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Abstract
Presence of cracks lead to structural steels failure below critical yield strength. The primary aim of the present article 
is to simplify and consolidate mathematical derivation of stress concentration, fracture stress, stress intensity factor, 
crack tip opening displacement and J-integral parameters from the first principle as well as application to fatigue. The 
review explains the mathematical derivation of fracture mechanics parameters from the theoretical concept, including 
alternatives to fatigue life prediction with strain-based approach method. The stress concentration around a notch can 
only be performed if the radius of the notch is far greater than zero and the stress field at sharp crack shows singularity 
when the crack tip radius is equal to zero. Furthermore, blunted crack tip violates stress singularity, while the crack tip 
opening displacement and J-integral parameters show the solution of a crack extending beyond zero crack tip radius, 
thus are used to characterize material stress fields with blunted crack tip. The review highlights benefit of characterizing 
fatigue crack growth with J-integral and crack tip opening displacement parameters over stress intensity factor. This 
paper would benefit majorly engineers and specialists in nuclear, aviation, oil and gas industries.
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Abbreviations
Δk  Applied stress intensity factor
Γ  Close path
dv  Change in load displacement
n  Constant for deeply notched specimen
� ,�  Complex analytical function
z  Conjugate function
a  Crack length
Δa  Change in crack length
kop  Crack opening stress factor
ΔCTOD  Crack tip opening displacement
kc  Critical fracture toughness of material
�c  Critical dislocation density
r  Crack tip radius
kI  Cyclic strength coefficient
nI  Cyclic strain hardening exponent
�  Density
Ud  Dislocation strain energy

ux,y  Displacement field in X and Y direction
ui  Displacement vector
ds  Displacement along contour
Δkeff   Effective stress intensity factor range
�s  Elastic surface energy
�∗  Elementary material block size
�  Ellipse coordinate lines
G  Energy release rate
da∕dN  Fatigue crack growth rate
�I
f
  Fatigue ductility coefficient

c  Fatigue ductility exponent
� I
f
  Fatigue strength coefficient

d  Fatigue strength exponent
Φ  General stress function
�  Hyperbola coordinate lines
da  Incremental crack length
dN  Incremental number of stress cycle
(z)  Integral of complex function
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da  Incremental crack length
ΔJ  J-integral range
R  Stress ratio
Vmax  Maximum load line displacement
�max  Maximum stress
kmax  Maximum stress intensity factor range
�m  Mean stress
kmax,tot  Maximum total stress intensity factor range
kmin  Minimum stress intensity factor range
Vmin  Minimum load line displacement
Nf   Number of cycles required for representative 

material
Ck ,mk  Paris empirical parameters based on stress 

intensity factors test data
C� ,m�  Paris empirical parameters based on CTOD test 

data
CJ ,mJ  Paris empirical parameters based on J-integral 

test data
nk  Path surrounding crack tip
r�  Plastic zone size
�  Potential energy
B  Specimen thickness
kr  Residual stress intensity factor
�  Strain
U∗  Strained energy per unit volume
U  External strained energy in the body
W  Work done by external body
Δ�  Strain range
�ij  Strain tensor
�r,�,z  Stress components in polar coordinate
�xx,yy,zz  Stress components in cartesian coordinate
k  Stress concentration
�  Stress
k1  Stress intensity factor
kth  Stress intensity factor threshold
R  Stress ratio
Δktot  Total stress intensity factor
Ti  Traction Vector
nj  Unit normal vector
b  Uncracked ligament length
Ws  Work required creating new surface
E  Young modulus
�ys  Yield strength

1 Introduction

Fracture mechanics is a set of theories that describe behav-
iour of structures with geometrical discontinuities, which 
combine the study of mechanical properties and cracked 
bodies [1]. The first fracture mechanics theory relating to 
crack, which is premised upon energy balance was initi-
ated by Griffith [2]. Griffith theory of fracture strength was 

rarely taken seriously until during and after the World War 
II, following the catastrophic failures of welded liberty 
ships, oil storage tanks, gas transmission lines, bridges and 
pressurized cabin planes [3]. The Griffith theory was later 
modified by Orowan [4] and Irwin [5] at different times 
to accommodate plastic flow materials and understand 
structures’ failure causes. Irwin [3, 6] further introduced the 
stress intensity factor and energy release rate to describe 
fracture behaviour under small scale yielding materials. 
Subsequently, crack tip opening displacement and J-inte-
gral theoretical models were introduced by Wells [7] and 
Rice [8] respectively to describe fracture behaviour under 
large scale yielding materials. Cracks have been known 
to initiate and propagate from geometrical discontinui-
ties such as defects, cut-outs, edges and holes for struc-
tures under loading, but the propagation crack size and 
propagation rate are dependent on discontinuity shape 
and the type of applied load [9]. Crack presence in a steel 
has been widely acknowledged to reduce reliability of in-
service components and structures [10, 11]. Thus, the crack 
under load leads to fatigue crack propagation, eventual 
reduction of structural reliability, and to failures [11, 12]. 
Fatigue has been a leading cause of gas turbine engine 
components of modern military aircrafts, thus increases 
maintenance cost of military aircrafts [13, 14]. Prediction 
of the fatigue crack growth under variable amplitude 
loading in aircrafts and engineering structures remains a 
big challenge owing to the loading sequence effect [15]. 
Integrity assessment of structures, pressure vessels, and 
piping systems in nuclear, oil and gas industries are neces-
sary because any severe failure may lead to irreparable loss 
of monetary values and human life [16]. Consequently, the 
crack and fracture remained a problem for all man-made 
metallic components in fracture mechanics communities 
[16]. Therefore, clearer understanding and incorporation 
of fracture mechanics into design, prediction and integ-
rity assessment approaches could reduce failure rates and 
maintenance of engineering materials.

