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Abstract
Coffee rust (Hemileia vastatrix Berkeley & Broome) is the main coffee disease in Brazil. Coffee rust control is calendar-
based and performed by applying chemicals in order to avoid the outburst of disease epidemics. The aim of this work 
was to identify coffee rust using multispectral orbital sensing through analyses utilising vegetation indices and coffee 
rust incidence, defoliation and yield data obtained in situ. Field samples were georeferenced using a high-accuracy 
global navigation satellite system receiver in two plots, in a 42-year-old, leaf rust susceptible coffee cultivar. Conventional 
chemical control of rust was performed in only one of the plots to serve as control. Coffee rust incidence in areas with 
and without chemical control was assessed over 5 months, from December 2018 to April 2019, a period with optimal 
environmental conditions for disease occurrence. Following analyses of different vegetation indices and data sampled 
in the coffee crop, Pearson’s correlations between the variables were verified. Reported correlations occurred mainly 
among coffee rust incidence levels in February 2019 and vegetation indices calculated using Sentinel-2 images from 
August 2018, September 2018 and February 2019 [IRECI r = 0.566; IRECI r = 0.493; NDMI r = − 0.518; NDVI(RE1) r = − 0.562; 
CI(RE1) r = − 0.573; MSR(RE1) r = − 0.569], in areas without coffee rust control. Indices based on relationships between 
bands in the Red-Edge and Near Infra-Red regions were more sensitive to spectral changes in vegetation due to variation 
in coffee rust occurrence over time.
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1  Introduction

The coffee plant (Coffea arabica L.) is of great economic, 
social and cultural relevance in Brazil and around the 
world. Effective management of coffee crops can ensure 
good productivity, generating greater economic return, 
and reducing detrimental impacts to the environment.

The disease known colloquially as coffee leaf rust poses 
a significant threat to Brazilian coffee producers, due to 
favourable environmental conditions in most coffee 
regions of the country, and where there is still widespread 
use of susceptible varieties [39]. The pathogenic fungus 

can cause losses of up to 50% if no control measures are 
employed [34, 49].

Control measures for coffee rust are administered across 
entire plantations, carried out with the use of protective 
and systemic fungicides that are applied to the plant’s 
leaves, or by drenching the soil, respectively. Agrochemi-
cal sprayings are calendar-based starting in November/
December and continuing through April [19]. The spatial 
and temporal distributions of coffee rust incidence are not 
homogeneous across a crop, thus it can be assumed that 
any total area leaf rust control strategy could be replaced 
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by focused management in specific areas of disease inci-
dence [2].

Precision agriculture techniques can result in potential 
benefits in profitability, yield, sustainability, crop quality 
and traceability, environmental protection, food security 
and rural economic development [35]. The efficacy of dis-
ease management strategies in the field can be accessed 
using geographic information system (GIS), global navi-
gation satellite system (GNSS), geocomputation, remote 
sensing, and variable rate application technology inte-
grated with advanced information processing in geo-
referenced maps during crop growth, development and 
production [3, 35].

A commonly-used remote sensing method for vegeta-
tion studies is the use of vegetation indices. Vegetation 
indices are mathematical operations involving two or more 
spectral bands designed to enhance vegetation proper-
ties, allowing reliable spatial and temporal inter-compari-
sons of photosynthetic activity and canopy structure [28]. 
The method is based on the fact that energy reflected in 
red and near-infrared (NIR) regions is directly related to 
photosynthetic activity of the vegetation canopy, as well 
as the assumption that using two or more spectral bands 
can substantially minimize the main sources of noise that 
affect detected variation in vegetation responses [21].

Changes observed in spectral properties within the NIR 
region may provide information on senescence and veg-
etation stress issues [31]. The Multi-Spectral Instrument 
(MSI) sensor embedded in the Sentinel-2 satellite obtains 
terrestrial surface spectral reflectance information by 
recording it in 13 different bands of the electromagnetic 
spectrum. Five of these spectral bands are positioned in 
distinct bands within the NIR region, and three of these 
five are located in the rapidly growing reflectance zone 
known as Red-Edge [20]. Based on reflectance measure-
ments applied to simulate the Sentinel-2 satellite sensor 
bands, Chemura et al. [13] examined three levels of coffee 
rust severity in coffee leaves under greenhouse conditions. 
According to the authors, bands located at the Red-Edge 
spectral position can be useful for disease detection and 
coffee crop status evaluation.

