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Abstract
This paper presents the model UMHYSER-1D (Unsteady Model for the HYdraulics of SEdiments in Rivers 1-D), a one-
dimensional hydromorphodynamic model capable of representing water surface profiles in a single river or a multiriver 
network, with different flow regimes considering cohesive or non-cohesive sediment transport. It has both steady and 
unsteady flow and sediment modules. For steady gradually varied flows, UMHYSER-1D uses the standard step method 
to solve the energy equation and the “NewC” scheme for the de St Venant equations. For sediment transport, UMHYSER-
1D uses two methods: for long-term simulation, the unsteady terms of the sediment transport continuity equation are 
ignored, and a non-equilibrium sediment transport method is used. For short-term simulation, the convection–diffusion 
equation, with a source term arising from sediment erosion/deposition is solved using the fractional step method. The 
equation without the source term is solved with an implicit finite-volume method, then the equation with source term 
is solved. Internal boundary conditions, such as time-stage tables, rating curves, weirs, bridges, and gates are simulated. 
Incorporated is the active layer concept, which allows selective erosion, enabling the simulation of bed armoring. Non-
cohesive sediment transport equations and cohesive sediment physical processes are applied to calculate the sediment 
deposition and erosion. Finally, UMHYSER-1D empirically accounts for bed geometry adjustments by using a relationship 
between erosion width and flow rate, an angle of repose condition for bank stability and three minimization theories. 
The presented validation and application cases show UMHYSER-1D’s capabilities and predicts its promising role in solv-
ing complex, real engineering cases.

Keywords  One-dimensional model · UMHYSER-1D · Fractional step method implicit finite-volume method · Unsteady 
sediment transport · Bed geometry adjustment · Minimization theories

1  Introduction

Numerical modeling is widely used in river engineering 
studies. Determining the risk zone caused by floods [1], 
investigations of river morphology changes [2, 3], stream 
restoration projects and sediment deposition studies [4, 5] 
are some examples of river engineering problems involv-
ing numerical modeling. Several numerical models were 
developed during the last decades, spanning from the sim-
plest ones to more complex solvers. The less complicated 

ones are the one-dimensional (1D) models. Some do not 
consider riverbed erosion, such as FLDWAVE [6], by solv-
ing unsteady flow equations, while others are developed 
for mobile riverbeds such as GSTARS [7] or MHYSER [2] 
using the flow quasi-steadiness hypothesis. Others more 
complicated, were developed and still under improvement 
such as the one by El Kadi and Paquier [8], CONCEPTS [5], 
SRH-1D [9], CCHE1D [10], MIKE11 [11], HEC-RAS [12] or 
BASEMENT [13]. Even if two-dimensional (2D) models are 
gaining in popularity, the much longer computation time 
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required for 2D models compared to 1D models, the least 
amount of field data required by 1D models, the stability 
of the 1D numerical schemes used to solve the governing 
equations with the gain in computational efficiency [14], 
make the use of 1D hydraulic models still needed in river 
engineering, particularly for applications with long rivers 
[15].

This paper presents a new 1D model, Unsteady numeri-
cal Model for HYdraulics of SEdiments in Rivers, UMHYSER-
1D, developed at Polytechnique Montreal and still under 
improvement. Since its development, UMHYSER-1D went 
through different validation stages before its application 
in real engineering cases ([16–18]), however its numerical 
procedures were never published. The authors objectives 
are to create an efficient tool to solve real engineering 
problems and to have access to a numerical laboratory to 
be used to test new scientific findings. In fact, the advan-
tage of developing a new tool resides in the accessibility to 
the source code which makes it easy to improve the model 
by adding new research ideas or testing new findings such 
as a new sediment transport equation.

UMHYSER-1D is a 1-D model developed to simulate 
flows in rivers and channels with or without movable 
boundaries. It can compute water surface elevations 
in complex channel networks. UMHYSER-1D is able to 
model both steady and unsteady flow conditions, cohesive 
and non-cohesive sediment transport, and rivers’ width 
changes using minimization theories and riverbank retreat 
method. Moreover, hydraulics structures such as weirs, 
bridges, and gates along with other internal boundary 
conditions (such as time-stage tables, rating curves) are 
accounted for.

In steady flow conditions, UMHYSER-1D is identical 
to MHYSER, Model for HYdraulics of SEdiments in Riv-
ers, developed by Mahdi [2], where the continuity and 
energy equations are applied, when there are no changes 
in the flow regime, while the momentum and the conti-
nuity equations are used when there are changes from 
supercritical to subcritical flows. For sediment transport, 
MHYSER models long-term situations and uses the non-
equilibrium sediment transport method of Han [19].