The fracture behavior of materials is classified into 
brittle and ductile fractures. The brittle fracture occurs 
in materials that exhibit little or no plastic deformation 
and the fracture mechanism is transgranular because it 
occurs along well-defined crystallographic planes within 
each grain. But the ductile fracture occurs in materials 
that show high plastic deformation failure and the frac-
ture mechanism is associated with void nucleation and 
growth that occurs along grain boundaries [17]. Most 
structural steels’ failures occur because of the presence 
of cracks that were either inherited during manufactur-
ing, installation or in-service depending on design and 
condition of service. Cracks under critical loads are pre-
ceded with crack growth, reduction in structural strength 
and final failure of the materials depending on the critical 
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fracture toughness of the structural steels [18]. Fracture 
mechanics was later categorized into linear elastic and 
elastic–plastic fracture mechanics based on the degree 
of plastic deformation at the tip of a crack. The study of 
fracture mechanics took a different dimension following 
the unprecedented structural failures after the World II, 
leading to several mathematical models to characterize 
and quantify fracture toughness [19]. Zhu and Joyce [20] 
gave a technical review of linear elastic and elastic–plastic 
fracture mechanics parameters. Historic development of 
fracture parameters was presented by Erdogan [21] and 
Cottrell [22]. Shinde and Dhamejani [23] provided a review 
of early investigations and advances in energy release rate, 
J-integral, and crack tip opening displacement. Elices et al. 
[24] reviewed advantages, challenges and limitations of 
cohesive zone modeling. The authors concluded that 
cohesive modeling showed good prediction of metallic, 
glassy, and composite’s notched samples. Kumar et al. [25] 
and Beden et al. [26] gave an overview of fatigue crack 
growth models by Walker, Brock, Priddle, McEvily, Fore-
man, Collipriest, Zheng, Wang and several others. The 
authors gave detailed contributions and improvements 
made by each model. The technical reviews presented 
until now are limited to only survey and have not con-
sidered mathematical derivation of the basic fracture 
parameters from first principle and fatigue applications. 
Therefore, the present article provides detailed and sim-
plified derivation of fracture mechanics parameters and 
the theoretical evolution models from the first principle to 
improve and understand the derivations and subsequent 
analytical application to structural integrity management.

Section 2 of this paper present basic review of math-
ematical derivation of linear-elastic fracture mechanics 
parameters, namely stress concentration, fracture stress, 
and stress intensity factor. Detailed review of mathe-
matical derivation of elastic–plastic fracture mechanics 
parameters such as crack tip opening displacement and 
J-integral were outline in Sect. 3 of the paper. While Sect. 4 
of the paper presents comparative description, benefits 
and applications of fatigue growth based on small scale 
plasticity, large scale plasticity and local strain approaches.

2  Linear elastic fracture mechanics

Scientific knowledge of linear elastic fracture mechanics is 
based on the theory that energy dissipation is correlated to 
the fracture process and the deformation is linearly elastic. 
Analytically, the stress field at a crack tip is correlated to 
normal stress, orientation, crack size and shape of the crack 
[27]. The applications of linear elastic fracture mechanics are 
valid only if the plastic deformation at the crack tip remains 
insignificant to the geometry and crack lengths. Therefore, 

the applications are limited to brittle fracture materials by 
assuming linear elastic stress–strain behavior of materi-
als. However, it may be applied to a structure with a large 
crack but when the crack length becomes comparable with 
one of the material geometries scales, linear elastic frac-
ture mechanics becomes invalid and predicted strength 
becomes infinite when the crack length tends to zero [28]. 
The linear elastic fracture mechanics theoretical evolution 
models include stress concentration, fracture stress and 
stress intensity factor.

2.1  Stress concentration

Inglis [29] employed mathematical theory to extend Kirsch’s 
work by formulating theoretical stress field at the vicinity 
of a flat plate containing an elliptical hole under constant 
loading as shown in Fig. 1. The minor and principal axes are 
represented with 2b and 2a respectively to determine stress 
concentration. Thereafter, Neuber [30] developed theoretical 
model that allowed computation of maximum stress at the 
edge of elliptical hole in a flat plate under the same load-
ing condition. But the stress distribution at the edge of the 
infinite plate with elliptical hole under biaxial loading was 
studied by Durelli and Murray [31].

Complex potential functions were employed and related 
to Airy stress function [32]:

(1)�xx =
�2Φ

�x2

(2)�yy =
�2Φ

�y2

Fig. 1  Elliptical hole in a flat plate
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Assuming a general stress function Φ from any two ana-
lytical functions � and � could be stated as:

or

Note that conjugation function z = x − iy , and analyti-
cal function f (z) = � + i� or x + iy.

Substituting Eq. (5) into Eqs. (1, 2) gives:

The primes indicate differentiation with respect to z and 
the overbars indicate conjugate function. The component 
stresses are given as:

The coordinates of the elliptical hole may be written in 
the complex variable form as:

For elliptical hole analysis, the � varies from 0 to 2� while 
� never changes at �o in moving round the boundary of 
ellipse. Hence, the stresses are periodic in � , with 2�  equal-
ing the uniaxial stress components, �yy = �, �xx = �xy = 0 . 
But the elliptical boundary conditions may be satisfied by 
potential functions in the forms:

where the constants A, B, C, D and E are estimated from the 
given boundary conditions. The complex potentials after 
the boundary conditions are given as:

(3)�xy =
�2Φ

�x�y

(4)Φ = Re
[
(x − iy)�(z) + �(z)

]

(5)Φ = Re
[
z�(z) + �(z)

]

(6)�xx + �yy = 4Re
[
� �(z)

]
= 2

[
� �(z) + �

�
(z)

]

(7)�yy − �xx + 2i�xy = 2
[
z� ��(z) + � ��(z)

]

(8)��� + ��� = 4Re
[
� �(z)

]

(9)−��� + ��� + 2i��� = 2
[
z� ��(z) + � ��(z)

]
e2i�

(10)z = c cosh � , � = � + i�

(11)4�(z) = Ac cosh � + Bc sinh �

(12)4�(z) = Cc2� + Dc2 cosh 2� + Ec2 sinh 2�

(13)4�(z) = �c
[(
1 + e2�o

)
sinh 2� − e2�o cosh 2�

]

(14)4�(z) = −�c2
[(
cosh 2�o − cosh�

)
� +

1

2
e2�o − cosh 2�

(
� − �o −

i�

2

)]

The sum of stress components �� and �� at the edge of 
the elliptical hole at point A is expressed as:

Equation (15) employed the law of tangents which takes 

the form: a+b
a+b

=
tan 1

∕2(�+�)

tan 1
∕2(�−�)

.

