝜆

𝛼𝛽

�
1

3
−

1�
𝜂 sin(

√
2
�

−2𝛼𝜂+3𝜒𝜆

𝛼𝛽(𝛼−𝛽)(𝛼+𝛽)
𝜉) − 1

�
�
,

c0 = 0, c2 < 0,

(51)

U(𝜉) =
−2𝛼𝜂 + 3𝜒𝜆

𝛼𝛽

[
1

3
−

1(
𝜂 sinh(2

√
−4𝛼𝜂+6𝜒𝜆

𝛼𝛽(𝛼−𝛽)(𝛼+𝛽)
𝜉) − 1

)
]
,

c0 = 0, c2 > 0.

(52)

b1 = b2 = 0, a0 =
−2�� + 3��

3��
,

a1 =
c3

2
(�2 − �2), a2 = c4(�

2 − �2), c2 =
−4�� + 6��

��(�2 − �2)
,

c4 =
3

8

c2
3
(�2 − �2)��

2�c2�
3 − 2c2�

3� + 2�� − 3��
.

(53)

U(𝜉) =
−2𝛼𝜂 + 3𝜒𝜆

3𝛼𝛽

+
c3(−2𝛼𝜂 + 3𝜒𝜆) sec

�
1

2

�
−

−4𝛼𝜂+6𝜒𝜆

𝛼𝛽(𝛼2−𝛽2)
𝜉

�

𝛼
𝛽

⎛⎜⎜⎝
𝜂

�
−

(−6𝛼𝜂 + 9𝜒𝜆)c2
3

2𝛽c2𝛼
3 − 2c2𝛽

3𝛼 + 2𝛼𝜂 − 3𝜒𝜆

tan

�
1

2

�
−
−4𝛼𝜂 + 6𝜒𝜆

𝛼𝛽(𝛼2 − 𝛽2)
𝜉

�
+ c3

�

+
3

8

c2
3
(𝛼2 − 𝛽2)2𝛼𝛽

�
sec

�
1

2

�
−

−4𝛼𝜂+6𝜒𝜆

𝛼𝛽(𝛼2−𝛽2)
𝜉

��2

�
1

2
𝜂

�
−

(−24𝛼𝜂+36𝜒𝜆)c2
3

2𝛽c2𝛼
3−2c2𝛽

3𝛼+2𝛼𝜂−3𝜒𝜆
tan

�
1

2

�
−

−4𝛼𝜂+6𝜒𝜆

𝛼𝛽(𝛼2−𝛽2)
𝜉

�
+ c3

�2

(2𝛽c2𝛼
3 − 2c2𝛽

3𝛼 + 2𝛼𝜂 − 3𝜒𝜆)

, c2 < 0,
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Set(ii)

We attain the subsequent solitary wave solution of Eq. (1) as

3.2 � Exact solutions of Eq. (1) via the exp[‑G(�)
]‑function expansion method

Now from balancing procedure in Eq. (17), we obtain N = 2 . 
Then, assuming solution of the Eq. (17) in the form

By inserting Eq. (57)and its first and second order deriva-
tives along with Eq. (9) into Eq. (17) and comparing the 
terms of equal powers in exp(−G(�)) to zero in the result-
ing equation, we get

(54)