In coffee plantations in Brazil, Landsat 7 and 8 images 
associated with in situ coffee rust data have been used 
to analyse spectral radiometry behaviour of plants under 
different irrigation systems [40]. The authors observed that 
in areas with higher coffee rust incidence under a central 
pivot and rainfed system, the average reflectance of NIR 
and green spectral regions was reduced, while reflec-
tance increased in short wave infrared (SWIR) and red 
wavelengths, when compared to periods with lower cof-
fee rust incidence. Moreover, NDVI generated by Landsat 
7 ETM + sensor images were used to evaluate coffee leaf 
fall caused by coffee rust in Guatemalan coffee plantations 

[32]. It was observed that the NDVI standard deviation 
value in damaged farms increased as the average NDVI 
value decreased. By analysing annual NDVI changes, it was 
also reported that disease progression is not homogene-
ous in crops [32].

Based on the hypothesis that it is possible to detect 
changes in the spectral behaviour of plants due to the 
incidence of leaf rust through orbital remote sensing, 
this study aimed to evaluate the effectiveness of different 
vegetation indices for remote detection of coffee rust inci-
dence, and to characterize the spectral signature of crops 
with different levels of disease incidence.

2 � Materials and methods

2.1 � Area description

The study area is located in Minas Gerais Agricultural 
Research Company (EPAMIG) experimental field in Três 
Pontas city, Minas Gerais state, Brazil. The cultivar present 
in the area is Catuaí Amarelo IAC-17, a variety susceptible 
to coffee rust. Plant spacing is 3.5 m × 2.0 m with 2 plants 
per pit, and a crop age of 42 years. The approximate central 
geographical point of the study area has a latitude of 21° 
20′ 38.36″ S and a longitude of 45° 28′ 48.51″ W, and the 
average altitude is around 935 m. The region is classified 
as Cwa, with dry winters and rainy summers [1].

2.2 � Georeferencing of sample points

Images obtained by adding the Sentinel-2 MSI sensor to 
the Spectra Precision SP60 L1/L2 RTK GNSS receiver soft-
ware provided latitude and longitude data, correspond-
ing to the center of fifty pixels in different spectral bands 
(Table 1). Subsequently, the GNSS RTK receiver base was 
placed in the field and the fifty sample points were manu-
ally located by walking with the mobile RTK receiver in 
the sampling area. In each of the fifty identified subareas 
(measuring 10 m × 10 m), a central coffee plant was geo-
referenced, which was then used to select a further two 
plants within a radius of approximately 2 m within the 
planting line. In total one hundred and fifty coffee plants 
were evaluated, three plants per sampling point.

2.3 � Crop treatments

The study area was split into two sections (Fig. 1). The 
northern section measured approximately 0.57 ha and 
contained 32 sampling points, while the southern sec-
tion measured around 0.43 ha and contained 18 sam-
pling points. No rust control was performed in the north-
ern section, however the southern section received a 
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systemic fungicide containing triazole and strobilurin 
on 11 December 2018 and 20 February 2019, as well as 
a leaf application of copper on 8 April 2019. The appli-
cation of fertiliser was carried out following Guimarães 
et al. [26], based on soil fertility management and leaf 
nutrition in coffee culture recommended for Minas Ger-
ais state, Brazil.

2.4 � Field evaluation: coffee rust, defoliation 
and yield

Coffee rust was sampled monthly between December 
2018 and April 2019 (totalling five separate samples), using 
a non-destructive method that takes into account plant 
exposure to solar radiation. For each coffee plant, eight 
leaves were evaluated; four leaves from different randomly 
selected plagiotropic branches on the north-facing side of 
the plant (i.e. higher insolation levels), and four leaves from 
different plagiotropic branches on the south-facing side of 
the plant (lower insolation levels) [15]. Therefore, a total of 
24 leaves were evaluated per subarea. Leaves of the 3rd 
and 4th pair of plagiotropic branches in the middle third 
of the plants were assessed according to the methodol-
ogy proposed by Lima [36]. The percentage of coffee rust 
incidence for each subarea was obtained by dividing the 
total number of leaves with recorded coffee rust signals 
by the total number of leaves evaluated in the subarea (24 
leaves), and multiplied by one hundred.