The component stress �� = 0 at the edge of the hole (
� = �o

)
 , hence Eq. (15) is further reduced to:

The maximum component stress 
(
��
)
�o occurs when 

� = 0,�. Hence Eq. (16) is reduced to:

Stress concentration, k  defined as k =
�max

�nom
 is computed 

with Eq. (17). But for sharp cracks, where a ≫ 𝜌 , Eq. (17) is 
further reduced to:

2.2  Fracture stress

According to Rossmanith [33], Karl Weighardt (1874–1924) 
was the first to solve exact solution of a real crack tip field 
problem under a single force at a crack face but realized that 
failure of a real crack problem cannot be solved with tradi-
tional failure criteria. Griffith [2] extended Inglis stress analysis 
by introducing crack in a material and investigating whether 
existing crack in a material would grow under loading and 
concluded fracture stress of the material was far lower than 
predicted theoretical strength in the presence of crack. The 
analysis considered a linear elastic material with crack length 
a and thickness B as shown in Fig. 2 by employing energy bal-
ance approach instead of crack tip stress directly.

Strained energy per unit volume of the material under 
stress is:

(15)
(
�� + ��

)
�o = �

sinh2�o − 1 + e2�o cos 2�

cosh 2�o − cos 2�

(16)
(
��
)
�o = �

sinh2�o − 1 + e2�o cos 2�

cosh 2�o − cos 2�

(17)

(
𝜎𝛽
)
𝛼o,𝛽=0 = 𝜎

sinh2𝛼o − 1 + e2𝛼o

cosh 2𝛼o − 1
= 𝜎

(
1 + 2 coth 𝛼o

)
= 𝜎

(
1 +

2a

b

)

≫ 𝜎max = 𝜎nom

(
1 +

2a

b

)
k =

𝜎max

𝜎nom
=
(
1 +

2a

b

)

(18)a ≫ 𝜌, 𝜎max = 2𝜎
a

𝜌
.

(19)U∗ =
1

V ∫ dx = ∫
F

A

dx

L
= ∫ �d�
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For a linear material, � = E� . Therefore, strained energy 
per unit volume of the material under stress is:

Assuming the total external strained energy U released 
was strained energy per unit volume times the volume in 
both triangular regions as:

The elastic surface energy �s related to length of crack a 
is given as:

where � = surface energy which has J/m2 as unit. Using the 
energy balance approach fracture criteria for an increase 
in crack area dA is:

or �W
�A

−
�U

�A
=

�Ws

�A

or − ��

�A
=

�Ws

�A
.

Equation (23) can further be written as:

where � = energy potential provided by the internal 
strained energy and forces, W = work done by external 
body, U = external strained energy in the body, A = area 
of the crack surface and Ws = work required to create new 

(20)U∗ =
E�2

2
=

�2

2E

(21)U =
�2

2E
�a2

(22)Ws = 2�sa

(23)W = U +Ws

(24)and, −� = Ws

(25)−
��

�A
=

�W

�A
−

�U

�A
=

�Ws

�A

surface. Griffith finally formulated Eq.  (26) using Inglis 
stress analysis by equating: − U = Ws , if W = 0 for potential 
energy of uncracked body:

Fracture stress, �f  occur when Griffith Eq. (26) is satisfied.

2.3  Stress intensity factor

Westergaard [34] developed solution of a crack problem 
by considering a center crack in an infinite plate in a com-
plex polar coordinate shown in Fig. 3.

Westergaard proposed the complex function of the 
form:

where F(z) is analytical stress function, z and z are second 
and first integral of complex function (z) . The function 
z, z, z and z′ are defined as:

Applying the Cauchy–Riemann condition, and taking 
the first derivative of F(z) with respect to y:

(26)

�U

�A
=

�Ws

�A

�2�a2

2E
= 2�s

�f=

√
2E�s

�a

(27)F(z) = Rez(z) + yImz(z)

z =
dz

dz
, z =

dz

dz
, z� =

dz

dz

(28)

�F

�y
=

�Rez

�y
+ y

�Imz

�y
+ Imz

�y

�y
=

�Rez

�y
+ y

�Imz

�y
+ Imz

Fig. 2   a Crack under remote 
stress. b Fracture energy bal-
ances
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Using the Cauchy–Riemann relation, Eq. (28) is further 
reduced to

Differentiating Eq. (29) further and substituting into 
Eqs. (1–3), Airy stress function yield the following:

The Eq. (30) can be further compared with Eq. (31):

In the same vein, mode II is given as:

Muskhelishvili [35] denoted the complex variable z as 
in Eq. (33) and complex function z(z) as in Eq. (34):

(29)
�F

�y
= −Imz + yRez + Imz = yRez

(30)

�xx =
�2F

�y2
=

�(yRez)

�y
= y

�Rez

�y
+ Rez

�y

�y
= Rez − yImz�

�yy =
�2F

�x2
= �2

(
Rez + yImz

)
= Rez + yImz�

�xy =
�2F

�x�y
= −

�

(
�F∕�y

)

�x
= −

�(yRez)

�x
= −yRez�

(31)

�xx = Φ + y
�Φ

�y

�yy = Φ − y
�Φ

�x

�xy = −y
�Φ

�x

(32)

�xx = 2Rez − yImz�

�yy = yImz�

�xy = −Imz − yRez�

Substituting either Eqs. (33) or (35–37) into (32) yield 
the following stresses in the center crack.

From Fig. 3, the following assumptions can be made 
if a chosen line lies close to one of the crack tips on the 
right-hand side.