U(𝜉) =
−2𝛼𝜂 + 3𝜒𝜆

3𝛼𝛽

+
c3(−2𝛼𝜂 + 3𝜒𝜆) sech

�
1

2

�
−4𝛼𝜂+6𝜒𝜆

𝛼𝛽(𝛼2−𝛽2)
𝜉

�

𝛼
𝛽

⎛
⎜⎜⎝
𝜂

�
(−6𝛼𝜂 + 9𝜒𝜆)c2

3

2𝛽c2𝛼
3 − 2c2𝛽

3𝛼 + 2𝛼𝜂 − 3𝜒𝜆

tanh

�
1

2

�
−4𝛼𝜂 + 6𝜒𝜆

𝛼𝛽(𝛼2 − 𝛽2)
𝜉

�
+ c3

�

+
3

8

c2
3
(𝛼2 − 𝛽2)2𝛼𝛽

�
sech

�
1

2

�
−4𝛼𝜂+6𝜒𝜆

𝛼𝛽(𝛼2−𝛽2)
𝜉

��2

�
1

2
𝜂

�
(−24𝛼𝜂+36𝜒𝜆)c2

3

2𝛽c2𝛼
3−2c2𝛽

3𝛼+2𝛼𝜂−3𝜒𝜆
tanh

�
1

2

�
−4𝛼𝜂+6𝜒𝜆

𝛼𝛽(𝛼2−𝛽2)
𝜉

�
+ c3

�2

(2𝛽c2𝛼
3 − 2c2𝛽

3𝛼 + 2𝛼𝜂 − 3𝜒𝜆)

, c2 < 0.

(55)

b1 = b2 = 0, a0 =
−2�� + 3��

3��
,

a1 = �

�
(−4�� + 6��)(�2 − �2)c4

��
, a2 = c4(�

2 − �2),

c2 =
−4�� + 6��

��(�2 − �2)
, c3 = 2�

√
c2c4, � =

2��

3�
.

(56)

39f (𝜉) =
−2𝛼𝜂 + 3𝜒𝜆

𝛼𝛽

(
1

3
+ 2𝜂2 + 3 tanh

(
1

2

√
6𝜒𝜆 − 4𝛼𝜂

𝛼𝛽(𝛼2 − 𝛽2)
𝜉

)

+ tanh

(
1

2

√
6𝜒𝜆 − 4𝛼𝜂

𝛼𝛽(𝛼2 − 𝛽2)
𝜉

)2)
, c2 > 0.

(57)U(�) = a0 + a1[exp(−G(�))] + a2[exp(−2G(�))],

(58)
− �s(2a

2
s + a

1
r)�3 + (s(2a

2
s + a

1
r)�3 + 6�a2

0
+ 4a

0
�)� − 6��a

0
= 0,

Solving the Eqs. (58)-(62) with Maple, we obtain the results 
as given below:

Taking the advantage of solution of Eq. (9) from (10) to 
(13), the solution of Eq. (1) can be written as: The dark 
soliton solution is

(59)

− (6a
2
sr + a

1
(r2 + 2s))��3 + ((6a

2
sr + a

1
(r2 + 2s))�3

+ 12�a
0
a
1
+ 4�a

1
)� − 6��a

1
= 0,

(60)

− 4�((r2 + 2s)a
2
+

3

4
a
1
r)�3 + (((8s + 4r

2)a
2
+ 3a

1
r)�3

+ (12a
0
a
2
+ 6a

2

1
)� + 4�a

2
)� − 6��a

2
= 0,

(61)

(10((−
1

5
a1 − a2r)�

2 + (
1

5
a1 + a2r)�

2 +
6

5
a1a2))�� = 0,

(62)6��a2(�
2 − �2 + a2) = 0.

(63)
a0 = (�2 − �2)s, a1 = (�2 − �2)r, a2 = �2 − �2,

� =
�3�r2 − 4�s�3 + 4��3s − ��3r2 + 6��

4�
.

(64)

U(�) = (�2 − �2)�
s −

2rs

r +
√
r2 − 4s tanh

�
1

2

√
r2 − 4s(� + �0)

�

+
4s2�

r +
√
r2 − 4s tanh

�
1

2

√
r2 − 4s(� + �0)

��2

�
,
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provided �2 − �2 ≠ 0 , s ≠ 0 and r2 − 4s > 0.
The singular soliton solution is

provided �2 − �2 ≠ 0 , s ≠ 0 and r2 − 4s > 0.
The singular periodic solutions are

provided �2 − �2 ≠ 0 , s ≠ 0 and r2 − 4s < 0.

provided �2 − �2 ≠ 0 , s ≠ 0 and r2 − 4s < 0.

