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Abstract
This paper presents a consensus algorithm for artificial swarms of primitive agents, such as robots with limited sensing, 
processing, and communication capabilities. The presented consensus algorithm provides solutions of collective deci-
sion making for a connected network of robots. The decisions are considered abstract choices without difference, thus 
the algorithm can be “programmed” for a broad range of applications with specific decisions. Each robot in the swarm 
is considered a probabilistic finite state machine, whose preferences towards a set of discrete states are defined as a 
probabilistic mass function. Then, the individual preferences are updated via local negotiation with directly connected 
robots, followed by a convergence improvement process. The presented algorithm is evaluated for the effects of network 
topology and scalability (i.e., the number of decisions and the size of the swarm) on convergence performance.

Keywords  Swarm intelligence · Consensus decision making · Probabilistic finite state machine

List of symbols
�	� Set of all robot indices in a network
m	� Quantity of robots in a network, i.e. size of �
�	� Set of all decision indices
n	� Quantity of decisions, i.e. size of �
Rk	� Robot k
Pk(j)	� Robot k’s preference probability toward decision 

or role j
s(j)	� Position of Pk(j) in descending order of Pk
Ck	� Robot k’s local connection group
Dk	� Robot k’s local consensus group
Nk	� Size of group Dk

�k	� Maximum distribution difference in Ck
Lk	� Linear multiplier for robot k
Hk	� Discrete entropy of Pk
Drel	� Relative holistic dependency of a network

1  Introduction

A robotic swarm aims to achieve physical and computa-
tional flexibility and increased system robustness in multi-
robot tasks, such as localization, mapping, and navigation 
in an unknown, possibly dynamic, environment. The main 
characteristics of a swarm robotic system includes the fol-
lowing, while slightly different definitions exist across lit-
erature [1–3]:

•	 Autonomy: Robots are autonomous. Individual robots 
and the entire swarm exhibit different levels of auton-
omy.

•	 Localized sensing and communication: Each robot’s sens-
ing and communication capabilities are local.

•	 Decentralized control: Individual robots do not have 
access to centralized control and global knowledge.
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•	 Cooperative action: Robots cooperate with each other 
to perform an intended task.

These characteristics uniquely qualify robotic swarms to 
perform certain types of tasks effectively, such as (a) large 
area coverage within a short time; (b) tasks in dynamic, 
uncertain, and unstructured environments; (c) tasks that 
require scaling up or down within the task at hand; and (d) 
tasks requiring redundancy in information.

Despite these potentials, several engineering chal-
lenges must be addressed in order for a swarm robotic 
system to be applied to tackle real-world problems. One 
primary challenge is in achieving swarm behavior with-
out centralized control. Most of these previous works have 
focused on achieving a specific global swarm behavior 
based on relatively simple rules executed by the individual 
robots. Target global behaviors included swarm aggrega-
tion [4–8], shape/pattern formation [9–16], cooperation 
on construction works [17, 18], collective transportation 
[19], structural damage detection [20, 21], and navigation 
[22–26]. To tackle real-world problems, a robotic swarm 
must be capable of sequentially performing several of 
these global behaviors. For example, localizing and retriev-
ing an object located in a narrow tunnel may require the 
swarm to aggregate, form a line, navigate, and cooperate 
on carrying the object back to the base location.

In this paper, the problem is formulated as a consensus 
decision making process given a finite number of choices 
for individual robots. Individual robots are modeled as 
Probabilistic Finite State Machines (PFSMs), where their 
finite states are defined by a set of executable distinctive 
behavioral rules. A successful global behavior emerges 
when the majority, if not all, of the robots execute the 
same rule-set simultaneously. Since local sensing/com-
munication and decentralized control are assumed, deci-
sion making must also take place at the individual robot 
level while consensus in the individual decisions is sought 
for achieving a global behavior at the swarm level. Each 
robot’s preference towards n possible choices is defined 
as a Probability Mass Function (PMF). The choice with the 
highest preference is called the “exhibited decision” of the 
robot. The presented method aims to achieve consensus 
based on local communication among the nearby robots 
and internal processing of the individual preferences, as 
illustrated in Fig. 1:

