
Vol.:(0123456789)

SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x

Research Article

Probabilistic consensus decision making algorithm for artificial swarm
of primitive robots

Yang Liu1 · Kiju Lee2,3 

Received: 20 August 2019 / Accepted: 4 December 2019 / Published online: 16 December 2019
© Springer Nature Switzerland AG 2019

Abstract
This paper presents a consensus algorithm for artificial swarms of primitive agents, such as robots with limited sensing,
processing, and communication capabilities. The presented consensus algorithm provides solutions of collective deci-
sion making for a connected network of robots. The decisions are considered abstract choices without difference, thus
the algorithm can be “programmed” for a broad range of applications with specific decisions. Each robot in the swarm
is considered a probabilistic finite state machine, whose preferences towards a set of discrete states are defined as a
probabilistic mass function. Then, the individual preferences are updated via local negotiation with directly connected
robots, followed by a convergence improvement process. The presented algorithm is evaluated for the effects of network
topology and scalability (i.e., the number of decisions and the size of the swarm) on convergence performance.

Keywords  Swarm intelligence · Consensus decision making · Probabilistic finite state machine

List of symbols
�	� Set of all robot indices in a network
m	� Quantity of robots in a network, i.e. size of �
�	� Set of all decision indices
n	� Quantity of decisions, i.e. size of �
Rk	� Robot k
Pk(j)	� Robot k’s preference probability toward decision

or role j
s(j)	� Position of Pk(j) in descending order of Pk
Ck	� Robot k’s local connection group
Dk	� Robot k’s local consensus group
Nk	� Size of group Dk

�k	� Maximum distribution difference in Ck
Lk	� Linear multiplier for robot k
Hk	� Discrete entropy of Pk
Drel	� Relative holistic dependency of a network

1  Introduction

A robotic swarm aims to achieve physical and computa-
tional flexibility and increased system robustness in multi-
robot tasks, such as localization, mapping, and navigation
in an unknown, possibly dynamic, environment. The main
characteristics of a swarm robotic system includes the fol-
lowing, while slightly different definitions exist across lit-
erature [1–3]:

•	 Autonomy: Robots are autonomous. Individual robots
and the entire swarm exhibit different levels of auton-
omy.

•	 Localized sensing and communication: Each robot’s sens-
ing and communication capabilities are local.

•	 Decentralized control: Individual robots do not have
access to centralized control and global knowledge.

This work was done while K. Lee was with the Department of Mechanical and Aerospace Engineering at Case Western Reserve University,
Cleveland, Ohio, USA.

 *  Kiju Lee, kiju.lee@tamu.edu; Yang Liu, yxl1450@case.edu | 1Department of Mechanical and Aerospace Engineering, Case Western
Reserve University, Cleveland, OH, USA. 2Department of Engineering Technology and Industrial Distribution, Texas A&M University,
College Station, TX, USA. 3Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1845-x&domain=pdf
http://orcid.org/0000-0002-8526-9142

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x

•	 Cooperative action: Robots cooperate with each other
to perform an intended task.

These characteristics uniquely qualify robotic swarms to
perform certain types of tasks effectively, such as (a) large
area coverage within a short time; (b) tasks in dynamic,
uncertain, and unstructured environments; (c) tasks that
require scaling up or down within the task at hand; and (d)
tasks requiring redundancy in information.

Despite these potentials, several engineering chal-
lenges must be addressed in order for a swarm robotic
system to be applied to tackle real-world problems. One
primary challenge is in achieving swarm behavior with-
out centralized control. Most of these previous works have
focused on achieving a specific global swarm behavior
based on relatively simple rules executed by the individual
robots. Target global behaviors included swarm aggrega-
tion [4–8], shape/pattern formation [9–16], cooperation
on construction works [17, 18], collective transportation
[19], structural damage detection [20, 21], and navigation
[22–26]. To tackle real-world problems, a robotic swarm
must be capable of sequentially performing several of
these global behaviors. For example, localizing and retriev-
ing an object located in a narrow tunnel may require the
swarm to aggregate, form a line, navigate, and cooperate
on carrying the object back to the base location.