3.3 � Exact solutions of Eq. (1) via fractional Möbius 
transformation

Now we employ a fractional Möbius transformation to 
(4+1)D Fokas equation and systematically obtain localized 
pulses represented by hyperbolic sech and tanh functions, 
as well as singular periodic solutions. We proposed the fol-
lowing fractional transformation

where l is an integer, p̃, q̃ and r̃ are defined as real con-
stants, and the modulus parameter m varies between 0 
and 1. Two families of localized solutions of Fokas equation 
are extracted from Eq. (68) for l = 2 , f (�,m) = cn(�,m) and 
f (�,m) = sn(�,m).

(65)

U(�) = (�2 − �2)�
s −

2rs

r +
√
r2 − 4s coth

�
1

2

√
r2 − 4s(� + �0)

�

+
4s2�

r +
√
r2 − 4s coth

�
1

2

√
r2 − 4s(� + �0)

��2

�
,

(66)

U(�) = (�2 − �2)�
s +

2rs

−r +
√
4s − r2 tan

�
1

2

√
4s − r2(� + �0)

�

+
4s2�

− r +
√
4s − r2 tan

�
1

2

√
4s − r2(� + �0)

��2

�
,

(67)

U(�) = (�2 − �2)�
s −

2rs

−r +
√
4s − r2 cot

�
1

2

√
4s − r2(� + �0)

�

+
4s2�

− r +
√
4s − r2 cot

�
1

2

√
4s − r2(� + �0)

��2

�
,

(68)U(𝜉) =
p̃ + q̃f (𝜉,m)l

1 + r̃f (𝜉,m)l
,

Now we reveal the steady state solutions for 
f (�,m) = cn(�,m) in Eq. (68). Putting

in Eq. (17) and setting the coefficients of equal powers of 
cn(�,m) to zero will result the subsequent set of consist-
ency equations: 

 Note that these coupled algebraic equations are found to 
be nonlinear in p̃, q̃ and r̃ and one can see from the Eq. (69) 
that p̃r̃ = q̃ infers only a constant solution and is not stated 
here. From the above constancy equations it is evident 
that for modulus parameter m = 0 , m = 1 , and with other 
values of m, we have distinct properties such as trigono-
metric, bright soliton-like, and periodic train wave solu-
tions. Now, we mention some localized as well as periodic 
solitary wave solutions.

Family 1  We establish a general localized solitary 
wave solution when the modulus parameter m → 1 , 
Jacobian elliptic function cn(�, 1) → sech (�) . For the 
undetermined parameters p̃, q̃, r̃  and �  , the set of Eqs. 
(70a)–(70d) can be solved consistently.

When r̃ = 0 , the structure profile of the soliton solu-
tion specified as

(69)U(𝜉) =
p̃ + q̃ cn(𝜉,m)2

1 + r̃ cn(𝜉,m)2
,

(70a)
− 2r̃{−𝛽m2(r̃p̃ − q̃)𝛼3 + [m2(r̃p̃ − q̃)𝛽3

− 3𝛽 r̃2 − 2𝜂q̃r̃]𝛼 + 3𝜒𝜆q̃r̃} = 0,

(70b)

− 2(3m2 − 2r̃ + 4r̃m2)𝛽(r̃p̃ − q̃)𝛼3

+
{
8
[(

−
1

2
+m2

)
r̃ +

3

4
m2

]
(r̃p̃ − q̃)𝛽3

+ (6q̃2 + 12p̃q̃r̃)𝛽 + 4𝜂r̃(r̃p̃ + 2q̃)
}
𝛼 − 6𝜒𝜆r̃(r̃p̃ + 2q̃) = 0,

(70c)

6
(
−

2

3
+ r̃m2 − r̃ +

4

3
m2

)
𝛽(r̃p̃ − q̃)𝛼3

+
{
− 6

(
(−1 +m2)r̃ −

2

3
+

4

3
m2

)
(r̃p̃ − q̃)𝛽3

+ 6p̃(r̃p̃ + 2q̃)𝛽 + 8𝜂(
1

2
q̃ + r̃p̃)