Substituting Eqs. (39) into Eq. (38) yield stresses in the 
immediate vicinity of the crack tips as:

Irwin [6, 36] formulated theory of stress intensity fac-
tor using Westergaard solution approach as indicated in 
Fig. 4. Irwin showed stresses and displacements close to 
linear elastic material with a crack tip could be computed 
with a single governing parameter, called stress intensity 
factor. The theory showed elastic stress fields nearby a 
crack tip are presumably identical and the stress inten-
sity factor (k) is proportional to the stress times the crack 
length square root 

�
k ∝ �

√
�r
�
. Therefore, for any given 

(33)
z − a = (x − a) + iy = r1e

i�1 = r1
(
cos �1 + i sin �2

)

z + a = (x + a) + iy = r2e
i�2 = r2

(
cos �2 + i sin �2

)

(34)z(z) =
z�√
z2 − a2

and z� = 0

(35)z = �
(
z2 − a2

)1∕2

(36)z =
dz

dz
= �∕2

(
z2 − a2

)−1∕2 ∗ 2z = �z
(
z2 − a2

)−1∕2

(37)z� = �

{
−z2

(
z2 − a2

)−3∕2+ (
z2 − a2

)−1∕2
}

(38)

�xx =
�r√
r1r2

cos

�
� −

�1 + �2

2

�
−

�a2�
r1r2

�3∕2 r1 sin �1 sin
3

2

�
�1 + �2

�

�yy =
�r√
r1r2

cos

�
� −

�1 + �2

2

�
+

�a2�
r1r2

�3∕2 r1 sin �1 sin
3

2

�
�1 + �2

�

�xy =
�a2�

r1r2
�3∕2 r1 sin �1 cos

3

2

�
�1 + �2

�

(39)r2 = 2a, r = a and �2 = � = 0

(40)

�xx =
�
√
�a√

2�r1

cos (�∕2)
�
1 − sin (�∕2) sin (3�∕2)

�
+⋯

�yy =
�
√
�a√

2�r1

cos (�∕2)
�
1 + sin (�∕2) sin (3�∕2)

�
+⋯

�xy =
�
√
�a√

2�r1

cos (�∕2) sin (�∕2) cos (3�∕2) +⋯

Fig. 3  An infinite plate with circular hole
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geometry and loading, the term 
√
�a is a constant and 

can be replaced with constant k . Stress fields around the 
tip of a crack were categorized into three deformation 
modes namely mode I (tensile), mode II (shearing) and 
mode III (tearing).

The asymptotic displacements and stress fields at the 
tip of a crack for material subjected to any of the three 
modes of crack propagation are given as:

For model I  crack tip deformation, the stress fields are 
given as:

For plane strain, �zz = 0 while plane stress, 
�yy = lim

r → 0

� = 0

kI√
2�r

.

For mode II,

Plane strain �zz = 0, for plane stress

(41)

�xx =
kI√
2�r1

cos (�∕2)
�
1 − sin (�∕2) sin (3�∕2)

�

�yy =
kI√
2�r1

cos (�∕2)
�
1 + sin (�∕2) sin (3�∕2)

�

�xy =
kI√
2�r1

sin (�∕2) cos (�∕2) cos (3�∕2)

�zz = v
�
�x + �y

�
, �xz = �yz = 0

(42)

�xx =
kII√
2�r1

sin (�∕2)
�
2 + cos (�∕2) cos (3�∕2)

�

�yy =
kII√
2�r1

sin (�∕2) cos (�∕2) cos (3�∕2)

�xy =
kII√
2�r1

cos (�∕2)
�
1 − sin (�∕2) sin (3�∕2)

�

�zz = v
�
�x + �y

�
, �xz = �yz = 0

For mode III,

Polar stress components can be expressed in terms of 
Cartesian stress components as given in Eq. (44):

Using Eq. (44), mode I and II equations can be represented 
in a polar coordinate form �rr , ��� and �r� as follow:

Mode I

�zz = v
(
�x + �y

)
. For plane strain

�zz = 0 and for plane stress,

Mode II

�zz = v
(
�r + ��

)
. For plane strain,  �zz = 0 and for plane 

stress,

�xy = lim
r → 0

� = 0

kII√
2�r

(43)

�xx = �yy = �zz = �yz = 0

�xz =
kIII√
2�r1

�yz =
kIII√
2�r1

cos (�∕2)

(44)

�rr = �xx cos
2 � + �yy sin

2 � + �xy sin 2�

��� = �xx sin
2 � + �yy cos

2 � − �xy sin 2�

�r� = sin � cos �
(
�yy − �xx

)
+ �xy cos 2�

(45)

�rr =
kI√
2�r1

cos (�∕2)
�
1 + sin2 (�∕2)

�

��� =
kI√
2�r1

cos (�∕2)
�
1 − sin2 (�∕2)

�

�r� =
kI√
2�r1

sin (�∕2) cos2 (�∕2)

�z� = �rz = 0

(46)

�rr =
kII√
2�r1

�
−5∕4 sin (�∕2) + 3∕4 sin (3�∕2)

�

��� =
kI√
2�r1

�
−3∕4 sin (�∕2) − 3∕4 sin (3�∕2)

�

�r� =
kI√
2�r1

�
1∕4 sin (�∕2) + 3∕4 sin (3�∕2)

�

�z� = �rz = 0

Fig. 4  Stresses at crack tip of a crack
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3  Elastic–plastic fracture mechanics

Elastic–plastic fracture mechanics evaluates stress fields 
of materials with blunted crack problems that have 
deformed plastically above the yield stress and exhibited 
plasticity leading to a plastic zone surrounding the crack 
tip. This is contrary to linear elastic fracture mechanics 
which only describes infinite stress at the sharp crack tip 
and limited to the solution of crack with zero crack tip 
radius [37]. The study of the plastic zone at the vicinity 
of the crack tip in hardened materials by McClintock and 
Irwin [38] and Rice [8] laid the foundation for two basic 
parameters, crack tip opening displacement (CTOD) and 
J-integral for characterizing fracture behavior of materi-
als that undergo elastic plastic deformation.

3.1  Plastic zone model

Irwin [39] formulated the first and second order approxi-
mation of a plastic zone size ahead of crack for mode I as 
illustrated in Fig. 5 by assuming elastic plastic material.

From Eq. (41), the stress field along x-axis at � = 0 , 
yield:

For the first approximation, Irwin assumed a boundary 
between elastic and plastic behavior occurs when the 
stress �yy equal a yield strength �ys.

By substituting Eq. (48) into (47), r which is the dis-
tance over which plastic deformation occur ahead of the 
crack tip equals:

(47)�yy =
kI√
2�r1

(48)�yy = �ys

Assuming the loads carried by elastic stress distribution 
is the same before and after plastic yielding:

Irwin’s conclusion implies that r + r� = 2r� of the first 
approximation and that effective yield stress in plane 
strain is three times of that in plane stress, hence

Dugdale [40] originally proposed strip yield modelling 
of plastic zone size ahead of crack tip. However, Barenblatt 
[41] estimated the effect of plastic strip on stress distribu-
tion at the crack tip vicinity in mode I loading, using a strip 
yield model and then replaced the internal stress distrib-
uted on the plastic zone boundary (Fig. 6) with internal 
tensile stress.