In this paper, the problem is formulated as a consensus
decision making process given a finite number of choices
for individual robots. Individual robots are modeled as
Probabilistic Finite State Machines (PFSMs), where their
finite states are defined by a set of executable distinctive
behavioral rules. A successful global behavior emerges
when the majority, if not all, of the robots execute the
same rule-set simultaneously. Since local sensing/com-
munication and decentralized control are assumed, deci-
sion making must also take place at the individual robot
level while consensus in the individual decisions is sought
for achieving a global behavior at the swarm level. Each
robot’s preference towards n possible choices is defined
as a Probability Mass Function (PMF). The choice with the
highest preference is called the “exhibited decision” of the
robot. The presented method aims to achieve consensus
based on local communication among the nearby robots
and internal processing of the individual preferences, as
illustrated in Fig. 1:

1.	 Modeling individual robots as PFSMs by generating
initial preference distributions over given choices;

2.	 Updating each robot’s preferences based on its own
and locally connected robots’ preferences; and

3.	 Accelerating convergence and conflict resolving by
increasing confidence toward the exhibited decision.

The presented algorithm focuses on achieving guaran-
teed consensus over a finite set of abstract decisions for a
group of robots in a single network. It achieves consensus
in a swarm network regardless of its connectivity density,
i.e., consensus can be reached when the network is fully
connected or even when sparsely connected. Given a
fully connected network condition (i.e., each robot com-
municates with every other robots), a simple majority
rule would be sufficient [27–29], and presented algorithm
would fall back to the same majority rule. However, if the
network is sparsely connected and only highly localized
communication is available, the presented algorithm
would more effectively resolve the conflicting decisions
within the network than the methods based on the major-
ity rule. The robots in majority rule based methods aim to
gather direct information from as many other robots as
possible, which is difficult in a sparsely connected network.
By targeting consensus in a standalone network, our prob-
lem setup and algorithm are well positioned for further
designing complex sequential swarm robot behaviors.

In addition to the methods based on the majority rule
described above, there exist several other relevant algo-
rithms for collective decision making in a robotic swarm.
In [30], a cooperative decision making method for micro-
robots with light sensors was used for localization of an
area with a higher illuminance based on robot-to-robot
collision and onboard sensing. Another approach dem-
onstrated convergence towards the majority decision (i.e.,
color) between the two randomly initialized choices based
on localized interaction among the robots [31]. An ODE-
model based method for decision making in a self-organ-
ized systems based on the weighted voter model achieved
increasing decision accuracy with increasing system size
and consensus time [32].

Since the consensus process is often referred to as
the best-of-n problem—as in this paper, PFSM-based
modeling methods have been widely applied for differ-
ent swarm formation problems, such as aggregation [4]

Fig. 1   Flow chart of the presented collective decision making algo-
rithm

Vol.:(0123456789)

SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x	 Research Article

and chain formation [10]. Another PFSM-based method
proposed a probabilistic, threshold-based approach to
recruit an approximate number of robots to accomplish a
task via collaboration [28]. Biological inspiration has also
played an important role in many swarm decision mak-
ing algorithms. Self-organized aggregation behavior in a
robotic swarm was modeled based on cockroach’s group
behavior [33–35]. For example, cockroach groups decide
on shelter selection with limited information and signal-
ing exchanged among individual cockroaches [36]. It is
further concluded that such way of interaction resulted
in self-amplified aggregation in cockroaches, where the
winning choice is the one with a faster self-amplification
process [37]. Waggle dance and antennal contacts in hon-
eybees carry data of distance and direction of the feeding
site relative to the hive [38]. Collective decision making
algorithms utilizing direct verbal communication inspired
by such swarm insects were developed for task such as
target hunting [27], or resource foraging [39], or nest site
comparison [40].

The rest of the paper is organized as follows. Section 2
introduces the presented consensus algorithm; Sect. 3
evaluates the performance of the algorithm with regards
to the network size, number of decisions, and network
typologies; and finally Sect. 4 discusses the limitations and
potential of the presented method.

2 � The algorithm

The presented method focuses on achieving consensus
in a swarm of simple robots, and thus the following con-
straints are considered:

•	 Individual robots are primitive with limited sensing,
communication, and processing capabilities.

•	 Communication in the swarm is local; each robot can
communicate only with nearby robots within the com-
munication range.

•	 Robots have no temporal memory (i.e., no log of history
data) and function like finite state machines.

It is further assumed that the network topology does not
change during the decision making process. If the decision
making process is relatively fast enough compared to the
robots’ physical movements, the change in the network
topology would remain trivial while the physical locations
of the robots may change during this process.

The overall collective decision making algorithm, illus-
trated in Fig. 1, consists of three parts: (1) initializing the
swarm network with random preference distributions; (2)
updating individual preference distributions based on

local interactions; and (3) improving confidence in the
exhibited decision. Each node representing a primitive
robot follows these steps until a consensus in the swarm
is reached. Below describes each of the above three steps
in detail.

2.1 � Initialization of the swarm network

Let � = {1, 2,… ,m} be an index set of m robots in the
swarm and � = {1, 2,… , n} be the index set of n dis-
tinct choices, corresponding to global swarm behaviors.
Individual robot is referred to as Rk for k = 1,⋯ ,m . Each
robot’s preference towards n choices is modeled as a
Probability Mass Function (PMF), such that

∑n

j=1
Pk(j) = 1 ,

where Pk(j) indicates the Rk ’s preference toward the choice
j. This probability distribution is hereinafter referred to as
the preference distribution. Each robot exhibits one deci-
sion at a time, determined by the corresponding index
of max{Pk(1),⋯ , Pk(n)} . Initial values of these preference
distributions are randomly generated for the initial set up
of the swarm network.