}
𝛼

− 12𝜒𝜆
(
1

2
q̃ + r̃p̃

)
= 0,

(70d)

− 2𝛽(−1 +m)(m + 1)(r̃p̃ − q̃)𝛼3

+ {2(−1 +m)(m + 1)(r̃p̃ − q̃)𝛽3

+ 6𝛽p̃2 + 4𝜂p̃}𝛼 − 6𝜒𝜆p̃ = 0.

(71)U(�) = (�2 − �2)
[
2

3
− sech

2(�)
]
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with p̃ =
2

3
(𝛼2 − 𝛽2) , q̃ = 𝛽2 − 𝛼2 and parameter � satisfies 

the relation � = −
2

3

�(�2�−�−�3)

�
.

For the case p̃ = r̃ = 0 , the background must vanishes 
and the generic profile of the soliton solution takes the 
localized form

with q̃ = 𝛽2 − 𝛼2 and � = −
2

3

�(�2�−�−�3)

�
 satisfies the rela-

tion. It is worth to note that the profile of solutions well 
controlled by parameters � and � . When � = � , then the 
soliton profiles disappears.

For p̃ = 0 and r̃ = 1 , we obtain the generic profile of 
the fractional soliton solution as

with q̃ =
(5𝛼𝛽3−5𝛽𝛼3−4𝛼𝜂+6𝜒𝜆)

3𝛼𝛽
 and � = −

2�(��2−�−�3)

3�
 . We note 

that the value of � = � leads to the value of � =
2��

3�
 in the 

expression (73). On substituting the value of � in Eq. (73), 
the profile of the solution again vanishes.

Family 2 When m → 0 , the function cn(�, 0) → cos(�) . 
For m = 0 , Eq. (4) admits the singular trigonometric solu-
tion of the following type

w i t h  p̃ =
1

3
(𝛼2 − 𝛽2)  ,  q̃ =

2

3
(𝛼2 − 𝛽2)  ,  r̃ = −1 a n d 

� = −
2

3

�(�2�−�3−�)

�
.

For q̃ = 0 , the singular trigonometric profile of the 
solution takes the form

with p̃ = 𝛼2 − 𝛽2 , r̃ = −1 and � =
2

3

�(�2�−�3+�)

�
 . Noting that, 

the singular trigonometric solutions disappears for same 
value of � and �.

Family 3 For 0 < m < 1 , we have found the cnoidal 
type solutions. For special case r̃ = 0 , we attain the fol-
lowing general periodic wave solution as

with p̃ = (
2

3
m2 −

1

3
±

1

3

√
m4 −m2 + 1)(𝛼2 − 𝛽2) , q̃ = (𝛽2 − 𝛼2)m2 

and 𝜆 =
2

3

(−2𝛼2𝛽m2+𝛼2𝛽+3p̃𝛽+𝜂+2m2𝛽3−𝛽3)𝛼

𝜒
 , representing a 

soliton train. The special case m = 1 results the previously 
found localized solution (71).

Now, selecting f (�,m) = sn(�,m) in the fractional 
transformation (68) and exchanging Eq. (68) into Eq. (17) 

(72)U(�) = (�2 − �2) sech 2(�)

(73)U(�) =
(5��3 − 5��3 − 4�� + 6��) sech (�)2

3��(1 + sech (�)2)
,

(74)U(�) =
1

3
(�2 − �2)

[
1 + 2 cos(�)2

1 − cos(�)2

]
,

(75)U(�) =
�2 − �2

1 − cos(�)2
,

(76)

U(�) =(�2 − �2)

�
(
2

3
m2 −

1

3
±

1

3

√
m4 −m2 + 1) −m2 cn(�)2

�
,

and comparing the equal powers of sn(�,m) to zero, we 
can deduce the following set of constancy relations: 

 From above equations it is clearly specify that different 
values of m leads to distinct properties. For instance m = 0 
provides an explicit rational trigonometric solution and 
m = 1 leads to a kink-type of solution.