Assuming the actual crack length 2a to be modeled as 
2a + 2� (Fig. 6) and then established the equilibrium con-
dition as:

The stress intensity factor of a crack with an internal 
tensile stress P (Fig. 6c) distributed across its length equals:

(49)r� =
1

2�

(
kI

�ys

)2

(50)

𝜎ys
�
r + r𝜌

�
=

r

∫
0

𝜎ydr =

r

∫
0

k1√
2𝜋r

dr

≫ r𝜌 =
1

𝜋

�
kI

𝜎ys

�2

Plane stress

(51)Similarly, r� =
1

�

(
kII

�ys

)2

(52)r� =
1

3�

(
kI

�ys

)2

∝ Plane stress

(53)k𝜎 + k𝜌 = 0 ≫ k𝜎 = −k𝜌

Fig. 5  a 1st approximation 
of plastic zone size for plane 
stress condition. b 2nd approx-
imation of plastic zone size
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General solution for an eccentrical point force may be 
described by Green’s function as:

where kIA = stress intensity factor for crack tip A, kIB = 
stress intensity factor for crack tip B. With a uniformly 
applied internal pressure P acting as evenly distributed 
crack opening from the surface to the crack tip, k would 
be determined by integration of the crack.

(54)kI = P
√
�a

(55)kIA =
P√
�a

�
a + x

a − x

(56)kIB =
P√
�a

�
a − x

a + x

(57)

k =

a

∫
s

�
kIA + kIB

�
dx =

a

∫
s

P√
𝜋a

��
a + x

a − x
+

�
a − x

a + x

�
dx

≫ k = 2P

√
a√
𝜋

a

∫
s

dx√
a2 − x2

The integration was carried out by a change of vari-
able,x = a cos which lead to:

Applying Dugdale crack to Eq. (58) and substituting 
a = a + � , s = a for the integral and P = −�ys gives:

From Fig. 5b, stress intensity from tensile stress is given 
as:

Substituting Eqs. (59) and (60) into Eq. (54) yield:

Dugdale model was expressed to further reduce Eq. (61) 
using Taylor series:

(58)k = 2P

√
a√
�
cos−1 (x∕a)

a

∫
s

= P
√
�a

(59)

k𝜌 = −2𝜎ys

√
a + 𝜌√
𝜋

cos−1 (x∕a)∫
a+𝜌

a

≫ k𝜌 = −2𝜎ys

√
a + 𝜌√
𝜋

cos−1
�
a∕(a + 𝜌)

�

(60)k� = �
√
�(a + �)

(61)
a

a + �
= cos

[
�a

2�ys

]

Fig. 6  a Strip yield plastic zone size. b Plastic zone with closure stress in strip yield. c Dugdale wedge force
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Neglecting higher order terms and taking the first two 
terms for cosine gives the plastic zone size:

3.2  Crack tip opening displacement

Wells [7] tried to measure critical stress intensity values of 
some structural steels and discovered the steels exhibited 
higher degree of plastic deformation prior to fracture. Thus, 
crack face movement is proportional to fracture toughness 
as shown in Fig. 7. Wells concluded stress intensity factor 
parameter could not be used for blunted crack tip material 
and suggested crack opening displacement now known 
as crack tip opening displacement (CTOD) as measuring 
parameter for the fracture toughness.

McClintock and Irwin [38] showed computation of crack 
tip opening displacement in relation to crack face displace-
ment from the first principle using Westergaard crack analy-
sis. Using two complex functions ϕ and ψ  to represent the 
displacement fields for plane elasticity in mode I:

where shear modulus � = E∕2(1 + v) and the constant k is:

Equations (64) and (65) were simplified further with 
Westergaard approach by setting ψ� = −zϕ� + ϕ+ con-
stant while the displacements fields are:

(62)

a

a + �
= 1 −

1

2!

(
��

2�ys

)2

+
1

4!

(
��

2�ys

)4

−
1

6!

(
��

2�ys

)6

+⋯

(63)� =
�2�2a

8�2
ys

=
�k2

2�2
ys

(64)4�ux = Re
[
kϕ − zϕ

�

− ψ
�]

(65)4�uy = Im
[
kϕ + zϕ

�

+ ψ
�]

(66)
k = 3 − 4v plane strain

k = 3 − v∕1 + v plane stress

w h e r e  z − a = rei�  ,  h e n c e  1√
z−a

=
1√

(r)e−i�∕2
=

1∕
√
r(cos �∕2 − i sin �∕2) and

Substituting Eqs. (69) and (70) into Eqs. (67) and (68) 
yield:

Similarly, for Mode II , displacements fields are given as:

Simplifying Eqs. (73) and (74) further gives

Taking � = ∓� and substituting into Eq. (72) yield:

Setting r = r� , then substituting Eq. (50) and (66) into 
(78) yield:

(67)2�ux =
k − 1

2
Reϕ − yImϕ�

(68)2�uy =
k + 1

2
Imϕ − yReϕ�

(69)ϕ� =
kI√
2�

1√
z − a

(70)ϕ =
kI√
2�

2
√
z − a = kI

�
2

�

√
(r)ei�∕2

(71)ux =
kI

2�

√
r

�
cos �∕2

(
k − 1 + 2 sin2 �∕2

)

(72)uy =
kI

2�

√
r

2�
sin �∕2

(
k + 1 − 2 cos2 �∕2

)

(73)2�ux = k + 1Reϕ − yImϕ�

(74)2�uy = k − 1Imϕ − yReϕ�

(75)ux =
kII

2�

√
2

2�
sin �∕2

(
k + 1 + 2 cos2 �∕2

)

(76)uy =
kII

2�

√
2

2�
cos �∕2

(
k − 1 − 2 sin2 �∕2

)