2.2 � Preference updating via local interaction

Each robot updates its own preference by interacting with
its neighboring robots within the communication range.
For Rk , all neighboring robots of Rk and itself forms a local
connection group, denoted by Ck . Each robot holds IDs of
all members within its local connection group. Robots
within the same connection group exchanges their prefer-
ence distributions. A local consensus group, Dk is defined as
a non-empty set of the robots connected to Rk that exhibit
the same decision as Rk . Each robot within a local consen-
sus group shares information of the IDs of all members,
but not their the preference distributions. When a robot
decides to join or leave a local consensus group, its clos-
est neighbors in the group can detect the change, and
this information is broadcasted within the local consensus
group.

Figure 2 shows an example of how these two groups
are determined for a network of 8 robots. The node colors
indicate the exhibited decision of the robots. When two
connected robots exhibit the same decision, the con-
necting lines are also visualized with the color of the
decision. For R4 , the local connection group is defined
by C4 = {2, 3, 4, 5, 6, 7} ; and the local consensus group—
showing the “red” decision—is D4 = {4, 5, 6, 7, 8} . As
shown in the figure, members of D4 may not be directly
connected to R4 , but forms a connected network including
R4 . It is noted that R4 shares IDs and preference distribution
with the members of C4 while sharing only the IDs with the
members of D4.

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x

Each robot updates its own preference distribution by
taking account of preferences of other robots in its local
connection group:

where Ni = |Dk| is the size of the Ri ’s local consensus group.
This equation is a weighted average of the preference dis-
tributions among all directly connected robots, where
the weights are determined by the size of the decision
group. In the equation, each robot compromises its pref-
erence by considering its neighbors’ preferences, where
the decision agreed by more robots carry a larger weight
in this process. If Ck is a subset of Dk , then the decision has
been locally converged at Rk , and (1) results in an equally
weighted average. The weights proposed in (1) help
resolve potential conflicts among all the local consensus
groups by favoring large-sized local consensus groups.

2.3 � Internal processing for decision uncertainty
reduction

Once the following two conditions are satisfied, Rk is con-
sidered locally converged: (1) local consensus is achieved
(i.e., Ck ⊂ Dk ) and (2) the maximum difference of the prefer-
ence distributions within Ck is below a threshold. The maxi-
mum difference in the preference distributions among the
members of Ck is defined as �k and calculated by

�k is a measure of the degree of divergence in Ck . If 𝜆k < 𝜆T
is satisfied for an empirical threshold value �T  , then Rk is
considered being confident about its own exhibited
decision.

Once the above conditions are satisfied, Rk ’s prefer-
ence distribution is further updated to accelerate the

(1)Pk(j) =

∑
i NiPi(j)∑

i Ni

, i ∈ Ck , j ∈ �

(2)�k = max
k1,k2∈Ck ,k1≠k2

(
n∑

j=1

∣ Pk1(j) − Pk2(j) ∣

)
.

convergence process by multiplying a linear multiplier,
Lk(j) , for j ∈ �:

where s(j) is introduced to rearrange the probabilities in Pk
in a descending order, such that Pk(j) is in s(j) position in
the new order. Lk is constructed as follows:

where

L
�
 and Lu are the lower and upper ends of the linear multi-

plier. This process reduces the uncertainty on the exhibited
decisions of individual robots by increasing the preference
values of the highly preferred choices and further reducing
the preferences values of the less preferred choices. This
process of convergence improvement is explained with
an example in Fig. 3.

3 � Algorithm evaluation

This section evaluates the presented consensus decision
making algorithm in terms of (1) the effect of network
topology in algorithm performance; (2) scalability regard-
ing the network size (m) and the number of decisions (n);
(3) the effect of external interference on the final decision;
and (4) comparison with other consensus achievement
algorithms. The performance is measured by the number
of iterations required to achieve convergence.

3.1 � Simulation environment and measure
of uncertainty

The simulations are implemented in Python, with Pygame
library for visualizing the virtual robots and the environ-
ment, and Matplotlib library for graph analysis. The host-
ing computer has Intel Core i5 CPU, 8GB of memory, and
AMD integrated graphics card, and operates Ubuntu 16.04.