1.	 Modeling individual robots as PFSMs by generating 
initial preference distributions over given choices;

2.	 Updating each robot’s preferences based on its own 
and locally connected robots’ preferences; and

3.	 Accelerating convergence and conflict resolving by 
increasing confidence toward the exhibited decision.

The presented algorithm focuses on achieving guaran-
teed consensus over a finite set of abstract decisions for a 
group of robots in a single network. It achieves consensus 
in a swarm network regardless of its connectivity density, 
i.e., consensus can be reached when the network is fully 
connected or even when sparsely connected. Given a 
fully connected network condition (i.e., each robot com-
municates with every other robots), a simple majority 
rule would be sufficient [27–29], and presented algorithm 
would fall back to the same majority rule. However, if the 
network is sparsely connected and only highly localized 
communication is available, the presented algorithm 
would more effectively resolve the conflicting decisions 
within the network than the methods based on the major-
ity rule. The robots in majority rule based methods aim to 
gather direct information from as many other robots as 
possible, which is difficult in a sparsely connected network. 
By targeting consensus in a standalone network, our prob-
lem setup and algorithm are well positioned for further 
designing complex sequential swarm robot behaviors.

In addition to the methods based on the majority rule 
described above, there exist several other relevant algo-
rithms for collective decision making in a robotic swarm. 
In [30], a cooperative decision making method for micro-
robots with light sensors was used for localization of an 
area with a higher illuminance based on robot-to-robot 
collision and onboard sensing. Another approach dem-
onstrated convergence towards the majority decision (i.e., 
color) between the two randomly initialized choices based 
on localized interaction among the robots [31]. An ODE-
model based method for decision making in a self-organ-
ized systems based on the weighted voter model achieved 
increasing decision accuracy with increasing system size 
and consensus time [32].

Since the consensus process is often referred to as 
the best-of-n problem—as in this paper, PFSM-based 
modeling methods have been widely applied for differ-
ent swarm formation problems, such as aggregation [4] 

Fig. 1   Flow chart of the presented collective decision making algo-
rithm
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and chain formation [10]. Another PFSM-based method 
proposed a probabilistic, threshold-based approach to 
recruit an approximate number of robots to accomplish a 
task via collaboration [28]. Biological inspiration has also 
played an important role in many swarm decision mak-
ing algorithms. Self-organized aggregation behavior in a 
robotic swarm was modeled based on cockroach’s group 
behavior [33–35]. For example, cockroach groups decide 
on shelter selection with limited information and signal-
ing exchanged among individual cockroaches [36]. It is 
further concluded that such way of interaction resulted 
in self-amplified aggregation in cockroaches, where the 
winning choice is the one with a faster self-amplification 
process [37]. Waggle dance and antennal contacts in hon-
eybees carry data of distance and direction of the feeding 
site relative to the hive [38]. Collective decision making 
algorithms utilizing direct verbal communication inspired 
by such swarm insects were developed for task such as 
target hunting [27], or resource foraging [39], or nest site 
comparison [40].

The rest of the paper is organized as follows. Section 2 
introduces the presented consensus algorithm; Sect. 3 
evaluates the performance of the algorithm with regards 
to the network size, number of decisions, and network 
typologies; and finally Sect. 4 discusses the limitations and 
potential of the presented method.

2 � The algorithm

The presented method focuses on achieving consensus 
in a swarm of simple robots, and thus the following con-
straints are considered:

•	 Individual robots are primitive with limited sensing, 
communication, and processing capabilities.

•	 Communication in the swarm is local; each robot can 
communicate only with nearby robots within the com-
munication range.

•	 Robots have no temporal memory (i.e., no log of history 
data) and function like finite state machines.

It is further assumed that the network topology does not 
change during the decision making process. If the decision 
making process is relatively fast enough compared to the 
robots’ physical movements, the change in the network 
topology would remain trivial while the physical locations 
of the robots may change during this process.

The overall collective decision making algorithm, illus-
trated in Fig. 1, consists of three parts: (1) initializing the 
swarm network with random preference distributions; (2) 
updating individual preference distributions based on 

local interactions; and (3) improving confidence in the 
exhibited decision. Each node representing a primitive 
robot follows these steps until a consensus in the swarm 
is reached. Below describes each of the above three steps 
in detail.

2.1 � Initialization of the swarm network

Let � = {1, 2,… ,m} be an index set of m robots in the 
swarm and � = {1, 2,… , n} be the index set of n dis-
tinct choices, corresponding to global swarm behaviors. 
Individual robot is referred to as Rk for k = 1,⋯ ,m . Each 
robot’s preference towards n choices is modeled as a 
Probability Mass Function (PMF), such that 

∑n

j=1
Pk(j) = 1 , 

where Pk(j) indicates the Rk ’s preference toward the choice 
j. This probability distribution is hereinafter referred to as 
the preference distribution. Each robot exhibits one deci-
sion at a time, determined by the corresponding index 
of max{Pk(1),⋯ , Pk(n)} . Initial values of these preference 
distributions are randomly generated for the initial set up 
of the swarm network.