(77)uy =
k + 1

2�
kI

√
r∕2�

(78)CTOD = 2uy =
k + 1

�
kI

√
r∕2�

(79)CTOD =
4

�

k2
I

E�ys
=

4G

��ys
Plane stress

Fig. 7  a Sharp crack tip. b Blunted crack tip
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Burdekin and Stone [42] further showed another 
method of computing crack tip opening displacement by 
adopting Dugdale plastic zone model approach (Fig. 6) 
and defining crack tip opening displacement at the end 
of the strip yield zone. From Eqs. (67) and (68) the vertical 
displacement is given as:

Westergaard function is given as:

Note that the stress function for pair of splitting forces 
P is given as:

By taking the integral of yield stress �ys along the crack 
surface between a and a1 and substituting P = −�ysdx  into 
Eq. (84) result in:

Recall Eq. (61), a

a+�
= cos

(
��

�y

)
=

a

a1
= k and substitut-

ing Eq.  (61) into Eq.  (85) and superimposing Eq.  (83) 
yielding:

Integrating Eq. (86) further, gives:

(80)CTOD
1√
3

4
�
1 − v2

�
�

k2
I

E�ys
Plane stress

(81)uy =
1

E

[
2Imz − y(1 + v)Rez

]

(82)uy =
1

E

[
2
(
1 − v2

)
Imz − y(1 + v)Rez

]

(83)
z =

�z√
z2 − a2

1

(84)z =
2PZ

√
a2
1
− x2

�

√
z2 − a2

1

(
z2 − a2

1

)

(85)

z = −

a1

∫
a

2PZ
�

a2
1
− x2

�

�
z2 − a2

1

�
z2 − a2

1

�

= −
2�ys

�

⎡
⎢⎢⎢⎣

z�
z2 − a2

1

cos−1
�

a

a1

�
− cot−1

�
a

z

�
z2

a2
1

−
a2
1

a2

�⎤⎥⎥⎥⎦

(86)z =
2�ys

�

⎡⎢⎢⎣
k

�

�
z2 − a2

1

1 − k2

⎤⎥⎥⎦

(87)z =
2�ys

�

[
z�1 − a�2

]

where �1 = cot−1

√√√√√ 1−

(
a2
1∕a

)2

1∕k2−1
 and �2 = cot−1

√
z2−a2

1

1−k2
.

On the crack plane, y = 0 , therefore Eq. (81) reduced to:

Substituting Eq. (87) into (88) gives:

|z| ≤ a1, setting z = a , further reduced Eq. (89) to:

Substituting k = cos
��

�ys
 into Eq. (90) gives:

By adopting a series expansion of the term “ lnsec ” gives:

so, as �
�ys

→ 0

3.3  J‑integral

Cherepanov [43] and Rice [8] introduced J-integral theo-
retical concept to characterize condition of crack tip in two-
dimensional elastic plastic materials. The J-integral was for-
mulated as path independent line integral around crack tip 
as shown in Fig. 8 and interpreted as rate of energy release.

where A is crack area and � is potential energy defined as:

(88)uy =
2

E
Imz

(89)

uy =
4�ys
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⎡⎢⎢⎣
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�
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(93)CTOD =
K2
1

E�ys
=

G

�ys
Plane stress

(94)Similarly,CTOD = 1∕2
(
1 − v2

) K2
1

E�ys
Plane stress

(95)J = −
dΠ

dA
= G =
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where U = external strained energy stored in the body and 
W  is the work done by external force. For a load control:

where P is applied load and U∗ is strained energy per unit 
volume defined as:

Hence, for a plate in load control,

where the crack advances at a fixed displacement, W = 0 
and J is given by:

The potential energy � of two-dimensional body of 
area, A, with surface traction, Ti prescribed over a portion 
of the boundary surface, Γ given as:

(96)π = U −W

(97)π = U − PΔ = −U∗

(98)U∗ =

p

∫
0

ΔPdP

(99)J =

�
dU∗

da

�

p

=

⎛⎜⎜⎝
d

da

P

∫
0

ΔdP

⎞⎟⎟⎠p
=

P

∫
0

�
dΔ

da

�

p

dP

(100)

J = −

�
dU∗

da

�

Δ

= −

⎛⎜⎜⎝
d

da

Δ

∫
0

PdΔ

⎞⎟⎟⎠Δ
=

P

∫
0

�
dΔ

da

�

p

dP

Differentiating Eq. (101) with respect to crack length a 
yields:

Considering Fig. 8,

Substituting Eq. (103) into Eq. (102) yield:

where �W
�a

=
�W

��ij

��ij

�a
= �ij

��ij

�a
.

Applying principle of virtual work yield:

Application of divergence theorem yield:

Substituting Eqs. (105) and (106) into Eq. (104) gives:

4  Fracture mechanics application to fatigue

Fatigue is understood as a progressive failure in material 
components due to repeated stresses and strains variation 
while the fatigue life is the time it takes for the progressive 
failure to develop a through wall defect [44, 45]. But the 
fatigue crack propagation is defined by Correia et al. [46] 
as continuous crack initialization process that may lead 
to failure of representative elementary material. Several 
fatigue life prediction models have been developed for 
the computation of fatigue growth and remaining life of 
materials or structural components. The fatigue life predic-
tion models are based on three methodologies namely 
stress-life, strain-life and fracture mechanics [47]. In frac-
ture mechanics-based prediction models, the stress inten-
sity factor parameter is more widely used in the fatigue life 
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= ∫
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Fig. 8  Two-dimensional crack body
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prediction than the CTOD and the J-integral [48]. Nonethe-
less, recent works relate fracture mechanics-based param-
eters with strain life prediction models.

4.1  Fatigue growth based in fracture mechanics

Paris [49] was the first to conceive the fatigue crack growth 
rate by idealizing stress intensity factor range. The math-
ematical relationship between crack growth per cycle 
(da∕dN) and the stress intensity factor range (Δk) was for-
mulated by Paris and Erdogan [50]:

where da = incremental crack length; dN = incremental 
number of cycles;Ck ,mk = Paris empirical parameters 
based on stress intensity factor that are determined from 
curve fit to test data. The applied stress intensity factor 
range ( Δk ) is defined as:

where kmax and kmin  are maximum applied stress inten-
sity factor and minimum applied stress intensity factor 
respectively.