The equilateral triangle grid pattern is used to generate
random networks. Nodes are placed at the joints of the
edges, and adjacent nodes are automatically connected if
there is an edge in between. Since the robots are assumed
to have limited sensing and communication range, the 2D
equilateral triangle grid is a reasonable model to represent
the 2D network configuration of a robotic swarm. The tri-
angle grid limits the number of neighbors of a robot to a
maximum of 6. For a larger number of neighbors, more

(3)Pnew
k

(j) = Pk(j)Lk(s(j))

(4)Lk(j) = Ll
j − 1

n − 1
+ Lu

n − j

n − 1
, j ∈ �

L
�
=

1

n

(
�k

�T

)0.3

; Lu =
2

n
− L

�
.

1 2

3 4 5

6 7 8

Fig. 2   A network of 8 robots, showing R
4
 ’s local consensus group D

4

and local connection group C
4

Vol.:(0123456789)

SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x	 Research Article

Fig. 3   The consensus process
with 3D bar graphs visualizing
convergence improvement. At
each step of iteration, summa-
tion of discrete entropy of each
robot’s preference distribu-
tion is calculated as

∑
Hk . The

lower the value, the faster the
convergence rate

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x

complex grid patterns may be used. The networks are cre-
ated by randomly placing new nodes one by one to the
surroundings of existing nodes.

To quantify the consensus process, the summa-
tion of discrete entropy values calculated for individ-
ual preference distributions is used:

∑m

k=1
Hk , where

Hk = −
∑n

j=1
Pk(j) log2 Pk(j) . Hk reaches the maximum

when the preference distribution is uniform, such that
Pk(1) = ⋯ = Pk(n) = 1∕n , resulting in Hk = log2 n . It
becomes the minimum when Rk has 100% preference
probability towards one specific decision and 0% towards
the rest, resulting in Hk = 0 . A smaller value of Hk implies
that Rk is more decisive for its exhibited decision. The pre-
sented consensus algorithm aims to achieve a consensus
with lower uncertainties in the preference distributions.

Figure 3 shows a random 100-node network ( m = 100 )
and its convergence towards a consensus using the algo-
rithm described in Sect. 2. Different colors indicate exhib-
ited decisions of individual nodes among 30 possible
choices ( n = 30 ). An edge between two nodes turns into
a specific color if they form a local consensus group, Dk .
The 3D bar graph visualizes the discrete entropy value
of the preference distributions of individual nodes. The
bar for each node is placed in its corresponding location
within the network on the x−y plane. The color repre-
sents its exhibited decision and the height indicates the
calculated value of

∑
Hk . At the beginning of the simula-

tion, the preference distributions are randomly generated
over 30 choices. As the consensus process proceeds, sev-
eral local consensus groups are formed and eventually all
nodes converge to the same consensus group.

3.2 � Effect of network topology on convergence
performance

Topology plays a significant role in the consensus process.
To unveil how convergence performance is affected by
the network topology, a new concept of network depend-
ency is introduced. Network dependency, denoted as

Drel , measures the degree of dependency of the rest of
the nodes on the most reliable node in order to maintain
network connectivity. This representation differs from
the connectivity in the graph theory, which is defined as
the minimum number of elements (i.e., nodes or edges)
required for disconnecting one node from the rest of the
nodes. The traditional definition puts too much weight
on the weakest part of the network, without considering
the network as a whole. The new definition, Drel , takes a
holistic view of the network, which is defined as the ratio
of the maximum individual dependency to the average
dependency value, such that

Dmax is the maximum value of the individual depend-
ency of all nodes, and Dmean is the average value (See
Algorithm 1 in “Appendix 1” for details). The calculated
Drel value is usually within the range of [1, 5] for randomly
generated networks with up to 150 nodes. Figure 4 shows
two different networks with 30 nodes and their Drel values.
The node with an outer circle indicates the node with the
highest dependency. A higher value of Drel indicates that
the network has a higher dependency on a specific node
(or a small number of nodes) where many other nodes rely
on in order to establish connection.

To evaluate the effect of network topology, the net-
work size and number of decisions are fixed at 30. Thirty
random networks are generated and Drel is calculated for
each. The Drel for these networks range between 2.2 and
4.3. Figure 5 shows the number of iterations versus Drel .
The graph shows that Drel is moderately correlated with
the number of iterations ( � = 0.65 ), indicating that a net-
work with a higher Drel requires more iterations for con-
vergence. It is also noted that the network connectivity
is a multi-dimensional property and any single measure
may not be comprehensive enough to cover all topology-
related properties.

(5)Drel =
Dmax

Dmean

Fig. 4   Drel values for two
randomly generated networks
with 30 nodes

(a) Drel = 2.5004 (b) Drel = 3.8783

Vol.:(0123456789)

SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x	 Research Article

3.3 � Scalability evaluation

Scalability is evaluated for the network size (m in the range
of [30, 150] with step size of 10) and the number of avail-
able decisions (n in the range of [10, 300] with step size of
10). The network size and decision numbers are chosen
to be as large as possible so as to pose a challenge to pre-
sented algorithm, but at same time representative of the
kind of problems it is designed to solve. For each test case,
100 simulations are performed and averaged number of
iterations are calculated.