UMHYSER-1D performs five groups of operations 
including water phase, sediment phase, stream tubes, 
riverbank stability analysis, and stream power minimiza-
tion, respectively. The flowchart of the unsteady module 
of UMHYSER-1D, presented in this paper, is illustrated in 
Fig. 1.

The remainder of this article is divided into six sections. 
In section two, the flow routine is presented, followed 
by the sediment routing, bed material mixing, and bed 
geometry adjustment presented in section three. Sec-
tion four presents the numerical solution procedure for 
the water and sediment equations. Finally, in section five 

UMHYSER-1D is applied to an experimental test of a res-
ervoir deposits’ erosion following dam removal, followed 
by the conclusion.

2 � Unsteady flow routing

For simple and complex channel networks, unsteady 
UMHYSER-1D solves the de Saint–Venant equations using 
appropriate boundary conditions.

2.1 � Unsteady flow equations

For unsteady flows UMHYSER-1D solves the 1-D de St 
Venant equations [20]:

where Q = discharge, B = storage width, A = cross-sectional 
area, t = time independent variable, x = spatial independ-
ent variable, g = gravity acceleration, α = velocity distribu-
tion coefficient, Z = water surface elevation, S0 = bed slope, 
Sf = energy slope 

(
= Q|Q|∕K2

)
 , and K = conveyance.

For river networks UMHYSER-1D uses the simultane-
ous solution procedures described by Chaudhry [21]. The 
unknowns are flow depths and flow discharges in each 
channel. For a river with N + 1 cross-sections, there are 
2(N + 1) unknowns where N river reaches provide 2 N equa-
tions. To have a unique solution, two boundary conditions 
provided by rivers’ connections are required.

2.2 � Boundary conditions

While the most used boundary conditions are a known 
discharge at the upstream boundary and a rating curve at 
the downstream boundary, in UMHYSER-1D the upstream 
boundary condition can be either a water discharge or a 
river stage, and the downstream boundary condition can 
be a river stage or a rating curve.

For a network, in addition to the upstream and down-
stream boundary conditions, the continuity equation 
is applied at each node with no storage allowed, and 
momentum equation is applied at each junction, impos-
ing the same water level correction to all cross sections 
associated with the junction.

Hydraulic structures such as bridges, weirs and dams 
may exist along a river reach. At each internal structure, 
two unknowns are introduced: discharge and water sur-
face elevation. The continuity equation along with an 
extra equation depending on the particular structure 
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provides the set of equations to solve for the unknowns. 
UMHYSER-1D supports 4 types of internal boundary 
conditions. A stage time series represents a controlled 
pool or lake and a rating curve represents any structure 
having a unique relationship between flow rate and 
water surface elevation. Moreover, weirs and bridges 
are implemented in the same way as done in [12] and 
[6] respectively.

3 � Sediment routing

After the water surface characteristics are calculated, the 
cross sections are divided into sections of equal convey-
ance or stream tubes (Fig. 2).

These stream tubes act as conventional 1-D channels 
with known hydraulic properties where sediment rout-
ing can be carried out within each stream tube almost as 
if they were independent channels. Once the top widths 

Fig. 1   Flowchart of UMHYSER-
1D
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are determined, the velocities of the stream tubes are 
calculated by giving a crosswise velocity distribution. 
Stream tube locations can vary with time. Therefore, 
although no material can cross stream tube bounda-
ries during a time step, lateral movement of sediment 
is described by lateral variations in the stream tube 
boundaries. For a short-term simulation, the governing 
equation for sediment transport is a convection–diffu-
sion equation with a source term arising from sediment 
erosion/deposition.

3.1 � Total load convection–diffusion equation

In the present paper, the 1-D version of the 2-D unsteady 
total load convection–diffusion equation to model 
depth-averaged non cohesive sediment transport, devel-
oped in [22], automatically switches to suspended load, 
bed load, or mixed load depending on a transport mode 
parameter consisting of local flow hydraulics. Moreover, 
this equation can be applied to multiple size fractions 
and is generalized to cohesive sediment transport.

The 1-D version of Greimann et  al. equation [22], 
cross-sectional averaged convection–diffusion equa-
tion is:

where A = cross-sectional area, C = cross-sectional aver-
aged sediment concentration by volume, Q = flow rate, 
D = longitudinal diffusion coefficient, �  = source term, x 
= longitudinal distance and t = time.