2.2 � Preference updating via local interaction

Each robot updates its own preference by interacting with 
its neighboring robots within the communication range. 
For Rk , all neighboring robots of Rk and itself forms a local 
connection group, denoted by Ck . Each robot holds IDs of 
all members within its local connection group. Robots 
within the same connection group exchanges their prefer-
ence distributions. A local consensus group, Dk is defined as 
a non-empty set of the robots connected to Rk that exhibit 
the same decision as Rk . Each robot within a local consen-
sus group shares information of the IDs of all members, 
but not their the preference distributions. When a robot 
decides to join or leave a local consensus group, its clos-
est neighbors in the group can detect the change, and 
this information is broadcasted within the local consensus 
group.

Figure 2 shows an example of how these two groups 
are determined for a network of 8 robots. The node colors 
indicate the exhibited decision of the robots. When two 
connected robots exhibit the same decision, the con-
necting lines are also visualized with the color of the 
decision. For R4 , the local connection group is defined 
by C4 = {2, 3, 4, 5, 6, 7} ; and the local consensus group—
showing the “red” decision—is D4 = {4, 5, 6, 7, 8} . As 
shown in the figure, members of D4 may not be directly 
connected to R4 , but forms a connected network including 
R4 . It is noted that R4 shares IDs and preference distribution 
with the members of C4 while sharing only the IDs with the 
members of D4.



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:95 | https://doi.org/10.1007/s42452-019-1845-x

Each robot updates its own preference distribution by 
taking account of preferences of other robots in its local 
connection group:

where Ni = |Dk| is the size of the Ri ’s local consensus group. 
This equation is a weighted average of the preference dis-
tributions among all directly connected robots, where 
the weights are determined by the size of the decision 
group. In the equation, each robot compromises its pref-
erence by considering its neighbors’ preferences, where 
the decision agreed by more robots carry a larger weight 
in this process. If Ck is a subset of Dk , then the decision has 
been locally converged at Rk , and (1) results in an equally 
weighted average. The weights proposed in (1) help 
resolve potential conflicts among all the local consensus 
groups by favoring large-sized local consensus groups.

2.3 � Internal processing for decision uncertainty 
reduction

Once the following two conditions are satisfied, Rk is con-
sidered locally converged: (1) local consensus is achieved 
(i.e., Ck ⊂ Dk ) and (2) the maximum difference of the prefer-
ence distributions within Ck is below a threshold. The maxi-
mum difference in the preference distributions among the 
members of Ck is defined as �k and calculated by

�k is a measure of the degree of divergence in Ck . If 𝜆k < 𝜆T 
is satisfied for an empirical threshold value �T  , then Rk is 
considered being confident about its own exhibited 
decision.

Once the above conditions are satisfied, Rk ’s prefer-
ence distribution is further updated to accelerate the 

(1)Pk(j) =

∑
i NiPi(j)∑

i Ni

, i ∈ Ck , j ∈ �

(2)�k = max
k1,k2∈Ck ,k1≠k2

(
n∑

j=1

∣ Pk1(j) − Pk2(j) ∣

)
.

convergence process by multiplying a linear multiplier, 
Lk(j) , for j ∈ �:

where s(j) is introduced to rearrange the probabilities in Pk 
in a descending order, such that Pk(j) is in s(j) position in 
the new order. Lk is constructed as follows:

where

L
�
 and Lu are the lower and upper ends of the linear multi-

plier. This process reduces the uncertainty on the exhibited 
decisions of individual robots by increasing the preference 
values of the highly preferred choices and further reducing 
the preferences values of the less preferred choices. This 
process of convergence improvement is explained with 
an example in Fig. 3.

3 � Algorithm evaluation

This section evaluates the presented consensus decision 
making algorithm in terms of (1) the effect of network 
topology in algorithm performance; (2) scalability regard-
ing the network size (m) and the number of decisions (n); 
(3) the effect of external interference on the final decision; 
and (4) comparison with other consensus achievement 
algorithms. The performance is measured by the number 
of iterations required to achieve convergence.

3.1 � Simulation environment and measure 
of uncertainty

The simulations are implemented in Python, with Pygame 
library for visualizing the virtual robots and the environ-
ment, and Matplotlib library for graph analysis. The host-
ing computer has Intel Core i5 CPU, 8GB of memory, and 
AMD integrated graphics card, and operates Ubuntu 16.04.