Family 1  We establish general localized soliton solu-
tion for the choice of the Jacobian elliptic modulus 
parameter m = 1 . For m → 1 , Jacobian elliptic function 
sn(�, 0) → tanh(�) . The set of Eqs. (77a)–(77d) can be 
solved constantly for the undetermined set of param-
eters p̃, q̃, r̃ and � .

For r̃ = 0 , we have establish an exciting type of soliton 
solution as exact solution of nonlinear Fokas Eq. (1), given 
by

with p̃ =
1

3
(𝛽2 − 𝛼2) , q̃ = 𝛼2 − 𝛽2 and parameter � satisfies 

the relation � =
2

3

�(�2�+�−�3)

�
.

Family 2 We attain a physically exciting sinusoidal solu-
tion when m → 0 , the function sn(�, 0) → sin(�) . For m = 0 
and p̃ = 0,the Fokas Equation admits the non-singular 
periodic solution of the subsequent type

(77a)
2r̃[−𝛽m2(r̃p̃ − q̃)𝛼3

+ {m2(r̃p̃ − q̃)𝛽3 + 3𝛽q̃2 + 2𝜂q̃r̃}𝛼 − 3𝜒𝜆q̃r̃] = 0,

(77b)

4
(
r̃ +

3

2
m2 + r̃m2

)
(r̃p̃ − q̃)𝛽𝛼3

+
[
− 4

{
(1 +m2)r̃ +

3

2
m2

}
(r̃p̃ − q̃)𝛽3

+ (6q̃2 + 12p̃q̃r̃)𝛽 + 4𝜂r̃(r̃p̃ + 2q̃)
]
𝛼

− 6𝜒𝜆r̃(r̃p̃ + 2q̃) = 0,

(77c)

− 6
(
r̃ +

2

3
+

2

3
m2

)
(r̃p̃ − q̃)𝛽𝛼3

+
{
6
(
r̃ +

2

3
+

2

3
m2

)
(r̃p̃ − q̃)𝛽3

+ 6p̃(r̃p̃ + 2q̃)𝛽 + 8
(
1

2
q̃ + r̃p̃

)
𝜂

}
𝛼

− 12
(
1

2
q̃ + r̃p̃

)
𝜒𝜆 = 0,

(77d){(−2r̃p̃ + 2q̃)𝛽3 + 6𝛽p̃2 + 4𝜂p̃}𝛼 − 6𝜒𝜆p̃ = 0.

(78)U(�) = (�2 − �2)
[
1

3
− tanh

2(�)
]
,

(79)

U(�) =
1

3

(−2��3 + 2�3� − 2�� + 3��)(−2�� + 3��)(sin(�))2

��(−2��3 + 2�3� − 2�� + 3��)(sin(�))2 + ��(3��3 − 3�3�)
,
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with ̃r = 1

3

−2𝛽𝛼3+2𝛽3𝛼−2𝛼𝜂+3𝜒𝜆

𝛽𝛼(𝛼2−𝛽2)
 , q̃ =

1

9

(−2𝛽𝛼3+2𝛽3𝛼−2𝛼𝜂+3𝜒𝜆)(−2𝛼𝜂+3𝜒𝜆)

𝛽2𝛼2(𝛼2−𝛽2)
 , 

and � = ±
2

3

�(��2−�3±�)

�
.