To provide model closure, three variables still need 
to be determined: the transport mode parameter f, the 
velocity ratio β, and the source term �  . The f parameter 
represents the ratio of suspended portion to the total 
sediment concentration for a single size class; it ranges 

(2)
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from 0 for pure bed load to 1 for pure suspended load, 
while β is the ratio of sediment velocity to flow veloc-
ity. Two expressions for β are needed, one for bed load, 
�bed , and the other for suspension case, �sus . The follow-
ing expressions for f and β are given in [19]:

where z = �f∕
(
�u∗

)
 is the suspension parameter, and 

� = �∕�r , � = �b∕
[
�(s − 1)d

]
 = Shields parameter (τb = bed-

shear stress; γ = specific weight of water; d = particle diam-
eter; and s =specific gravity of sediment); and θr = reference 
non-dimensional shear stress, the Shields parameter at 
which there is a low but measurable reference transport 
rate, such as defined in [23].

Note that z must be less than 1 when computing �sus , 
and ∅ must be less than 20 when computing �bed [19]. 
Further, Eq. (5), permitting the use of the same Eq. (2) 
for simulating bed load and suspended load, avoids the 
discontinuity in sediment velocity between bed load and 
suspended load, using Eqs. (4a) and (4b). In addition, the 
longitudinal diffusion coefficient, D, is computed as in 
[24]:

where W = channel top width, U = cross sectional velocity, 
H = average cross-sectional depth, u∗ = shear velocity, and 
K = user specified value ([24] recommend 0.011).
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Fig. 2   Schematic representa-
tion of stream tubes [2]
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3.1.1 � Source term �

3.1.1.1  Non cohesive sediment  For non-cohesive sedi-
ment the following source term is used [25, 26]:

where Ltot = total effective adaptation length, W = chan-
nel top width, q∗

tot
 = equilibrium capacity for total load 

transport rate (per unit width), and qtot = actual total load 
transport rate (per unit width).

UMHYSER-1D offers a choice of 12 equilibrium capacity 
equations [23, 27–38], widely used in river engineering. 
Using the sediment recovery factor, � , related to Ltot [22]:

where Lb = bLh adaptation length for bed load, bL = a cali-
bration coefficient, h = water depth. Ltot might be calcu-
lated as [39]

with Ls =
Uh

��s

 adaptation length for suspended load. If bed 

load and suspended load coexist, Lb is generally smaller 
than Ls and Ltot = Ls ; in fact, Lb is set to one or two times the 
grid spacing [40]. But since Lb and Ls (i.e., � ) are used as 
calibration parameters, the difference between and is 
negligible.

For suspended load (f = 1), from Eq. (8a):

where �s = suspended particle fall velocity, Eq. (7) takes 
the form:

where C∗ = cross-section averaged sediment concentration 
capacity by volume and C = cross-section averaged sedi-
ment concentration by volume, VE = ��sC

∗ , and VD = ��s

.In the case of multiple size fractions, Eq. (9b) is valid for 
each material of size k:

where p = percentage of material of size k, Ck = cross-
section averaged sediment concentration by volume for 
material of size k, VE ,k = ��s,kC

∗
k
, VD,k = ��s,k , �s,k fall 

velocity for particle of size class k, and C∗
k
 = sediment con-

centration capacity by volume computed if the bed was 
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composed entirely of this k size fraction ( C∗k = pkC
∗
k
 , sedi-

ment concentration capacity by volume of size class k).
The complexity of the sediment recovery factor,� , is 

well discussed in [39]. Suggested values for � are about 
0.25 for strong deposition, and 1 for strong erosion [19, 
41]. In UMHYSER-1D, bL and � are user defined calibration 
parameters and different values of � are used for deposi-
tion versus erosion.

3.1.1.2  Cohesive sediment  Treated as a single sediment 
class, cohesive sediment is still modeled by Eq. (2) but the 
expression of the source term, �  , is given by:

where VE and VD are the velocities of erosion and deposi-
tion, respectively, pc is the percentage of the cohesive sedi-
ment in the riverbed, and Cc is the cross-section averaged 
cohesive sediment concentration by volume.

UMHYSER-1D deposition of cohesive sediment is based 
on Krone’s equation [42], while particle and mass erosion 
are based on the work of Parthenaides [43] and adapted 
by Ariathurai and Krone [44]. VE is defined by:

Ps = surface erosion constant (kg/m2/s), Pm = mass erosion 
constant (kg/m2/s), � = bed shear stress (Pa),�s = sediment 
density (kg/m3), �es = critical surface erosion shear stress 
(Pa), �em = critical mass erosion shear stress (Pa).