The equilateral triangle grid pattern is used to generate 
random networks. Nodes are placed at the joints of the 
edges, and adjacent nodes are automatically connected if 
there is an edge in between. Since the robots are assumed 
to have limited sensing and communication range, the 2D 
equilateral triangle grid is a reasonable model to represent 
the 2D network configuration of a robotic swarm. The tri-
angle grid limits the number of neighbors of a robot to a 
maximum of 6. For a larger number of neighbors, more 

(3)Pnew
k

(j) = Pk(j)Lk(s(j))

(4)Lk(j) = Ll
j − 1

n − 1
+ Lu

n − j

n − 1
, j ∈ �

L
�
=

1

n

(
�k

�T

)0.3

; Lu =
2

n
− L

�
.

1 2

3 4 5

6 7 8

Fig. 2   A network of 8 robots, showing R
4
 ’s local consensus group D

4
 

and local connection group C
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Fig. 3   The consensus process 
with 3D bar graphs visualizing 
convergence improvement. At 
each step of iteration, summa-
tion of discrete entropy of each 
robot’s preference distribu-
tion is calculated as 

∑
Hk . The 

lower the value, the faster the 
convergence rate
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complex grid patterns may be used. The networks are cre-
ated by randomly placing new nodes one by one to the 
surroundings of existing nodes.

To quantify the consensus process, the summa-
tion of discrete entropy values calculated for individ-
ual preference distributions is used: 

∑m

k=1
Hk , where 

Hk = −
∑n

j=1
Pk(j) log2 Pk(j) . Hk  reaches the maximum 

when the preference distribution is uniform, such that 
Pk(1) = ⋯ = Pk(n) = 1∕n , resulting in Hk = log2 n . It 
becomes the minimum when Rk has 100% preference 
probability towards one specific decision and 0% towards 
the rest, resulting in Hk = 0 . A smaller value of Hk implies 
that Rk is more decisive for its exhibited decision. The pre-
sented consensus algorithm aims to achieve a consensus 
with lower uncertainties in the preference distributions.

Figure 3 shows a random 100-node network ( m = 100 ) 
and its convergence towards a consensus using the algo-
rithm described in Sect. 2. Different colors indicate exhib-
ited decisions of individual nodes among 30 possible 
choices ( n = 30 ). An edge between two nodes turns into 
a specific color if they form a local consensus group, Dk . 
The 3D bar graph visualizes the discrete entropy value 
of the preference distributions of individual nodes. The 
bar for each node is placed in its corresponding location 
within the network on the x−y plane. The color repre-
sents its exhibited decision and the height indicates the 
calculated value of 

∑
Hk . At the beginning of the simula-

tion, the preference distributions are randomly generated 
over 30 choices. As the consensus process proceeds, sev-
eral local consensus groups are formed and eventually all 
nodes converge to the same consensus group.

3.2 � Effect of network topology on convergence 
performance

Topology plays a significant role in the consensus process. 
To unveil how convergence performance is affected by 
the network topology, a new concept of network depend-
ency is introduced. Network dependency, denoted as 

Drel , measures the degree of dependency of the rest of 
the nodes on the most reliable node in order to maintain 
network connectivity. This representation differs from 
the connectivity in the graph theory, which is defined as 
the minimum number of elements (i.e., nodes or edges) 
required for disconnecting one node from the rest of the 
nodes. The traditional definition puts too much weight 
on the weakest part of the network, without considering 
the network as a whole. The new definition, Drel , takes a 
holistic view of the network, which is defined as the ratio 
of the maximum individual dependency to the average 
dependency value, such that

Dmax is the maximum value of the individual depend-
ency of all nodes, and Dmean is the average value (See 
Algorithm 1 in “Appendix 1” for details). The calculated 
Drel value is usually within the range of [1, 5] for randomly 
generated networks with up to 150 nodes. Figure 4 shows 
two different networks with 30 nodes and their Drel values. 
The node with an outer circle indicates the node with the 
highest dependency. A higher value of Drel indicates that 
the network has a higher dependency on a specific node 
(or a small number of nodes) where many other nodes rely 
on in order to establish connection.