Defoliation was determined using strands positioned at 
two points on one plagiotropic branch of each of the one 
hundred and fifty coffee plants. Leaf fall was recorded in 
each monthly assessment following the initial number of 
leaves counted in December 2018, totalling five samples. 
These leaf drop data were then transformed into a per-
centage of defoliation.

Fruit harvest was carried out on 2 July 2019 with a port-
able Nakashi DL 262-MT2L® gasoline machine. A cloth 
was placed on the floor around the plants to facilitate the 

Table 1   Spatial and spectral resolution of Sentinel-2 satellite MSI 
sensor bands [20] used to calculate vegetation indices

Sentinel-2 
band

Denomina-
tion

Spectral 
band center 
(nm)

Band-
width 
(nm)

Spatial 
resolution 
(m)

Coastal 
aerosol

B01 443 20 60

Blue B02 490 65 10
Green B03 560 35 10
Red B04 665 30 10
Red Edge 1 B05 705 15 20
Red Edge 2 B06 740 15 20
Red Edge 3 B07 783 20 20
Near Infra-

Red
B08 842 115 10

Near Infra-
Red

B8a 865 20 20

Water vapour B09 945 20 60
SWIR—Cirrus B10 1375 30 60
SWIR 2 B11 1610 90 20
SWIR 3 B12 2190 180 20

Fig. 1   Study area indicating 
the location of Minas Gerais 
state within Brazil, and the 
south/southwest region of the 
federative unit (left), the area 
of Três Pontas city (bottom 
right), and the plantation area 
in the EPAMIG experimental 
fieldsite, showing the sampling 
pixels (subareas) (top right)
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collection of the fallen fruits. The volume of fruits from the 
three plants in each subarea was measured using a gradu-
ated bucket, meaning that the volume assigned to each of 
the fifty subareas corresponded to liters per three plants. 
Fruits were collected from all one hundred and fifty plants 
that were previously evaluated for coffee rust incidence 
levels.

2.5 � Multispectral data

The orbital data captured by the Sentinel-2 satellite-
embedded MSI sensor was obtained by a free download 
available from the United States Geological Survey [44] 
collection. Sentinel-2 scenes were selected using the crite-
ria of least atmospheric interference and closest proximity 
to date of crop rust sampling (Table 2).

2.6 � Sentinel‑2 digital image processing

Digital images were processed using the Dark Object Sub-
traction (DOS) method [11, 12]. Correction by the DOS 
method is carried out by estimating the atmospheric inter-
ference in each spectral band, performing calculations to 

transform the digital number into radiance values, and 
then to surface reflectance values. Minimum and maxi-
mum radiance, top-level irradiance, and sensor gain were 
necessary variables for calculations, and varied for differ-
ent bands. Additionally, other factors that depend on the 
image date were included, such as Earth-Sun distance and 
solar elevation angle [27].

2.7 � Vegetation indices calculations and Pearson’s 
correlations

Vegetation indices (Table 3) using different relationships 
between Sentinel-2 spectral bands were calculated. The 
vegetation indices selected provide data on plant canopy 
such as leaf area, plant leaf moisture and chlorophyll 
content.

Vegetation index calculations (Table 3) were performed 
for 7 selected Sentinel-2 images for correlation with cof-
fee rust incidence, defoliation and yield data. Another 
Sentinel-2 image (November 2018) was selected for 
index calculations for use in comparison with monthly 
rainfall intensity data. To perform the correlations, values 
were extracted from each index corresponding to the 50 

Table 2   Dates that in situ data were obtained, respective orbital data used for correlation analysis and cloud coverage of Sentinel-2 images 
[44]

Data August September November December January February March April

In situ – – – 2018/12/14 2019/01/14 2019/02/15 2019/03/15 2019/04/19
Orbitals 2018/08/20 2018/09/09 2018/11/28 2018/12/13 2019/01/17 2019/02/01 2019/03/08 2019/04/22
Cloud cover (%) < 10 < 10 < 10 < 10 < 20 < 10 < 10 < 10

Table 3   Vegetation indices calculated to correlate with leaf rust incidence, defoliation and yield data obtained from field samples, spectral 
bands necessary for index calculations and authors who developed/adapted them