The deposition velocity, VD , is given by:

Cc = cross-section averaged sediment concentration by 
volume, � = bed shear stress (Pa), Ceq = equilibrium cohe-
sive cross-section averaged sediment concentration by 
volume, �df  = critical shear stress for full deposition (Pa), 
� = fall velocity of the cohesive sediment (m/s), and �dp 
= critical shear stress for partial deposition (Pa).

3.2 � Fall velocity

For sediment fall velocity, UMHYSER-1D adopts the 
approach of the US Bureau of Reclamation [9, 45] for both 
cohesive and non-cohesive sediments. More specifically, 
for non-cohesive sediment recommended values of [46] 
for particle diameter less than 10 mm are adopted. For 
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particle’s diameter higher than 10 mm, the following for-
mula is used [45]:

where � is the fall velocity, g = acceleration due to gravity, 
s = specific gravity of sediments, and d = particle diameter.

For particles in the silt and clay size ranges, that is, with 
diameters between 1 and 62.5 μm, the unhindered sedi-
ment fall velocity is computed from [45]:

where � = kinematic viscosity of water. This equation is 
valid for a user defined value of the concentration, C1.

In fact, the fall velocity for cohesive sediments 
depends on the concentration. UMHYSER-1D defines 
cohesive fall velocity according to Fig.  3 [9], where 
the user defined a set of site specific 4 points data (
C1, �1, C2, �2, C3, �3, C4, �4

)
.

3.3 � Bed material mixing

UMHYSER-1D uses the method of Bennett and Nordin [47] 
for the bed composition accounting procedure by dividing 
the bed into conceptual layers. The top layer, or active layer 
contains the bed material available for transport, beneath 
which is the storage layer or inactive layer, and finally the 
undisturbed bed. The active layer is the most important layer 
in this procedure. Erosion of a particular size class of bed 

(14a)� = 1.1
√
(s − 1)gd

(14b)� =
(s − 1)gd2

18�

material is limited by the amount of sediment of this size 
class present in the active layer. If the flow carrying capacity 
for a particular size class is greater than what is available for 
transport in the active layer, the term availability limited is 
used [47]. On the other hand, if more material is available 
than the computed carrying capacity by a sediment trans-
port equation, the term capacity limited is used. At the end 
of each time step, bed material is calculated in each stream 
tube. At the beginning of the next time step, after the new 
locations of the stream tube boundaries are determined, 
these values are used to compute the new layer thickness 
and bed composition. Figure 4 illustrates this procedure.

3.4 � Bed geometry updating and adjustments

By solving mass conservation Eq. (15), the average depth of 
erosion/deposition is obtained for each size class:

where nk = porosity for the k-th size class in the active layer, 
and �zb,k

�t
 = change in the bed elevation, zb , due to sediment 

class k. The source term, �k , is given by Eq. (10) and (11) 
for non-cohesive and cohesive sediment respectively. The 
total depth of deposition/erosion in a cross-section,Δzb, is 
the sum of all the bed changes of the different size classes, 
Δzb,k.

The erosion width is an important parameter in estimat-
ing the erosion details. Because 1-D models do not have a 

(15)
(
1 − nk

)
W

�zb,k

�t
= −�k

Fig. 3   Input data illustration 
for cohesive settling velocity
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shear stress that varies across a cross-section, it is difficult 
to estimate the non-uniform erosion that occurs during 
incision. Since UMHYSER-1D is a 1-D model, it does not 
directly simulate lateral transport of sediment; however it 
empirically accounts for the processes involved by using 
a relationship between erosion width and flow rate, and 
an angle of repose condition for bank stability. The ero-
sion width, centered at the centroid of the cross section 
is given by:

where Wer = erosion width, Q = stream flow, and a and b 
are user defined constants.

During erosion progression, the steepness of bank 
slope is limited by the above and under water values of 
the angle of repose. At the end of each time step, if ver-
tical or horizontal adjustments have caused the bank to 
become too steep, the two points adjacent to the seg-
ments of the banks are adjusted vertically until the slopes 
equal the critical slopes. The material taken from the banks 
will be added during the next time step as a lateral sedi-
ment discharge.

Moreover, as an option UMHYSER-1D offers the choice 
of 3 minimization theories for the determination of 

(16)Wer = aQb

depth and width adjustments, at a given time step: mini-
mization of the total stream power [48], minimization of 
the energy slope [49] and minimization of the bed slope 
(or conveyance maximization).

According to the minimization of total stream power 
theory, if lower total stream power is the result of altera-
tion of the channel widths, then channel adjustments are 
made in the lateral direction. Otherwise, the adjustments 
progress in the vertical direction.