Family 3 For 0 < m < 1 , we have found snoidal type solu-
tions. For special case r̃ = 0 and 0 < m < 1 , we get the fol-
lowing solution

with 𝜒 = ±
2

3

√
−(2p̃+2p̃m2−𝛽2m2 )(−2𝛽2 p̃−2𝛽2 p̃m2+𝛽4m2+3p̃2 )((3+3m2 )𝛽p̃2+(−3m2𝛽3+2𝜂+2m2𝜂)p̃−m2𝜂𝛽2 )

((2+2m2 )p̃−𝛽2m2 )2𝜆
,

q̃ =
3p̃2m2

(2+2m2)p̃−𝛽2m2
 and 𝛼 =

3

2

𝜒𝜆((−𝛽2+2p̃)m2+2p̃)

(−3p̃𝛽3+3𝛽p̃2+2𝜂p̃−𝜂𝛽2)m2+3𝛽p̃2+2𝜂p̃
.

4 � Graphical results and discussions

In this section, we portrayed graphs of the some obtained 
solutions of the considered equation and discuss them 
here. We examine Figs. 1, 2, 3, 4 and 5 which depicts some 

(80)U(𝜉) = p̃ −
3p̃2m2 sn(𝜉)2

(2 + 2m2)p̃ − 𝛽2m2
,

of our solutions acquired in this paper. To this end, we 
select some special values of the parameters under con-
straint conditions of the obtained solutions.

In Fig. 1a, the 2D profile of the bell type solutions 
(21) is plotted by selecting parameters as � = 1.49 , 
� = 1.50, � = 1.0,� = 1.0, � = 0.95 and c4 = −1.0  .  I n 
Fig.  1b, the 2D profile of the bell soliton solution 
(31) is plotted by selecting parameters as � = 1.5 , 
� = 1.8, a0 = 1, c2 = 2.0, c4 = 1.0 and c0 = −0.5 . This solu-
tion characterize by infinite tails. In Fig. 1c, we show the 
2D profile of the periodic solution (32) with parameter 
values as � = 1.5 , � = 1.8, a0 = 1, c2 = −2.0 and c0 = 0.5 
within range of −∞ to +∞ . In Fig. 1d, the 2D profile of 
the trigonometric periodic solution (50) with parameter 
values as � = 1.49 , � = 1.5, � = 1.0, � = 0.95,� = 1.0 is 
demonstrated.

In Fig.  2a, we plotted the 2D profile of the 
breather  so l ut ion  (51)  w i th  parameter  va l -
u e s  a s  � = 1.49  ,  � = 1.5, � = 1.0, � = 0.95,� = 1.0 
a n d  i n  F i g .   2 b ,  t h e  2 D  p r o f i l e  o f  t h e 

(a) (b)

(c) (d)

Fig. 1   a 2D Profile of the solutions (21) by selecting param-
eters as � = 1.49 , � = 1.50, � = 1.0,� = 1.0, � = 0.95 and 
c
4
= −1.0 b 2D Profile of the solutions (31) by selecting param-

eters as � = 1.5 , � = 1.8, a
0
= 1, c

2
= 2.0, c

4
= 1.0 and c

0
= −0.5 . 

c 2D Profile of the periodic solution (32) with parameter values 
as � = 1.5 , � = 1.8, a

0
= 1, c

2
= −2.0 and c

0
= 0.5 . d 2D Profile 

of the periodic solution (50) with parameter values as � = 1.49 , 
� = 1.5, � = 1.0, � = 0.95,� = 1.0
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(a)
(b)

(c) (d)

Fig. 2   a 2D Profile of the periodic solution (51) with param-
eter values as � = 1.49 , � = 1.5, � = 1.0, � = 0.95,� = 1.0

. b 2D Profile of the periodic solution (53) with parameter val-
ues as � = 1.49 , � = 1.5, � = 1.0, � = 1.0,� = 1.0, c

3
= 1.0. c 2D 

Profile of the periodic solution (54) with parameter values as 
� = 1.49 , � = 1.5, � = 1.0, � = 1.0,� = 1.0, c

3
= 1.0 . d 2D Pro-

file of the periodic solution (56) with parameter values as � = 1.5 , 
� = 1.0, � = 0.5, � = 1.0,� = 1.0

(a)

(b)