To evaluate the effect of network topology, the net-
work size and number of decisions are fixed at 30. Thirty 
random networks are generated and Drel is calculated for 
each. The Drel for these networks range between 2.2 and 
4.3. Figure 5 shows the number of iterations versus Drel . 
The graph shows that Drel is moderately correlated with 
the number of iterations ( � = 0.65 ), indicating that a net-
work with a higher Drel requires more iterations for con-
vergence. It is also noted that the network connectivity 
is a multi-dimensional property and any single measure 
may not be comprehensive enough to cover all topology-
related properties. 

(5)Drel =
Dmax

Dmean

Fig. 4   Drel values for two 
randomly generated networks 
with 30 nodes

(a) Drel = 2.5004 (b) Drel = 3.8783
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3.3 � Scalability evaluation

Scalability is evaluated for the network size (m in the range 
of [30, 150] with step size of 10) and the number of avail-
able decisions (n in the range of [10, 300] with step size of 
10). The network size and decision numbers are chosen 
to be as large as possible so as to pose a challenge to pre-
sented algorithm, but at same time representative of the 
kind of problems it is designed to solve. For each test case, 
100 simulations are performed and averaged number of 
iterations are calculated.

Figure 6 shows the results for iterations versus m. In 
this experiment, n is fixed at 30 and Drel is controlled at 
3.0 ± 0.1 . The error bars measure the standard deviation 
of the 100 trials for each situation. A positive correla-
tion between the number of iterations and m has been 
found with correlation � = 0.87 . The noise in the linearity 
is mainly caused by the difference of Drel in the networks. 
To evaluate the effect of network size on the convergence 

rate, all the rest of the parameters must be fixed. While 
n can be fixed, Drel cannot be completely controlled for 
randomly generated networks. Instead, the networks 
were carefully chosen to have Drel values as close to each 
other as possible within 0.1 difference. Figure 7 shows the 
number of iterations required for convergence over the 
number of decisions, n. This simulation is performed in a 
network with m = 30 and Drel = 2.672 . The graph shows a 
stable increase of iterations along with the increase of the 
number of decisions. The calculated correlation is � = 0.91.

3.4 � External interference

This subsection demonstrates the effect of external inter-
ference on the decision making process, and thus shows 
how to achieve controllable collective decision making 
using the presented algorithm. In one case scenario, a 
small group of robots receives an external command or 
detects a significant event from the environment that 
triggers these robots to exhibit a specific decision. The 
robots that adopt such external inputs are referred to as 
seed robots. In many cases, the seed robots govern the 
entire decision making process, and thus can effectively 
control the final decision. If the number of seed robots is 
too small compared to the network size, or if these robots 
are located in the corner, the rest of the robots may con-
verge to another decision and may override the seed 
robots’ decision.

Figure 8a shows a simulation of 100 robots with 10 
seed robots holding the same exhibited decision initially 
located in the middle of the network. The exhibited deci-
sion of the seed robots shown in “blue” quickly dominates 
the entire swarm. All 100 randomized trials result in con-
vergence of “blue” decision, with average of 16.99 itera-
tions. It is worth noting that this number is significantly 
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lower than that without the seed robots presented (i.e., 
38.88 iterations). In Fig. 8b, 10 seed robots are located at 
the upper-right corner of the network at the beginning, 
and they fail to control the swarm to converge to the “blue” 
decision. Figure 8c shows another scenario demonstrat-
ing that 10 seed robots start dominating the decision 
making process, until 20 other robots detect or receive 
some critical information triggering them to exhibit the 
“orange” decision. Since this decision would be difficult 
to override, the swarm gradually reaches to the orange 
decision collectively.

Figure 9 further examines the relationships between 
the number of seed robots on the convergence behavior 
when the seed robots are located around the middle of the 

Fig. 8   Simulations demonstrating controllable swarm behavior 
under three different situations. The  results show that the pre-
sented algorithm can be used for achieving controllable swarm 

behavior while also autonomously reacting to unexpected condi-
tions to avoid “catastrophic” failure by overriding provided control 
input
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network. Each data point is the average of 100 trials. With 
2 seed robots, only 27% of the simulations converge to 
the “blue” decision. However, with 6 or more seed robots, 
the convergence rate reaches 100% . The other curve with 
dashed line shows the average number of iterations for 
those simulations ruled by the seed robots. With more 
seed robots it took fewer iterations to converge. Figure 10 
shows the results when the seed robots are located in a 
corner of the network. Seed robots fewer than 6 are not 
enough to lead the swarm to the target decision. With 10 
seed robots, about 53% convergence rate towards the seed 
robots’ decision is achieved.