A fatigue rate curve (Fig.  9) of the crack increment 
per load (da∕dN) versus the stress intensity factor range 
( Δ K) has three divisions, refers to region as I, II  and III . The 
fatigue rate curve (Fig. 9) and the Eq. (108) have several 
limitations such as application to only small-scale yield-
ing, rate curve dependency on fitting parameters and 
stress ratio [51]. Other limitations of the Paris law include 
the inability to be applied to crack near threshold, near 
unstable crack propagation regimes, variable amplitude 
loadings and crack closure effect [52].

Elber [53] raised concern of crack closure existence on 
fatigue specimens during minimum tensile load and effect 

(108)
da

dN
= Ck(Δk)

mk

(109)Δk = kmax − kmin

on the fatigue crack propagation. Crack closure reduces 
fatigue crack growth rate by decreasing effective stress 
intensity factor range. Elber [53, 54] proposed modifica-
tion to Eq. (108) to account for effect of stress ratio and 
the crack closure effect on fatigue crack propagation by 
replacing the applied stress intensity factor range (Δk)  
with the effective applied stress intensity factor 

(
Δkeff

)
 as:

Effective applied stress intensity factor range 
(
Δkeff

)
 is 

defined as:

where kop = crack opening stress intensity factor.
Walker [55] modified the Paris Eq. (108) by introducing 

a fatigue crack growth equation exponent, � to account 
for effect of stress ratio, R on the fatigue crack propagation 
and equating R = 0 . The Walker’s model is given as:

The Walker model of Eq. (112) did not consider the near 
unstable crack propagation regime when the stress inten-
sity factor approaches critical value. Therefore, Foreman 
[56] proposed a model by modifying Eq. (112) to describe 
the near unstable propagation in the region III of fatigue 
curve rate (Fig. 9). The Foreman model is represented as:

where kc = critical fracture toughness of material.
Collipriest [57], Priddle [58] and McEvily [59] proposed 

crack growth models capable of describing all three 
regions  (I, II, III) of the fatigue rate curve. The Collipriest, 
Priddle and McEvily models are given in Eqs. (114), (115) 
and (116) respectively:

(110)
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= Ck

(
Δkeff

)mk

(111)
(
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da

dN
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[
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]mk
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=
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mk
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]
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(
1 +
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Fig. 9  Typical fatigue crack growth rate curve
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where Δkth = Propagation threshold. But Weertman [60] 
proposed fatigue crack growth that can describe region 
III of the fatigue rate curve. The Weertman proposed model 
is given as:

4.2  Fatigue crack propagation under large scale 
plasticity

Dowling [61, 62], Dowling and Begley [63] were the first to 
successfully correlate the fatigue crack growth rate with 
the J-integral fracture mechanics parameter through series 
of experimental data to account for large scale plasticity 
effect. The mathematical correlation between the fatigue 
crack growth rate and the J-integral range (ΔJ) is given as:

The J-integral range (ΔJ) is defined as:

where B = specimen thickness; b = uncracked ligament 
length; � = constant for deeply notched (= 2) ; dV = 
change in load displacement; CJ ,mJ = Paris empirical 
parameters based on J-integral that are determined from 
curve fit to test data, Vmax  and Vmin are maximum and mini-
mum load line displacement respectively.

Analytical analysis by Tanaka [64] further suggested 
adoption of the J-integral parameter as criteria for the 
fatigue crack growth rate since cyclic  J-integral for large 
scale is depended on loading process. Results of recent 
investigations for a fatigue crack propagation under 
a large scale plasticity with the elastic–plastic fracture 
mechanics parameter by Azmi et al. [65], Vormwald [66] 
and Kuai et al. [67] agreed with previous studies that the 
J-integral parameter could be used to characterize the 
fatigue crack growth rate. But, Laird and Smith [68] were 
the first to argue possible relationship between fatigue 
growth mechanisms and crack tip blunting following 
examination of some fracture surfaces of ductile metals 
under cyclic stresses. Kikukawa et al. [69], Newmann [70] 
and Tomkins [71] attempted to relate the crack tip open-
ing displacement (CTOD) parameter with the fatigue 
crack growth rate from direct microscopic examination 
of fatigue crack growth mechanisms. Recent numerical 
studies by Antunes et al. [51] and Antunes et al. [72] on 
the fatigue crack growth rate correlation with the crack tip 

(117)
da

dN
=

Ck(Δk)
4

k2
c
− k2

max

(118)
da

dN
= CJ(ΔJ)

mJ

(119)ΔJ =
�

Bb

Vmax

∫
Vmin

(
Pmax − Pmin

)
dV

opening displacement range (ΔCTOD) indicated increas-
ing crack lengths with increasing ΔCTOD and correspond-
ing fatigue growths. Similarly, an experimental study by 
Vasco-Olmo [73] agreed with previous studies that the 
ΔCTOD could replace the Δk in characterization of the 
fatigue crack propagation because the CTOD considers 
crack shielding and fatigue threshold. Tanaka et al. [74] 
correlated the crack tip opening displacement parameter 
with the fatigue crack growth rate through experimental 
investigation of crack opening behavior and fractora-
graph. The mathematical correlation between the fatigue 
crack growth rate and the CTOD is given as:

where ΔCTOD is represented in the form:

where C� ,m� = Paris empirical parameters based on CTOD 
that are determined from curve fit to test data, ��s = yield 
strength and q =  material constant. The values of q is 
generally greater than 1 but equal to 1 when geometrical 
shapes of the crack tip opening are identical.

4.3  Fatigue growth based on local strain approach

According to Hafezi et al. [75], stress–strain fields at a crack 
tip vicinity can be calculated using a combination of elas-
tic–plastic analysis and fatigue damage law to predict fail-
ure of elementary material representative with either the 
stress life or the strain–life approach (local strain based). 
The stress-life approach in fatigue life prediction of rep-
resentative elementary material is usually used at the 
designed stage of structures and employed when nominal 
elastic stresses and strains are present. But the local strain-
based approach is preferred if the elementary material is 
subjected to nominally cyclic elastic stresses and strains 
with stress concentration that may lead to local cyclic plas-
ticity, thus it is used in fatigue life prediction of crack initia-
tion on notched component of materials [47, 76]. The local 
strain-based approach considers stresses and strains at the 
crack tip and associated stress intensity factor to compute 
total fatigue life of both crack initiation and propagation 
[77, 78]. Several models have been proposed to replace 
the fatigue life prediction in the last 4 decades. Among 
the famous models were Coffin [79] and Manson [80] that 
proposed to replace the fracture mechanics-based fatigue 
crack growth model with the local strain-based approach. 
The Coffin–Manson [79, 80] model for computing a mate-
rial failure relationship is given as:

(120)
da

dN
= C�(ΔCTOD)

m�

(121)ΔCTOD = B

[
ΔJ

��s

]q
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where ΔE = strain range; � I
f
= fatigue strength coefficient; 

�I
f
= fatigue ductility coefficient; Nf = number of cycles 

required for representative material to fail; d = fatigue 
strength exponent and c = fatigue ductility exponent.