Fig. 3   a 2D Profile of the anti- bell soliton solution (64) with parameter values as � = 0.2 , � = 0.1, r = 3.0, s = 1.0, �
0
= 0. b 2D Profile of the 

periodic solution (66) with parameter values as � = 2 , � = 1, r = 3.0, s = 3, �
0
= 0
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periodic solution (53) is shown with parameter values 
as  � = 1.49 ,  � = 1.5, � = 1.0, � = 1.0,� = 1.0, c3 = 1.0 . 
In Fig.  2c, the 2D profile of the periodic solu-
tion (54) exhibited with parameter values as 
� = 1.49   ,  � = 1.5, � = 1.0, � = 1.0,� = 1.0, c3 = 1.0   . 
Fig.  2d represents the 2D profile of the periodic 
solution (56) with parameter values as � = 1.5 , 
� = 1.0, � = 0.5, � = 1.0,� = 1.0.

In Fig.  3a, the 2D profile of the dark soliton 
solution (64) with parameter values as � = 0.2 , 
� = 0.1, r = 3.0, s = 1.0, �0 = 0 is portrayed. and 2D pro-
file of the periodic solution (66) with parameter values 
as � = 2 , � = 1, r = 3.0, s = 3, �0 = 0 is depicted in Fig. 3b.

If 𝛼 > 𝛽 then the Eqs.(71) and (72) represents the 
antibell type solitary wave solution and the 2D profiles 
of solutions (71) (solid line) and (72)(dotted line) plot-
ted by selecting parameters as � = 1.3330 , � = 1.0054 
in Fig. 4a. The 2D profile of the solutions (71) (solid line) 
and (72)(dotted line) for 𝛽 > 𝛼 by selecting parameters as 
� = 1.0054 , � = 1.3330 are depicted in Fig 4b. The condi-
tion 𝛽 > 𝛼 , in the Eqs.(71) and (72) leads to the bell type 
solitary wave profiles as depicted in Fig. 4b. The profile of 

Jacobi doubly periodic solution (76) is shown in Fig. 4c for 
𝛼 > 𝛽 with parameter values as � = 1.3330 , � = 1.0054 and 
m = 0.5 (dotted line) and for 𝛽 > 𝛼 with parameter values 
as � = 1.0054 , � = 1.3330 and m = 0.5 (solid line) and it 
can be observed that the phase of the periodic solution 
reverses for the different choices of parameters � and �.

In Fig. 5a, we depicts the profile of solitary wave solu-
tion (78) for 𝛼 < 𝛽 with parameter values as � = 1.3221 
and � = 1.5435 (solid line) and for 𝛼 > 𝛽 with param-
eter values as � = 1.5435 and � = 1.3221 (dotted line). 
In Fig 5b, the 2D profile of the trigonometric solutions 
(79) with parameter values as � = 1.3221 , � = 1.5435 , 
� = 1.0 , � = 1.0 and � = 1.0 are depicted. In Fig. 5c, the 
2D profile of the periodic solution (80) with parameter 
values as � = 1.3330 , � = 1.0054 for m = 0.1 (solid black 
line), m = 0.5 (dotted black line) and m = 0.9 (dotted blue 
line) are portrayed, respectively. It can be seen that for 
� = � , the soliton profile vanishes. The solution (80) is 
plotted in Fig. 5c for different values of modulus param-
eter m = 0.1, 0.5, 0.9 which exhibits that with change in 
modulus parameter the degree of energy localization 

(a) (b)

(c)

Fig. 4   a 2D Profile of the solutions (71) (solid line) and (72)(dotted 
line) for 𝛼 > 𝛽 by selecting parameters as � = 1.3330 , � = 1.0054 b 
2D Profile of the solutions (71) (solid line) and (72)(dotted line) for 
𝛽 > 𝛼 by selecting parameters as � = 1.0054 , � = 1.3330. c 2D Pro-

file of the periodic solution (76) for 𝛼 > 𝛽 with parameter values as 
� = 1.3330 , � = 1.0054 and m = 0.5 (dotted line) and for 𝛽 > 𝛼 with 
parameter values as � = 1.0054 , � = 1.3330 and m = 0.5 (solid line)



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1829 | https://doi.org/10.1007/s42452-020-03615-z

of the solution changes and the profile of the solution 
remain periodic as long as m varies between 0 and 1.