3.5 � Algorithm comparison

It is noted that our algorithm and the problem setup are 
significantly different from other existing methods, and 
therefore, direct comparison is not applicable. The statisti-
cal results in this subsection are largely based on empirical 
estimations with the purpose of putting different methods 
on the same benchmark, while the environmental settings, 
assumptions about the robots, and implementation meth-
ods may be significantly different from each other.

The chosen test algorithm is a collective comparison 
strategy which aims to find the best among the alterna-
tives by individual robots estimating the targets and com-
municating with nearby robots [40]. The experimental sce-
nario involves many robots moving around in a large arena 
with two target sites to choose from. The robot observes 
the quality of a target upon identifying one, then delays 
for T seconds before finding a teammate and sends it a 

recruit-message. The other robot will evaluate the mes-
sage by itself and decide its favored target. The key of the 
test algorithm is that the wait time after target observa-
tion is inversely proportional to the observed quality. The 
higher the target quality, the less time it waits, therefore 
the more robots it can recruit.

The presented algorithm is similar to this test algorithm 
in that the robots aim to settle on one target among mul-
tiple targets. Each robot can have its own observation 
about the targets and be influenced by nearby robots 
through local communication. The difference between 
the two algorithms is that the robots in the test algorithm 
observe the targets by physically moving towards them 
and examining them, while the robots in our algorithm 
are initialized with random preference towards the targets. 
10–15 robots are considered in the arena with two targets 
to choose from. The number of iterations is used as a con-
vergence performance measure. In one iteration, robots 
communicate once with nearby robots. Our algorithm 
requires less than 20 iterations on average among 100 tri-
als to converge. The test algorithm requires approximately 
1000–1250 seconds to converge. If the averaged moving 
time between two iterations is estimated to be 10 s, then 
about 100–125 iterations are required for convergence. 
If about 50 s are considered per iteration, convergence 
would require around 20–25 iterations. The estimated 
numbers of iterations for the test algorithm can be sig-
nificantly different based on the general wait time and 
move time between the robot interactions. Nonetheless, 
the results imply that the presented algorithm can be com-
parable to, or possibly faster than, an existing method. For 
further validation of the algorithm, experimental evalua-
tions using physical robots and a benchmarking scenario 
must be followed.

4 � Conclusion

A new distributed collective decision making algorithm 
for swarm robotic applications has been presented in this 
paper. Individual robots are assumed to be primitive with 
limited sensing, communication, and processing capa-
bilities. Under this assumption, while individual robots 
may exhibit any of n possible decisions, the swarm can 
only exhibit a global behavior if most of individual robots, 
if not all, agree on a specific target goal. The presented 
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algorithm achieves guaranteed consensus in a connected 
network regardless of the number of decisions, network 
sizes, and topologies, while the speed of convergence can 
be affected by these factors. The effect of different topolo-
gies, network size, and the number of decisions in conver-
gence performance has been evaluated. Convergence per-
formance under external inputs has also been simulated 
to demonstrate controllable consensus processes under 
different situations.

The proposed algorithm relies on the robots knowing 
the size of the local consensus group in order to resolve 
conflicts with dissident robots. However, when a robot 
quits or joins a local consensus group, there is delay for 
other robots in the group to be updated, and such delay 
is not considered in our simulation. In a small network size 
with less than 100 robots, the effect of the delay should 
be negligible, but it may become evident with a larger 
network size. For future work, the effect of this delay will 
be taken account in the simulation as well as in physical 
experiments. To further improve the convergence rate, 
simulations covering more variations of this algorithm 

Algorithm 1: Network Dependency
input : A set of node positions S for the network.
output: Relative network dependency Drel

Dind = [0, 0, · · · , 0]
for {k1, k2} ⊆ S do

find all shortest paths P = {p1, p2, · · · } connecting k1 and k2
D∆ = 1/size(P )
for p ∈ P do

for i ∈ p do
if i �= k1 and i �= k2 then

Dind[i] = Dind[i] +D∆

end
end

end
end
Dmean = average(Dind)
Dmax = max(Dind)
Drel = Dmax/Dmean

return Drel

must be performed. And they may combine probability 
distribution with local information such as a local measure 
of group connectivity for resolving conflicts faster.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Appendix

Algorithm 1 shows how Drel is calculated for each net-
work. Dind is first calculated for individual nodes for their 
dependencies, describing the degree of how much each 
node is being depended on for maintaining remote node 
connections. For all shortest paths between node k1 and 
k2 , each shares equal dependency value 1/size (P), and it 
will be added to all nodes except the starting and end-
ing nodes. This algorithm returns the relative network 
dependency. 
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