Figure 6 shows the results for iterations versus m. In
this experiment, n is fixed at 30 and Drel is controlled at
3.0 ± 0.1 . The error bars measure the standard deviation
of the 100 trials for each situation. A positive correla-
tion between the number of iterations and m has been
found with correlation � = 0.87 . The noise in the linearity
is mainly caused by the difference of Drel in the networks.
To evaluate the effect of network size on the convergence

rate, all the rest of the parameters must be fixed. While
n can be fixed, Drel cannot be completely controlled for
randomly generated networks. Instead, the networks
were carefully chosen to have Drel values as close to each
other as possible within 0.1 difference. Figure 7 shows the
number of iterations required for convergence over the
number of decisions, n. This simulation is performed in a
network with m = 30 and Drel = 2.672 . The graph shows a
stable increase of iterations along with the increase of the
number of decisions. The calculated correlation is � = 0.91.

3.4 � External interference

This subsection demonstrates the effect of external inter-
ference on the decision making process, and thus shows
how to achieve controllable collective decision making
using the presented algorithm. In one case scenario, a
small group of robots receives an external command or
detects a significant event from the environment that
triggers these robots to exhibit a specific decision. The
robots that adopt such external inputs are referred to as
seed robots. In many cases, the seed robots govern the
entire decision making process, and thus can effectively
control the final decision. If the number of seed robots is
too small compared to the network size, or if these robots
are located in the corner, the rest of the robots may con-
verge to another decision and may override the seed
robots’ decision.

Figure 8a shows a simulation of 100 robots with 10
seed robots holding the same exhibited decision initially
located in the middle of the network. The exhibited deci-
sion of the seed robots shown in “blue” quickly dominates
the entire swarm. All 100 randomized trials result in con-
vergence of “blue” decision, with average of 16.99 itera-
tions. It is worth noting that this number is significantly

0

10

20

30

40

50

60

70

2 2.5 3 3.5 4 4.5

Ite
ra

�o
ns

Rela�ve network dependency

Fig. 5   Number of iterations versus Drel

0

20

40

60

80

100

20 40 60 80 100 120 140 160

Ite
ra
�o

ns

Fig. 6   Number of iterations versus network size m 

0

10

20

30

40

50

0 40 80 120 160 200 240 280 320

Ite
ra

�o
ns

Number of decisions n

Fig. 7   Number of iterations versus number of decisions n 

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x

lower than that without the seed robots presented (i.e.,
38.88 iterations). In Fig. 8b, 10 seed robots are located at
the upper-right corner of the network at the beginning,
and they fail to control the swarm to converge to the “blue”
decision. Figure 8c shows another scenario demonstrat-
ing that 10 seed robots start dominating the decision
making process, until 20 other robots detect or receive
some critical information triggering them to exhibit the
“orange” decision. Since this decision would be difficult
to override, the swarm gradually reaches to the orange
decision collectively.

Figure 9 further examines the relationships between
the number of seed robots on the convergence behavior
when the seed robots are located around the middle of the

Fig. 8   Simulations demonstrating controllable swarm behavior
under three different situations. The results show that the pre-
sented algorithm can be used for achieving controllable swarm

behavior while also autonomously reacting to unexpected condi-
tions to avoid “catastrophic” failure by overriding provided control
input

0
5
10
15
20
25
30
35
40
45

0
10
20
30
40
50
60
70
80
90

100
110

1 2 3 4 5 6 7 8 9 10 11

Nu
m

be
r o

f i
te

ra
�o

ns

Ra
�o

 o
f s

im
ul

a�
on

s
fo

llo
w

in
g

se
ed

 ro
bo

ts
 (%

)

Number of seed robots

Ra�o of simula�ons following seed robots Number of itera�ons

Fig. 9   Ratio of simulations following seed robots’ decision and
number of iterations versus number of seed robots located in the
middle of the network

Vol.:(0123456789)

SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x	 Research Article

network. Each data point is the average of 100 trials. With
2 seed robots, only 27% of the simulations converge to
the “blue” decision. However, with 6 or more seed robots,
the convergence rate reaches 100% . The other curve with
dashed line shows the average number of iterations for
those simulations ruled by the seed robots. With more
seed robots it took fewer iterations to converge. Figure 10
shows the results when the seed robots are located in a
corner of the network. Seed robots fewer than 6 are not
enough to lead the swarm to the target decision. With 10
seed robots, about 53% convergence rate towards the seed
robots’ decision is achieved.

3.5 � Algorithm comparison

It is noted that our algorithm and the problem setup are
significantly different from other existing methods, and
therefore, direct comparison is not applicable. The statisti-
cal results in this subsection are largely based on empirical
estimations with the purpose of putting different methods
on the same benchmark, while the environmental settings,
assumptions about the robots, and implementation meth-
ods may be significantly different from each other.