Index Formula Source

Normalized Difference Vegetation Index NDVI =
(B8−B4)

(B8+B4)
Rouse et al. [42]

Normalized Difference Moisture Index (B11) NDMI(B11) =
(B8−B11)

(B8+B11)
Wilson and Sader [46]

Normalized Difference Moisture Index (B12) NDMI(B12) =
(B8−B12)

(B8+B12)
Wilson and Sader [46]

Renormalized Normalized Difference Vegetation Index RNDVI =
(B8−B4)
√

B8+B4

Gitelson and Merzlyak [23]

Inverted Red-Edge Chlorophyll Index IRECI =
(B8−B4)
√

B6∕B5
Frampton et al. [22]

Normalized Difference Vegetation Index (RE1) NDVI(RE1) =
(B8−B5)

(B8+B5)
Gitelson and Merzlyak [23]

Red-Edge Chlorophyll Index CI(RE1) = (B8∕B5) − 1 Gitelson et al. [24]
Transformed Chlorophyll Absorption Ratio Index/Optimized Soil-

Adjusted Vegetation Index
TCARI

OSAVI
=

3∗[(B6−B5)−0.2∗(B6−B3)∗(B6∕B5)]
{[(1+0.16)∗(B6−B5)]∕B6+B5+0.16}

Rondeaux et al. [41], 
Daughtry et al. [17], Wu 
et al. [47]

Modified Chlorophyll Absorption Ratio Index/Optimized Soil-
Adjusted Vegetation Index

MCARI

OSAVI
=

[(B6−B5)−0.2∗(B6−B3)]∗(B6∕B5)

{[(1+0.16)∗(B6−B5)]∕B6+B5+0.16}
Rondeaux et al. [41], 

Daughtry et al. [17], Wu 
et al. [47]

Modified Simple Ratio (RE1)
MSR(RE1) =

[(B8∕B5)−1]
√

(B8∕B5)+1

Chen [14], Wu et al. [47]
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georeferenced subareas in the coffee crop area selected 
for rust sampling (i.e. the 50 pixels of highest spatial reso-
lution bands of Sentinel-2 MSI images). Pearson’s corre-
lations (Fig. 2) were performed between in situ data and 
vegetation indices values extracted from the 18 sampling 
points in the southern section (with coffee rust chemical 
control). The same procedure was performed for the 32 
points in the northern section (without coffee rust chemi-
cal control).

In order to evaluate spectral behaviour in the south and 
north sections, reflectance values of each 50 sample points 
were extracted from all 13 spectral bands in the Sentinel-2 
images. For each of the 13 bands, monthly mean reflec-
tance values of the 32 northern sample points were cal-
culated. The same procedure was performed for the 18 
southern sample points. Student’s t-tests were then per-
formed to compare monthly averages of areas with and 
without leaf rust chemical control.

2.8 � Meteorological in situ data

To better understand the coffee plant’s spectral response 
to coffee rust, monthly rainfall data were used to compare 
with the monthly vegetation indices data. Rainfall inten-
sity (mm/month) was measured with a rain gauge from 
three conventional weather stations located in the cities 
of Machado, Lavras and São Lourenço, that surround the 
EPAMIG experimental fieldsite in Minas Gerais state, Brazil 
[30]. With these data, rainfall intensity interpolation was 
performed by using an inverse distance weighting method 
[45].

3 � Results

3.1 � Spatial–temporal coffee rust distribution

An increase in coffee rust incidence was recorded over the 
months of assessment, most notably in the area where the 
disease was not controlled (Fig. 3). Coffee rust incidence 
classes were defined in order to facilitate the visualization 
of rust spatiotemporal progress (Fig. 4).

3.2 � Correlation of data derived from Sentinel 2 
with field data

Pearson’s correlation indicated an interaction between 
levels of coffee rust incidence and the vegetation indices 

Fig. 2   Correlations between field data sampled in EPAMIG experimental fieldsite in Três Pontas city and vegetation indices calculated with 
Sentinel-2 images

Fig. 3   Coffee rust incidence percentage between December 2018 
and April 2019 in areas with and without chemical control in the 
EPAMIG experimental fieldsite, Três Pontas city, Minas Gerais state, 
Brazil
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calculated for each respective month of evaluation. It was 
noted that in February 2019 negative correlations were 
reported between various vegetation indices and coffee 
rust incidence in the northern section of the study site 
(Table 4). 