While adopting the minimization of energy slope, if 
the energy slope at a cross-section is greater than the 
weighted average energy slope of its adjacent sections, 
then the channel width at this section is reduced dur-
ing deposition or the depth is increased during ero-
sion. However, if the energy slope is smaller the channel 
depth at this section is decreased during deposition or 
an increase of width occurs during erosion.

Finally, for the minimization of bed slope, if the bed 
slope at a cross-section is greater than the weighted 
average bed slope of its adjacent cross-sections, then the 
channel width at this section is reduced during deposi-
tion, or the depth is increased during erosion. Otherwise, 
the channel depth at this section is decreased during 
deposition or the width is increased during erosion.

Fig. 4   Simplified diagram for 
the bed sorting and armoring 
processes, adapted from [46]. 
Qsi,k : flow carrying capacity for 
size class k during time step 
i, ||ΔZk|| : amount of material in 
size class k eroded during time 
step i, and ||Ti,k || ∶ amount of 
material of size class k present 
in the active layer, i.e., available 
for erosion, during time step i 
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4 � Numerical solution procedure

In the case of steady flow, for backwater computations, the 
standard step method is used [50]. Computations proceed 
in the upstream direction for subcritical flows and in the 
downstream direction for supercritical flows. The Exner 
equation is then solved for bed updating [2].

For unsteady flow conditions, the set of PDEs, Eqs. (1a), 
(1b) and (2), are solved using a decoupled approach. First, 

Written for all i = 0, N; the system of equations, (17a), with 
an upstream and a downstream boundary conditions, is 
solved using the double sweep algorithm [53, 54]. Then, 
for each i, Eq. (17b) provides the water surface elevations.

The numerical scheme is able to model sub-, super- and 
trans-critical flow conditions, but even if linearized stability 
analysis using Fourier series expansions [55] shows that 
the numerical scheme is always stable for (0.5 < 𝜓 ≤ 1) 
[51], it has been noticed that, for Froude numbers of more 
than 1.5, flows start to show some wiggles that might 
grow into instability. As a remedy, the Local Partial Iner-
tia [6] consisting of multiplying the acceleration term of 
Eq. (1b) by max(0, 1 − Fn) , where F is Froude number and 
n is a user specified integer, is applied. Another option con-
sists of introducing some numerical diffusion (for example, 
for Ψ = 0.7) to smooth the solution [51]. Moreover, as by its 
construction, the NewC scheme has some limitations in 
solving for supercritical flow. In fact, it requires one bound-
ary condition at each end of the domain. Hence, supercriti-
cal flow should not occur at the upstream or downstream 
boundaries of any modeled river reach.
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Fig. 5   Discretization grid of 
NewC numerical scheme

for the liquid phase, the de St Venant equations are solved 
using the NewC numerical scheme [51], which assures 
numerical stability in the transition between different flow 
regimes, then the solid phase equation is solved using the 
fractional step method [52].

4.1 � De St Venant equations

Equations (1a) and (1b) are solved using the NewC scheme 
[51] which uses a staggered grid, where the computa-
tional points for flow, Q, are located at the cross-sections, 
with a weighting implicit factor θ in the time dimension 
(0 ≤ � ≤ 1) , and Z points are located halfway between the 
cross-sections (Fig. 5).

Application of the modified NewC scheme leads to the 
following set of equations:

All the details are given in [46], but for completeness, 
the expressions of the coefficients in Eqs. (17a) and (17b) 
are recalled here:

(17a)aiQ
n+1
i−1

+ biQ
n+1
i

+ ciQ
n+1
i+1

= di

(17b)Zn+1
i+1∕2
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i

+ �i+1∕2Q
n+1
i+1

+ �i+1∕2
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Δx
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i

A
n+

1

2

i

− g
�Δt

Δx
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1

2

i
�
n+

1

2

i−1∕2
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4.2 � Convection–diffusion equation

The convection–diffusion, Eq. (2), is solved using the frac-
tional step method [52]. Solving Eq. (2) is equivalent to 
solving the following equations:

Equation (19a) is solved, using a finite volume method, 
to obtain intermediate solution, AC, then the initial value 
problem in (19b) is solved to obtain the solution at the 
next time step. This section details the solution of (19a).