The chosen test algorithm is a collective comparison
strategy which aims to find the best among the alterna-
tives by individual robots estimating the targets and com-
municating with nearby robots [40]. The experimental sce-
nario involves many robots moving around in a large arena
with two target sites to choose from. The robot observes
the quality of a target upon identifying one, then delays
for T seconds before finding a teammate and sends it a

recruit-message. The other robot will evaluate the mes-
sage by itself and decide its favored target. The key of the
test algorithm is that the wait time after target observa-
tion is inversely proportional to the observed quality. The
higher the target quality, the less time it waits, therefore
the more robots it can recruit.

The presented algorithm is similar to this test algorithm
in that the robots aim to settle on one target among mul-
tiple targets. Each robot can have its own observation
about the targets and be influenced by nearby robots
through local communication. The difference between
the two algorithms is that the robots in the test algorithm
observe the targets by physically moving towards them
and examining them, while the robots in our algorithm
are initialized with random preference towards the targets.
10–15 robots are considered in the arena with two targets
to choose from. The number of iterations is used as a con-
vergence performance measure. In one iteration, robots
communicate once with nearby robots. Our algorithm
requires less than 20 iterations on average among 100 tri-
als to converge. The test algorithm requires approximately
1000–1250 seconds to converge. If the averaged moving
time between two iterations is estimated to be 10 s, then
about 100–125 iterations are required for convergence.
If about 50 s are considered per iteration, convergence
would require around 20–25 iterations. The estimated
numbers of iterations for the test algorithm can be sig-
nificantly different based on the general wait time and
move time between the robot interactions. Nonetheless,
the results imply that the presented algorithm can be com-
parable to, or possibly faster than, an existing method. For
further validation of the algorithm, experimental evalua-
tions using physical robots and a benchmarking scenario
must be followed.

4 � Conclusion

A new distributed collective decision making algorithm
for swarm robotic applications has been presented in this
paper. Individual robots are assumed to be primitive with
limited sensing, communication, and processing capa-
bilities. Under this assumption, while individual robots
may exhibit any of n possible decisions, the swarm can
only exhibit a global behavior if most of individual robots,
if not all, agree on a specific target goal. The presented

0

10

20

30

40

50

60

70

0
10
20
30
40
50
60
70
80
90

100
110

1 2 3 4 5 6 7 8 9 10 11

Nu
m

be
r o

f i
te

ra
	o

ns

Ra
	o

 o
f s

im
ul

a	
on

s
fo

llo
w

ig
 se

ed
 ro

bo
ts

 (%
)

Number of seed robots

Ra	o of simula	ons following seed robots (%) Number of itera	ons

Fig. 10   Ratio of simulations following seed robots and number of
iterations versus number of seed robots located on the top right
corner of the network

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x

algorithm achieves guaranteed consensus in a connected
network regardless of the number of decisions, network
sizes, and topologies, while the speed of convergence can
be affected by these factors. The effect of different topolo-
gies, network size, and the number of decisions in conver-
gence performance has been evaluated. Convergence per-
formance under external inputs has also been simulated
to demonstrate controllable consensus processes under
different situations.

The proposed algorithm relies on the robots knowing
the size of the local consensus group in order to resolve
conflicts with dissident robots. However, when a robot
quits or joins a local consensus group, there is delay for
other robots in the group to be updated, and such delay
is not considered in our simulation. In a small network size
with less than 100 robots, the effect of the delay should
be negligible, but it may become evident with a larger
network size. For future work, the effect of this delay will
be taken account in the simulation as well as in physical
experiments. To further improve the convergence rate,
simulations covering more variations of this algorithm

Algorithm 1: Network Dependency
input : A set of node positions S for the network.
output: Relative network dependency Drel

Dind = [0, 0, · · · , 0]
for {k1, k2} ⊆ S do

find all shortest paths P = {p1, p2, · · · } connecting k1 and k2
D∆ = 1/size(P)
for p ∈ P do

for i ∈ p do
if i �= k1 and i �= k2 then

Dind[i] = Dind[i] +D∆

end
end

end
end
Dmean = average(Dind)
Dmax = max(Dind)
Drel = Dmax/Dmean

return Drel

must be performed. And they may combine probability
distribution with local information such as a local measure
of group connectivity for resolving conflicts faster.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

Appendix

Algorithm 1 shows how Drel is calculated for each net-
work. Dind is first calculated for individual nodes for their
dependencies, describing the degree of how much each
node is being depended on for maintaining remote node
connections. For all shortest paths between node k1 and
k2 , each shares equal dependency value 1/size (P), and it
will be added to all nodes except the starting and end-
ing nodes. This algorithm returns the relative network
dependency.