The vegetation indices calculated with the February 
2019 images using spectral bands in NIR (B08) and Red-
Edge 1 (B05) presented the highest correlation values with 
leaf rust data sampled in the respective month [NDVI(RE1) 
r = − 0.562; CI(RE1) r = − 0.573; MSR(RE1) r = − 0.569]. For 

NDMI indices calculated using NIR band (B08) and one 
of the bands in SWIR position (B11 or B12), we obtained, 
respectively, moderate and weak correlations for February 
2019 (r = − 0.518 and r = − 0.481), and moderate for April 
2019 (r = − 0.502 and r = − 0.519).

The yield harvested in July 2019 had a moderate posi-
tive correlation (r = 0.555) with coffee rust incidence 
reported in April 2019 in the sampling section without 
any chemical control. Furthermore, the IRECI vegetation 
index generated from images recorded in August and 

Fig. 4   Coffee rust incidence percentage in crop subareas over time in control and uncontrolled sections (continuous and dashed lines, 
respectively) in the EPAMIG experimental fieldsite, Três Pontas city, Minas Gerais state, Brazil
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September 2018 also correlated positively with leaf rust 
assessment data obtained in February and March 2019 
(Tables 5 and 6).

3.3 � Reflectance and vegetation index averages 
in areas with and without coffee rust control

By analysing average monthly reflectances for the dif-
ferent bands of the electromagnetic spectrum in both 

Table 4   Pearson’s correlations (r) between different vegetation indices, yield and defoliation coffee rust incidence between December 2018 
and April 2019, in sampling areas with chemical control measures (c), and without chemical control measures (nc)

Significant r values (p < 0.05) are in bold

Data Dec (nc) Dec (c) Jan (nc) Jan (c) Feb (nc) Feb (c) Mar (nc) Mar (c) Apr (nc) Apr (c)

YIELD − 0.132 − 0.390 − 0.291 − 0.406 − 0.082 − 0.173 0.243 0.034 0.555 0.307
DEFOLIATION −  −  0.384 0.113 0.230 0.030 0.220 0.116 0.268 0.131
NDVI − 0.173 − 0.316 − 0.036 − 0.295 − 0.313 0.251 − 0.166 − 0.001 0.257 − 0.435
NDMI(B11) 0.077 − 0.292 − 0.039 − 0.451 − 0.518 − 0.007 − 0.266 − 0.078 0.122 − 0.502
NDMI(B12) 0.116 − 0.218 − 0.100 − 0.450 − 0.481 − 0.039 − 0.175 0.007 0.092 − 0.519
RNDVI − 0.132 − 0.338 − 0.033 − 0.375 − 0.426 0.236 − 0.288 − 0.087 0.242 − 0.448
IRECI − 0.211 − 0.360 0.262 0.039 − 0.124 0.210 − 0.040 − 0.249 0.155 − 0.361
NDVI(RE1) 0.193 − 0.212 − 0.178 − 0.403 − 0.562 0.031 − 0.378 − 0.037 0.133 − 0.461
CI(RE1) 0.199 − 0.220 − 0.182 − 0.401 − 0.573 0.034 − 0.371 − 0.034 0.137 − 0.426
TCARI/OSAVI − 0.078 0.201 0.189 0.310 0.473 − 0.127 0.269 − 0.087 − 0.219 0.445
MCARI/OSAVI 0.220 − 0.127 − 0.154 − 0.283 − 0.474 − 0.050 − 0.385 0.019 0.135 − 0.359
MSR(RE1) 0.197 − 0.217 − 0.181 − 0.402 − 0.569 0.033 − 0.374 − 0.035 0.135 − 0.440

Table 5   Pearson’s correlations 
(r) between vegetation indices 
calculated with August images 
with coffee rust incidence data 
and yield data from sample 
points in the area without 
chemical control