Using the finite volume method, the stream is discre-
tized into cells centred on the cross sections (Fig. 6), and 
(19a) is transformed to an integral one to conserve mass:

4.2.1 � Unsteady term

Using the explicit Euler method, the unsteady term is dis-
cretized as:

(19a)
�AC

�t
+

��QC

�x
=

�

�x

(
AfD

�C

�x

)

(19b)
�AC

�t
= �

(19c)
�

�t
∫
x
ACdx +

∑
(�QC) =

∑(
AfD

�C

�x

)

(20a)�

�t
∫
x
ACdx =

Cn+1
P

− Cn
P

Δt
APΔxP = au

P
Cn+1
P

− au
P
Cn
P

where n and n + 1 = current and next time steps respec-
tively. The subscript P indicates where the terms are 
approximated, at the center of the control volume, and:

4.2.2 � Convective term

Following Pletcher et al. ([56], pp 182–184), the convec-
tive term

is discretized using a Lax-Wendroff TVD method:

with Ye = ||(�Q)e||
[
1 − �

(
1 −

Δt

APΔxP

||(�Q)e||
)]

 , where � is the 

flux limiter. In the literature, different limiters exist with the 
same performance [57]. In this paper, the limiter function 
of Van Leer [58] is used:

To get second order accuracy in time, the Crank-Nicolson 
method is used:

where � = implicit factor (0 ≤ � ≤ 1) . Equation (22) takes 
the final form:

and the convective term, Eq. (21) can be written as:
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Fig. 6   Discretization grid for 
convection–diffusion equation
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where

4.2.3 � Diffusive term

To get a second-order accurate discretization in both 
space and time, the diffusive term is approximated using 
the central differential scheme in space [56]:

then, followed by the Crank-Nicolson method in time, 
using Eq. (22):

where

4.2.4 � Integral equation

Using Eqs. (20a), (26) and (29), the integral Eq. (19c) takes 
the form:

where, using Eqs. (20b), (27a, 27b, 27c) and (30a, 30b, 30c):
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The solution, Cn+1
i

 , at every cross-section i, is the interme-
diate solution to be used in Eq. (18b) which is solved ana-
lytically, or using Runge–Kutta 4th order method [59] to 
obtain the new solution Cn+1

i,∗
 at the next time step.

4.3 � Bed elevation change

Finally, combining Eq.  (19b) and mass conservation, 
Eq.  (15), the average depth of deposition/erosion for 
each size fraction k, at a cross section i, is calculated as:

where ∶ Δzb,k = bed elevation change due to sediment 
class k, nk = porosity for the k-th size class in the active 
layer, Ai = Cross-sectional area and W = channel top width.

(32c)aW = ac
W
+ ad

W

(33)Δzb,k = −

(
Cn+1
i,∗

− Cn+1
i

)
Ai(

1 − nk
)
W

The sediment transport is computed for each individ-
ual sediment size fraction within each stream tube then 
the total bed changes,Δzb , are computed as a sum of the 
bed changes due to each particle size, Δzb,k.

Even if the NewC scheme is unconditionally stable 
for 0.5 < 𝜓 ≤ 1 , to ensure the validity of the uncoupled 
approach used by UMHYSER-1D, numerical experimen-
tation is required to determine a suitable time step to 
be used.

5 � Application

This section presents the results of UMHYSER-1D applied 
to an experimental test case to show its capabilities and 
limitations.

5.1 � Experiment

Cantelli et  al. [60] performed experiments, of 1.5  h 
duration, at the University of Minnesota to simu-
late dam removal. A flume of a width of 0.61 m and a 
slope of 0.018 was filled with uniform coarse sand, of 
d50 = 0.8 mm, to replicate the sediment deposit behind 
a dam. The maximum depth of the sediment layer is 
0.12 m. To ensure that the erosion occurred in the middle 
of the flume, a channel 1 cm deep and 27.5 cm wide was 
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cut in the middle of the deposit. Constant water flow rate 
of 0.3 l/s and sediment rate of 0.002 kg/s ensure an equi-
librium supply rate at the given slope and width. During 
bed erosion, precise measurement of the bed profile of 
the dam were done, but there were no cross-sectional 
data available to compare the results. Because the verti-
cal erosion in the middle of the channel was faster than 
the additional sediment supply from the banks, Cantelli 
et al. [60] observed a rapid narrowing of the channel fol-
lowed by a gradual widening.