Vol.:(0123456789)

SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x	 Research Article

References

	 1.	 Brambilla M, Ferrante E, Birattari M, Dorigo M (2013) Swarm
robotics: a review from the swarm engineering perspective.
Swarm Intell 7(1):1–41

	 2.	 Mohan Y, Ponnambalam SG (2009) An extensive review of
research in swarm robotics. In: 2009 World congress on nature
and biologically inspired computing (NaBIC). IEEE, pp 140–145

	 3.	 şahin E (2004) Swarm robotics: from sources of inspiration to
domains of application. In: International workshop on swarm
robotics, vol 17. Springer, Berlin, pp 10–20

	 4.	 Soysal O, Sahin E (2005) Probabilistic aggregation strategies
in swarm robotic systems. In: Swarm intelligence symposium,
2005. SIS 2005. Proceedings 2005 IEEE. IEEE, pp 325–332

	 5.	 Soysal O, şahin E (2006) A macroscopic model for self-organized
aggregation in swarm robotic systems. In: International work-
shop on swarm robotics, vol 30. Springer, Berlin, pp 27–42

	 6.	 Timmis J, Ismail AR, Bjerknes JD, Winfield AF (2016) An immune-
inspired swarm aggregation algorithm for self-healing swarm
robotic systems. Biosystems 1(146):60–76

	 7.	 Amjadi AS, Raoufi M, Turgut AE, Broughton G, Krajník T, Arvin F
(2019) Cooperative pollution source localization and cleanup
with a bio-inspired swarm robot aggregation. arXiv preprint
arXiv​:1907.09585​

	 8.	 Ramroop S, Arvin F, Watson S, Carrasco-Gomez J, Lennox BA
(2018) Bio-inspired aggregation with robot swarm using real
and simulated mobile robots. In: Annual conference towards
autonomous robotic systems, vol 25. Springer, Cham, pp
317–329

	 9.	 Shucker B, Bennett JK (2007) Scalable control of distributed
robotic macrosensors. In: Distributed autonomous robotic sys-
tems, vol 6. Springer, Tokyo, pp 379–388

	10.	 Nouyan S, Campo A, Dorigo M (2008) Path formation in a robot
swarm. Swarm Intell 2(1):1–23

	11.	 Derakhshandeh Z, Gmyr R, Richa AW, Scheideler C, Strothmann
T (2016) Universal shape formation for programmable matter.
In: Proceedings of the 28th ACM symposium on parallelism in
algorithms and architectures. ACM, pp 289–299

	12.	 Yang J, Wang X, Bauer P (2018) Line and V-shape formation
based distributed processing for robotic swarms. Sensors
18(8):2543

	13.	 Wang Q, Mao X, Yang S, Chen Y, Liu X (2018) Grouping-based
adaptive spatial formation of swarm robots in a dynamic envi-
ronment. Int J Adv Robot Syst 15(3):1729881418782359

	14.	 Rubenstein M, Cornejo A, Nagpal R (2014) Programma-
ble self-assembly in a thousand-robot swarm. Science
345(6198):795–799

	15.	 Klavins E (2007) Programmable self-assembly. IEEE Control Syst
27(4):43–56

	16.	 Spears WM, Heil R, Zarzhitsky D (2005) Artificial physics for
mobile robot formations. In: 2005 IEEE international conference
on systems, man and cybernetics, vol 3. IEEE, pp 2287–2292

	17.	 Ardiny H, Witwicki S, Mondada F (2015) Construction automa-
tion with autonomous mobile robots: a review. In: 2015 3rd RSI
international conference on robotics and mechatronics (ICROM).
IEEE, pp 418–424

	18.	 Werfel J, Petersen K, Nagpal R (2014) Designing collective
behavior in a termite-inspired robot construction team. Science
343(6172):754–758

	19.	 Ferrante E, Brambilla M, Birattari M, Dorigo M (2013) Socially-
mediated negotiation for obstacle avoidance in collective trans-
port. In: Distributed autonomous robotic systems. Springer, Ber-
lin, pp 571–583

	20.	 Shakya A, Mishra M, Maity D, Santarsiero G (2019) Structural
health monitoring based on the hybrid ant colony algorithm

by using Hooke-Jeeves pattern search. SN Applied Sciences
1(7):799

	21.	 Mishra M, Barman SK, Maity D, Maiti DK (2019) Ant lion optimisa-
tion algorithm for structural damage detection using vibration
data. J Civ Struct Health Monit 9(1):117–136

	22.	 Di Caro GA, Ducatelle F, Gambardella LM (2009) Wireless com-
munications for distributed navigation in robot swarms. In:
Workshops on applications of evolutionary computation, vol
15. Springer, Berlin, pp 21–30