Significant values (p < 0.05) are in bold

August indices Dec Jan Feb Mar Apr Yield

NDVI 0.041 − 0.019 0.221 0.246 0.054 − 0.134
NDMI(B11) 0.013 − 0.112 − 0.114 0.241 0.137 0.090
NDMI(B12) − 0.058 − 0.219 − 0.143 0.236 0.060 0.171
RNDVI 0.080 − 0.023 0.266 0.304 0.114 − 0.096
IRECI 0.138 0.024 0.566 0.447 0.193 − 0.062
NDVI(RE1) 0.010 − 0.166 − 0.262 0.096 0.056 0.051
CI(RE1) 0.016 − 0.147 − 0.240 0.102 0.077 0.058
TCARI/OSAVI 0.011 0.052 0.169 − 0.090 − 0.081 0.011
MCARI/OSAVI 0.029 − 0.038 − 0.477 − 0.209 − 0.021 − 0.007
MSR(RE1) 0.013 − 0.155 − 0.249 0.100 0.068 0.055

Table 6   Pearson’s correlations 
(r) between vegetation indices 
calculated with September 
images with coffee rust 
incidence data and yield data 
from sample points in the area 
without chemical control

Significant values (p < 0.05) are in bold

September indices Dec Jan Feb Mar Apr Yield

NDVI 0.021 − 0.064 0.120 0.194 0.068 − 0.100
NDMI(B11) 0.036 − 0.077 − 0.118 0.235 0.171 0.069
NDMI(B12) − 0.031 − 0.060 − 0.165 0.190 0.090 0.019
RNDVI 0.057 − 0.033 0.198 0.249 0.118 − 0.100
IRECI 0.097 0.027 0.493 0.389 0.256 − 0.074
NDVI(RE1) 0.051 − 0.121 − 0.204 0.040 − 0.010 0.036
CI(RE1) 0.059 − 0.131 − 0.205 0.053 0.018 0.063
TCARI/OSAVI − 0.002 0.135 0.131 − 0.110 0.009 0.035
MCARI/OSAVI 0.042 0.090 − 0.230 − 0.143 − 0.112 − 0.115
MSR(RE1) 0.056 − 0.127 − 0.205 0.048 0.006 0.052
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the northern and southern sections, it was observed that 
there were higher average reflectances in the Red-Edge/
NIR region (Fig. 5). It was also noted that for the spectral 
region in Red-Edge/NIR, there were reflectance peaks 
for the month of February 2019 in both sections. How-
ever, average reflectances at RE2 (740 nm), RE3 (783 nm), 
NIR-8 (842 nm) and NIR-8a (865 nm) were higher in the 
northern area with no rust control. By analysing isolated 
bands, two SWIR bands were found to have the highest 
reflectance in December 2018, indicating a lower mois-
ture content in the vegetation canopy.

Student’s t test showed that the average reflectance 
of RE2 (B06), RE3 (B07), NIR-8 and NIR-8a bands in the 

northern and southern sampling sections did not dif-
fer from each other in December 2018. However, reflec-
tance averages became statistically different when 
comparing the north and south sample areas due to 
increased occurrence of coffee rust in January and Feb-
ruary 2019, corresponding to higher reflectance in the 
northern section where the incidence of leaf rust was 
higher (Table 7).

The tested vegetation indices responded differently 
to rainfall intensity (Fig. 6). The curve of indices NDVI, 
NDMI(B11), NDMI(B12), RNDVI, NDVI(RE1), CI(RE1), MCARI/
OSAVI and MSR(RE1) are similar and appeared to corre-
spond with the rainfall intensity curve with a delay of 

Fig. 5   Average monthly reflec-
tance of Sentinel-2 spectral 
bands in the two areas (with 
and without coffee rust control 
measures) in the EPAMIG 
experimental fieldsite at Três 
Pontas city, Minas Gerais state, 
Brazil
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around 3  months, however, with different intensities. 
For indices calculated with SWIR bands, the pattern was 
observed more sharply. The vegetation index TCARI/OSAVI 
presented this same pattern in inverted form. For the IRECI 
case, the response to rainfall seemed to be faster, follow-
ing the rainfall intensity curve with an interval of less than 
1 month.

4 � Discussion

This study aimed to evaluate the effectiveness of different 
vegetation indices calculated from Sentinel-2 MSI images 
for remote detection of coffee rust incidence symptoms, 
and to characterize the spectral signature of crops with 
different coffee rust incidence levels. Field data were 
obtained for comparative analysis with orbital data on 
several dates. Rainfall intensity data were estimated for 
the crop area to help understand the spectral behaviour 
of coffee plants with different disease intensity.