5.2 � Model inputs

In UMHYSER-1D, the points representing each cross-sec-
tion are spaced 1 cm and the cross-sections are spaced 
10  cm apart. Several simulations were performed to 
achieve the ‘’best’’ one. For the base case simulation, Man-
ning’s roughness coefficient is assumed equal to 0.025, 
Parker sediment transport capacity equation is used, and 

the angles of repose used for bank failure modeling are 
set to 70 degrees for the angle of repose above water, and 
to 45 degrees for the angle of repose below water. Moreo-
ver, the erosional width is assumed to be 24 cm, and the 
default value of the non-dimensional critical shear stress 
needed to use Parker’s equation is used (θc = 0.0386) along 
with the adaptation length for bed load, Lb = 10 cm. Table 1 
summarizes the main input data for the base case and for 
the 23 simulations performed by changing one parameter 
at a time.

5.3 � Model Results

To find the best data set that gave the best results (closest 
simulated longitudinal profile to the observed one), sensi-
tivity analysis is performed. Figures 7, 8, 9, 10, 11, 12, 13, 14 
show the effects of sediment transport capacity equation, 
angles of repose, erosional width, non-dimensional criti-
cal shear stress, minimization theories, adaptation length 

Table 1   Sensitivity analyses’ input data sets

1: non-dimensional critical shear stress needed to use Parker’s equation [23]; 2: Erosion width; 3: adaptation length for bed load; 4: Meyer 
Peter and Muller [27]; 5: Parker’s equation [23]; 6: Meyer Peter and Muller corrected by Wong and Parker [28]; 7: Parker’s equation with shear 
stress correction [23]; 8: Total Stream Power minimization; 9: Energy Slope minimization; 10: Bed Slope minimization

Simulation Flow routing Sediment equation θc1 Angle of 
repose (°) 
above water 
bellow water

Wer2 (cm) L
b
3 (cm) Minimization Manning

Base run Dynamic Parker4 0.0386 70 45 24 10 – 0.025
Sim 1 Dynamic MPM5 – 70 45 24 10 – 0.025
Sim 2 Diffusive Parker 0.0386 70 45 24 10 – 0.025
Sim 3 Dynamic MPM-WP6 – 70 45 24 10 – 0.025
Sim 4 Dynamic Parker-SSC7 0.0386 70 45 24 10 – 0.025
Sim 5 Dynamic Parker 0.03 70 45 24 10 – 0.025
Sim 6 Dynamic Parker 0.045 70 45 24 10 – 0.025
Sim 7 Dynamic Parker 0.0386 70 40 24 10 – 0.025
Sim 8 Dynamic Parker 0.0386 70 30 24 10 – 0.025
Sim 9 Dynamic Parker 0.0386 70 20 24 10 – 0.025
Sim 10 Dynamic Parker 0.0386 40 40 24 10 – 0.025
Sim 11 Dynamic Parker 0.0386 70 45 24 00 – 0.025
Sim 12 Dynamic Parker 0.0386 70 45 24 20 – 0.025
Sim 13 Dynamic Parker 0.0386 70 45 16 10 – 0.025
Sim 14 Dynamic Parker 0.0386 70 45 22 10 – 0.025
Sim 15 Dynamic Parker 0.0386 70 45 20 10 – 0.025
Sim 16 Dynamic Parker 0.0386 70 45 30 10 – 0.025
Sim 17 Dynamic Parker 0.0386 70 45 40 10 – 0.025
Sim 18 Dynamic Parker 0.0386 70 45 24 10 TSP8 0.025
Sim 19 Dynamic Parker 0.0386 70 45 24 10 ES9 0.025
Sim 20 Dynamic Parker 0.0386 70 45 24 10 BS10 0.025
Sim 21 Diffusive Parker 0.045 70 30 30 10 TSP8 0.025
Sim 22 Diffusive Parker 0.045 70 30 30 00 TSP8 0.022
Sim 23 Diffusive Parker 0.045 70 30 30 00 TSP8 0.028
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for bed load, diffusive wave approximation, and Manning 
coefficient respectively. The observed final longitudinal 
profile is compared to the simulated ones at time 1.5 h.

The Manning coefficient of 0.025 offers better results 
while Parker’s bedload transport equation, developed 
for gravel bed sediment, presents the best results even if 
the sediments in this experiment is coarse sand. It is not 

surprising that Parker’s [23] equation performs well since 
the used sediments were transported mainly in bedload 
mode. The non-dimensional critical shear stress needed 
to use Parker’s equation was assigned a value of θc = 0.03. 
Note that the value of hiding factor, α, is not important 
because only a single size class is being simulated. The 
angles of repose used for bank failure modeling are set to 

Fig. 7   Sensitivity analysis: 
Effects of sediment transport 
capacity equation on longitu-
dinal profile evolution

Fig. 8   Sensitivity analysis: 
Effects of angles of repose on 
longitudinal profile evolution
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70 degrees for the angle of repose above water, and to 30 
degrees for the angle of repose below water. The adapta-
tion length for bed load non-equilibrium sediment trans-
port have little impact on bed evolution. This is mainly 
because the max water depth (less than 1 cm) is smaller 
than the distance between two cross-Sects. (10 cm). In this 
experiment, equilibrium sediment transport prevailed. 