	23.	 Ducatelle F, Di Caro GA, Pinciroli C, Mondada F, Gambardella L
(2011) Communication assisted navigation in robotic swarms:
self-organization and cooperation. In: 2011 IEEE/RSJ interna-
tional conference on intelligent robots and systems. IEEE, pp
4981–4988

	24.	 Howard A, Matarić MJ, Sukhatme GS (2002) Mobile sensor net-
work deployment using potential fields: a distributed, scalable
solution to the area coverage problem. In: Distributed autono-
mous robotic systems, vol 5. Springer, Tokyo, pp 299–308

	25.	 Marcolino LS, dos Passos YT, de Souza ÁA, dos Santos Rodrigues
A, Chaimowicz L (2017) Avoiding target congestion on the navi-
gation of robotic swarms. Auton Robots 41(6):1297–320

	26.	 Inácio FR, Macharet DG, Chaimowicz L (2018) United we move:
decentralized segregated robotic swarm navigation. In: Distrib-
uted autonomous robotic systems. Springer, Cham, pp 313–326

	27.	 Wessnitzer J, Melhuish C (2003) Collective decision-making and
behaviour transitions in distributed ad hoc wireless networks
of mobile robots: target-hunting. In: European conference on
artificial life. Springer, Berlin, pp 893–902

	28.	 Kanakia A, Klingner J, Correll N (2016) A response threshold sig-
moid function model for swarm robot collaboration. In: Distrib-
uted autonomous robotic systems. Springer, Tokyo, pp 193–206

	29.	 de Oca MAM, Ferrante E, Scheidler A, Pinciroli C, Birattari M,
Dorigo M (2011) Majority-rule opinion dynamics with differen-
tial latency: a mechanism for self-organized collective decision-
making. Swarm Intell 5(3–4):305–327

	30.	 Schmickl T, Thenius R, Moeslinger C, Radspieler G, Kernbach
S, Szymanski M, Crailsheim K (2009) Get in touch: cooperative
decision making based on robot-to-robot collisions. Auton
Agents Multi-Agent Syst 18(1):133–55

	31.	 Vigelius M, Meyer B, Pascoe G (2014) Multiscale modelling and
analysis of collective decision making in swarm robotics. PLoS
ONE 9(11):e111542

	32.	 Valentini G, Hamann H, Dorigo M (2014) Self-organized collec-
tive decision making: the weighted voter model. In: Proceedings
of the 2014 international conference on Autonomous agents
and multi-agent systems. International Foundation for Autono-
mous Agents and Multiagent Systems, pp 45–52

	33.	 Francesca G, Brambilla M, Trianni V, Dorigo M, Birattari M (2012)
Analysing an evolved robotic behaviour using a biological
model of collegial decision making. In: International conference
on simulation of adaptive behavior. Springer, Berlin, pp 381–390

	34.	 Correll N, Martinoli A (2007) Modeling self-organized aggrega-
tion in a swarm of miniature robots. In: IEEE 2007 international
conference on robotics and automation workshop on collective
behaviors inspired by biological and biochemical systems, no
SWIS-CONF-2007-002

	35.	 Campo A, Garnier S, Dédriche O, Zekkri M, Dorigo M (2011) Self-
organized discrimination of resources. PLoS ONE 6(5):e19888

	36.	 Am’e JM, Halloy J, Rivault C, Detrain C, Deneubourg JL
(2006) Collegial decision making based on social amplifica-
tion leads to optimal group formation. Proc Natl Acad Sci
103(15):5835–5840

	37.	 Garnier S, Gautrais J, Asadpour M, Jost C, Theraulaz G (2009)
Self-organized aggregation triggers collective decision making
in a group of cockroach-like robots. Adapt Behav 17(2):109–133

http://arxiv.org/abs/1907.09585

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x

	38.	 Rohrseitz K, Tautz J (1999) Honey bee dance communication:
waggle run direction coded in antennal contacts? J Comp Phys-
iol A 184(4):463–470

	39.	 Gutiérrez A, Campo A, Monasterio-Huelin F, Magdalena L,
Dorigo M (2010) Collective decision-making based on social
odometry. Neural Comput Appl 19(6):807–823

	40.	 Parker CA, Zhang H (2011) Biologically inspired collective com-
parisons by robotic swarms. Int J Robot Res 30(5):524–535

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Probabilistic consensus decision making algorithm for artificial swarm of primitive robots
	Abstract
	1 Introduction
	2 The algorithm
	2.1 Initialization of the swarm network
	2.2 Preference updating via local interaction
	2.3 Internal processing for decision uncertainty reduction

	3 Algorithm evaluation
	3.1 Simulation environment and measure of uncertainty
	3.2 Effect of network topology on convergence performance
	3.3 Scalability evaluation
	3.4 External interference
	3.5 Algorithm comparison

	4 Conclusion
	References