Morrow [81] proposed another local strain-based 
approach for computing fatigue life of a material by modi-
fying Coffin–Manson’s Eq. (122) to account for mean stress, 
�m effect on fatigue life. The Morrow local strain-based 
model is given in the form:

Similar, the local strain-based model for fatigue dam-
age parameter was proposed by Smith–Watson–Topper 
[82] to account for maximum stress and stress ratio effect. 
The Smith–Watson–Topper [82] model is represented in 
the form:

Noroozi et al. [83–85] recently derived a mathematical 
relationship between the fracture fatigue crack growth and 
the local strain-based approach for fatigue growth predic-
tion. The Noroozi et al. [84, 85] model suggested using strain-
life approach with either Smith–Watson–Topper’s Eq. (124) 
or Morrow’s Eq. (123) and considers the residual stress and 
the stress ratio effect on fatigue life prediction. The model is 
developed to compute the elastoplastic stresses and strains 

(122)Δε

2
=

� I
f

2
(2Nf )

d + �I
f
(2Nf )

c

(123)Δε

2
=

� I
f
− �m

E
(2Nf )

d + �I
f
(2Nf )

c

(124)�max

(
Δ�

2

)
=

(
� I
f

)2
(2Nf )

2d

E
+ � I

f
�I
f
(2Nf )

d+c

at the elementary material blocks ahead of the crack tip 
(Fig. 10) and represented in the form:

where �∗ = elementary material block size while the da
dN

 is 
defined as follow:

where kmax,tot = maximum total stress intensity factor; 
Δktot = total stress intensity factor range. The kmax,tot and 
Δktot are defined further in Eq. (127) and (128) respectively:

where kr = residual stress intensity factor.
Huffman [86] recently derived another mathematical rela-

tion between the fatigue crack growth and the local strain 
approach using strain energy densities from applied loads 
and the strain energy of dislocations to compute the strain-
life, stress-life and fatigue crack growth rate. Huffman [86] 
fatigue crack growth rate based on a strain energy density 
model is given in the form:

where Ud = dislocation strain energy; �c = critical disloca-
tion density; K I =  cyclic strength coefficient; nI = cyclic 
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Fig. 10  Crack configuration of Unigrow model: a Crack tip and average stresses over individual elementary material blocks at the tensile 
maximum and compressive minimum load; b crack and elementary material blocks [83]
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strain hardening exponent, �a =  = applied stress; Δa = 
crack length range.

4.4  Probabilistic models of local strain approach

The local strain-based fatigue life prediction models by 
Coffin–Manson and Smith–Watson–Topper (SWT) are 
deterministic methods [46]. Thus, Castillo and Fernández-
Canteli [87] proposed probabilistic fatigue life models for 
stress and strain-based fatigue damage using Weibull dis-
tribution. Castillo and Fernandez-Canteli [87] formulated 
probabilistic strain life 

(
ℙ − �a − N

)
 model by assuming 

that the fatigue life and total strain amplitude are random 
variables, represented as:

where ℙ = probability of failure; No and �ao = normaliliz-
ing values; �, � and � = non-dimensional Weibull model 
parameters. Their physical meanings shown in Fig. 11 are 
defined as:

No = threshold value of lifetime; �ao = endurance limit 
of �a ; � = parameter defining the position of the corre-
sponding zero-percentile curve; � = scale parameter and 
� = shape parameter. The probability depends solely on 
the product of N∗

f
�∗
a
 , defined as N∗

f
= dimensionless life (

= log
(
Nf∕No

))
 and �∗

a
= dimensionless strain amplitude (

= log
(
�a∕�ao

))
 . Thus,

Furthermore, strain life and Smith–Watson–Topper 
(SWT) deterministic models have shown identical char-
acteristics in fatigue damage analysis [46, 88]. Therefore, 
probabilistic fatigue life model of ℙ − �a − N field devel-
oped by Castillo and Fernández-Cansteli [87] had been 
extended to develop probabilistic Smith–Watson–Topper 
life (ℙ − SWT − N) model, and is given as:

where SWTo = normalilizing value, but SWTo = fatigue 
limit of SWT  for physical meaning parameter. The physical 
meaning parameters of Eq. (132) parameters are shown 
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in Fig. 12. Similarly, the probability depends solely on 
the product of N∗

f
SWT ∗ and SWT ∗ = damage parameter (

= log
(
SWT∕SWTo

))
. Thus,

5  Conclusions

This paper presents a review of mathematical derivation 
of stress concentration, fracture stress, stress intensity fac-
tor, crack tip opening displacement and J-integral from 
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Fig. 11  Percentile curve between dimensionless lifetime 
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Fig. 12  Percentile curve between dimensionless lifetime 
(
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)
 and 

damage parameter (SWT ∗) for ℙ − SWT − N field
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the first principle. The linear elastic parameter shows the 
stress field tends to zero as the tip of crack approaches 
zero, thus it is only applicable to brittle materials. But the 
elastic plastic parameters show the stress field solutions 
are not equal to zero at both the blunted and sharp crack 
tips, thus applicable to ductile materials. The paper consid-
ers further the fatigue life correlation with J-integral, crack 
tip opening displacement and local strain-based approach 
methods. The prediction of fatigue crack growth rate with 
the J-integral and the crack tip opening displacement 
parameters considers the plasticity, crack shielding and 
fatigue threshold effect. On the other hand, the fatigue life 
prediction of crack initiation and propagation of notched 
specimens with the local strain-based approach considers 
maximum stress and residual stress intensity factor, thus 
has several benefits over the fatigue life prediction with 
conventional stress intensity factor.
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