From the above drawn figures, we can realized that 
these solutions take the form of the bright and dark 
soliton solutions, the kink soliton solutions, the breather 
solution, the the doubly periodic wave solutions, and the 
other type of singular and nonsingular soliton solutions. 
These figures exhibits the dynamical behavior of these 
solutions in space and time. In all numerical simulations 
the parameter values are selected in such a way that 
they satisfies the constrained conditions for existence 
of these solutions.

The advantage of Fan sub-equation approach is that 
its look for more new traveling wave solutions of NLEEs 
that can be pronounced as a polynomial in an elemen-
tary function that satisfies a more general form of sub-
equation. Favorably, the Fan sub-equation method can 
construct exact solutions to the sub-equation that can 
cover all the solutions of the auxiliary ordinary differential 
equation, elliptic equation of first kind, and generalized 

Riccati equations. The exp(−G(�))-function expansion 
method provides dark soliton, singular soliton and peri-
odic solutions in simple form, which are not obtained by 
sub-equation and fractional transformation methods. 
The fractional transformation technique results in new 
trigonometric function, hyperbolic function and Jacobian 
elliptic function solutions. It can be seen that some of the 
results of tanh, F-expansion and auxiliary equation meth-
ods are recovered if one can choose the proper values of 
parameters.

The significance of the utilized approaches of this paper 
is represented in providing new and generalized solu-
tions, while the shortcomings of them are that they do 
not produce some other types of analytical solutions of the 
considered model such as complexiton function solutions 
where the complexiton function solutions are mixed type 
solutions of hyperbolic and periodic function solutions.

(a) (b)

(c)

Fig. 5   a 2D Profile of the solution (78) for 𝛼 < 𝛽 with parameter 
values as � = 1.3221 and � = 1.5435(solid line) and for 𝛼 > 𝛽 with 
parameter values as � = 1.5435 and � = 1.3221 (dotted line). b 2D 
Profile of the trigonometric solutions (79) with parameter values 

as � = 1.3221 , � = 1.5435 , � = 1.0 , � = 1.0 and � = 1.0.(c)2D Profile 
of the periodic solution (80) with parameter values as � = 1.3330 , 
� = 1.0054 for m = 0.1 (solid black line), m = 0.5 (dotted black line) 
and m = 0.9 (dotted blue line), respectively
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5 � Conclusions

In this paper, the extended Fan sub-equation method, 
exp(−G(�))-function expansion method and Möbius 
transformation method have been applied to the 
(4+1)-dimensional nonlinear integrable Fokas equa-
tion and analytically constructed various types of exact 
traveling wave and localized solutions. These obtained 
solutions contain the singular and non-singular solitary 
wave solutions, singular and non-singular periodic solu-
tions, Weierstrass elliptic type solutions, breather solu-
tion, Jacobi elliptic kind solutions, exponential function 
solutions and rational solutions. The projected methods 
are effective, concise, and may be applied to the study 
of other higher dimensional NLEEs in near future. Many 
of the results are novel and more extensive than the 
results obtained in previous studies. The 2-dimensional 
figures of some solutions are illustrated to understand 
the dynamics described by the nonlinear integrable 
Fokas equation. It is relatively important to know the 
mechanism of the complex physical phenomena that 
are modelled by Eq. (1), and the resulting solutions of 
Eq. (1) may be applied in stability analysis and check-
ing the accuracy of the numerical results. Comparison 
of our solutions with the previous ones obtained in [5, 6, 
23, 41, 42, 43] by using other methods, we deduce that 
the obtained solutions in this paper are new and not 
reported elsewhere irrespective of somewhat standard 
forms.
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