4.1 � Spatial–temporal leaf rust distribution

Outbreaks of coffee rust were detected at the start of 
field evaluations, and from these affected spots the 
area that had not received chemical control was further 
infected by the disease. Hemileia vastatrix uredospores 
are dispersed inside the canopy by raindrops, through the 
spread of water flow in the infected leaves during rain-
fall [34]. In short, the sudden increase in the magnitude 
of disease incidence is the result of its effective dispersal 
through water [6, 38]. However, wind gusts also promote 

uredospore dispersal across crops in full sun. Such disper-
sion is favoured during dry days with low relative humidity 
[7]. As a result, through the kriging map analysis it was 
observed that distribution and incidence intensity of cof-
fee leaf rust were not homogeneous throughout the coffee 
field [2].

4.2 � Correlation of data derived from Sentinel 2 
with field data

Vegetation indices for remote disease monitoring may 
aid crop management. Through correlations between 
vegetation indices and field data for the same month, it 
was found that February 2019 is the best month to extract 
information on conditions of H. vastatrix infestation in cof-
fee crops. In addition, it seemed appropriate to use vegeta-
tion indices that make use of bands in the NIR/Red-Edge 
region. Spectral bands positioned in the Red-Edge region 
appear to have greater sensitivity for identifying changes 
in the plant canopy when dealing with leaf diseases [9, 
13, 18, 50].

The IRECI vegetation index calculated using MSI Senti-
nel-2 images from August and September 2018 was posi-
tively correlated with the February 2019 rust incidence 
data (IRECIaug r = 0.566 and IRECIsep r = 0.493). This obser-
vation may help in the localized control of coffee leaf rust, 
since in the subareas with higher IRECI values, higher levels 
of leaf rust incidence were observed. Furthermore, coffee 
leaf rust incidence data from April 2019 correlated posi-
tively with yield data collected in July 2019. The positive 
relationship between plant yield and coffee rust incidence 

Table 7   Spectral bands reflectance averages of areas with (c) and without (nc) coffee rust control and Student’s t-test results (‘ns’ equal to 
not significant) for independent samples (comparison of means)

Bands Band 
center 
(nm)

December January February March April

Mean p value Mean p value Mean p value Mean p value Mean p value

c nc c nc c nc c nc c nc

B01 443 2.58 2.46 ≤ 0.01 2.33 2.29 ns 2.76 2.64 ≤ 0.01 2.29 2.21 ≤ 0.01 3.13 3.08 ns
B02 490 3.07 2.79 ≤ 0.05 2.52 2.48 ns 2.89 2.55 ≤ 0.01 2.38 2.42 ns 3.08 2.90 ns
B03 560 5.12 4.75 ≤ 0.05 4.35 4.50 ≤ 0.01 4.77 4.60 ns 4.47 4.60 ns 4.57 4.49 ns
B04 665 6.70 5.41 ≤ 0.01 3.50 3.30 ≤ 0.05 4.17 2.88 ≤ 0.01 3.33 3.05 ns 5.22 3.93 ≤ 0.01
B05 705 11.42 9.70 ≤ 0.01 8.58 8.41 ≤ 0.05 9.67 8.92 ≤ 0.01 8.30 8.02 ≤ 0.05 8.45 8.19 ns
B06 740 25.50 25.21 ns 27.14 28.10 ≤ 0.01 31.17 31.96 ≤ 0.01 28.46 28.45 ns 23.86 24.16 ≤ 0.05
B07 783 32.48 32.65 ns 37.18 38.19 ≤ 0.01 42.07 42.73 ≤ 0.01 39.83 39.14 ≤ 0.01 32.86 32.44 ns
B08 842 31.90 32.11 ns 35.54 36.61 ≤ 0.01 39.61 41.48 ≤ 0.01 37.46 36.75 ≤ 0.01 30.91 31.19 ns
B8a 865 37.45 37.67 ns 41.84 43.17 ≤ 0.01 46.35 47.73 ≤ 0.01 44.25 43.85 ns 36.81 36.75 ns
B09 945 7.89 8.01 ≤ 0.01 7.28 7.28 ns 9.98 9.93 ns 7.08 7.05 ns 7.31 7.30 ns
B10 1375 1.08 1.08 ns 1.05 1.05 ns 1.15 1.16 ≤ 0.01 1.06 1.05 ≤ 0.01 1.08 1.08 ns
B11 1610 31.44 29.29 ≤ 0.01 22.80 22.11 ≤ 0.01 23.35 21.29 ≤ 0.01 21.82 21.11 ≤ 0.01 21.83 20.47 ≤ 0.05
B12 2190 17.14 15.42 ≤ 0.01 10.15 9.62 ≤ 0.01 11.16 9.36 ≤ 0.01 9.64 9.12 ≤ 0.01 11.34 9.85 ≤ 0.01
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Fig. 6   Rainfall intensity and vegetation index curves of monthly mean values in areas with and without chemical control of coffee leaf rust 
at Três Pontas city, Minas Gerais state, Brazil