Finally, erosional width is used to empirically accounts, via 
Eq. (16), for the observed rapid narrowing of the channel 
followed by a gradual widening. Better results are achieved 
using an erosional width of 30 cm. If the minimization of 
bed slope and energy slope show practically no improve-
ment over the initial simulation, the minimization of total 
stream power improved significantly the bed profile at the 

Fig. 9   Sensitivity analysis: 
Effects of erosional width on 
longitudinal profile evolution

Fig. 10   Sensitivity analysis: 
Effects of non-dimensional 
critical shear stress on longitu-
dinal profile evolution
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knickpoint. Finally, the diffusive wave equation approxima-
tion produces better results than the full dynamic wave 
equation by smoothing the bed waves at the knickpoint.

Figure 15 shows the results of the best simulation for 
the best input data corresponding to simulation Sim 21. 
The simulated results are compared to the experiment 

results of Run 6 of [60]. Overall, the agreement between 
the measured and simulated longitudinal profiles is very 
satisfactory. For cross-sections changes, Fig. 16 shows 
the example of the cross-section corresponding to the 
knickpoint. Note that there were no cross-sectional data 
to compare the model against, but Cantelli et al. [60] 
observed a rapid narrowing of the channel followed 

Fig. 11   Sensitivity analysis: 
Effects of the minimization 
theories on longitudinal profile 
evolution

Fig. 12   Sensitivity analysis: 
Effects of non-equilibrium 
coefficients for deposition and 
erosion on longitudinal profile 
evolution
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by a gradual widening. UMHYSER-1D cannot model 
the observed cross-section evolution since it does not 
directly simulate lateral transport of sediments. In fact, 
it cannot model the rapid narrowing of the channel fol-
lowed by a gradual widening.

6 � Conclusion

This paper presents UMHYSER-1D, a newly developed 
1-D hydromorphodynamic model. It handles subcritical 
and supercritical regimes and cohesive and non-cohe-
sive sediments. Moreover, UMHYSER-1D allows modeling 

Fig. 13   Sensitivity analysis: 
Effects of the diffusive wave 
approximation on longitudinal 
profile evolution

Fig. 14   Sensitivity analysis: 
Effects of Manning coefficient 
on longitudinal profile evolu-
tion
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of a single natural channel or multichannel looped net-
works with different types of internal boundaries and 
hydraulics structures.

In steady flow conditions, UMHYSER-1D is identical to 
MHYSER, (Mahdi, 2009). Under unsteady flow conditions, 
UMHYSER-1D uses a decoupled approach: First, the “NewC” 
scheme is used to solve the de St Venant equations, then 
the total load convection–diffusion equation is solved 

using the fractional step method. The equation without 
the source term is solved with an implicit finite-volume 
method, then the equation with source term is solved to 
obtain the sediment concentration at the next time step. 
The active layer, concept and sediment physical processes 
are applied to calculate the sediment deposition and ero-
sion. Finally, UMHYSER-1D empirically accounts for bed 
geometry adjustments by using a relationship between 

Fig. 15   Simulated and 
observed Longitudinal profiles’ 
comparison between Run 6 of 
[59] and UMHYSER-1D opti-
mum input data set

Fig. 16   Example of transverse 
changes: cross-section cor-
responding to the knickpoint 
(Sim 21)
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erosion width and flow rate, an angle of repose condition 
for bank stability and three minimization theories.

An experimental erosion test is used to test the capa-
bilities of UMHYSER-1D to predict the erosion of reservoir 
deposits following dam removal. Since UMHYSER-1D is a 
1D model, it cannot model satisfactory transversal cross-
sectional evolution, but sensitivity analysis allowed the 
identification of the best input data set that reproduced 
very satisfactory the longitudinal profile evolution. Hence, 
even at small scale (laboratory flumes), UMHYSER-1D per-
forms very well. For this case, no observed cross-sectional 
data were available. This is an important issue because the 
greatest uncertainty in applying 1D model reside in the 
estimation of the streamwise sediment transport.

Finally, the previous applications of UMHYSER-1D and 
the present experimental test case show the capabilities 
of this model and predicts its promising role in solving 
complex real engineering cases and its use as a numerical 
laboratory to test available or new scientific findings.
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