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1460 | https://doi.org/10.1007/s42452-020-03257-1	 Research Article

has been widely discussed in the specialized literature [4, 
5, 8, 10, 16, 37, 43, 48].

4.3 � Reflectance and vegetation index averages 
in areas with and without leaf rust control

This study reported higher average reflectances in the 
area with chemical control measures in February 2019 for 
bands RE2, RE3 and the two NIR plateau bands, relative 
to the area without chemical control. According to Kni-
pling [33], reflectance in the NIR region is a result of the 
scattering of electromagnetic radiation that occurs due 
to existing interface areas in the transition between cell 
walls. Furthermore, the mesophyll deterioration leads to 
the reduction of existing air cavities, with a consequent 
reduction of reflectance in the NIR region. However, the 
author also notes that at the beginning of the leaf senes-
cence process, there is an increase in these interface areas 
due to the separation of adjacent cells, as well as the dis-
tancing of living cell content from cell walls. Therefore, 
February 2019 may have marked the beginning of the leaf 
senescence process, as evidenced by increased reflectance 
in the Red-Edge/NIR region, most notably in the northern 
fieldsite (without chemical control) which had higher cof-
fee leaf rust incidence.

High reflectance values were observed for bands in the 
SWIR region for both areas in December 2018. The wave-
lengths in the SWIR region are absorbed by water, mean-
ing that when vegetation suffers from a water deficit, there 
is increased reflectance in the spectral bands positioned in 
this region of the electromagnetic spectrum [29, 31, 46]. 
Therefore, despite the rainfall regime beginning in Octo-
ber 2018, the leaf structure had not yet shown to have 
water at its maximum potential.

Vegetation indices apparently responded to rainfall 
after approximately three months, with the exception 
of IRECI, which appears to have responded in less than 
a month. IRECI provides information on the chlorophyll 
content of leaves at a ratio close to 1:1 g/m2 and still works 
well as a leaf area index [22]. Decreasing leaf water poten-
tial leads to decreased chlorophyll content, as this pigment 
is sensitive to increased environmental stress, especially 
salinity and drought [25]. Therefore, there may be a rela-
tionship with the occurrence of this observed behaviour 
and more detailed studies are needed to obtain better 
understanding.

5 � Conclusions

This study demonstrated the varying effectiveness of veg-
etation indices for remote detection of coffee rust signs 
and symptoms through correlation analyses of different 

indices. Vegetation indices obtained through relation-
ships between bands in the Red-Edge and Near Infra-Red 
regions were more sensitive to changes caused by coffee 
leaf rust. Sentinel-2 orbital data transformed by calculat-
ing the IRECI vegetation index for August and September 
may be useful for indicating areas for coffee rust field 
sampling, and could be used to determine appropriate 
disease control according to variation in incidence rates. 
Future studies should examine the applicability of this 
vegetation index as a useful tool to aid in coffee planta-
tion management.

Through this work it was also possible to characterize 
areas with different levels of disease incidence. The rela-
tionships between the monthly average spectral signature 
and levels of leaf rust incidence vary depending on the dif-
ferent regions of the electromagnetic spectrum. This may 
be due to the fact that the onset of the leaf senescence 
process reflectance peaks in most bands in the Red-Edge/
NIR region were higher in areas with higher incidence of 
coffee leaf rust.
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