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Abstract
Reducing noise from images is an essential structure of the image processing study. Noises can arise with images through 
achievement on diffusion. The existence of noise can delay the right operation of these images for many applications 
such as satellite and medical images. Reducing denois in images multiplicatively (DIM) has been developed and modi-
fied by many researchers during the past few years. DIM can destroy almost all data of the original image, especially the 
texture of images. Our aim is to present a new technique to solve this problem. The technique is based on a new fractional 
calculus called the conformable fractional calculus (CFC). This type of calculus has advantages because of its formula 
involves a controller, which can be applied to complex problems such as DIM. The proposed structures of CFC windows 
are given by four masks suggested for x and y directions. On four directional angles, a convolution operational product 
of the input image pixels with a CFC mask window has been completed. The visual observation and peak signal-to-noise 
ratio with Root Mean Square Error are employed for measurements. The experiments showed that the skillful filtering 
outcomes are indicated high score than some well known filers such as Gaussian filter, Sobel edge filter, Canny edge filter 
and gray-level co-occurrence matrix. Compering is illustrated as well with newly researches.

Keywords  Fractional calculus · Fractional operator · Fractional mask · Image denoising · Multiplicative noise · 
Conformable calculus · Gamma function

1  Introduction

Denoising is a substantial dealing out instruction for 
numerous requests in all images studies such as segmen-
tation, texture analysis, and feature extraction. Image pro-
cessing involves a number of phases, where denoising of 
images is the first responsibilities to be assumed and the 
recent challenge in this direction of studies is denois in 
images multiplicatively (DIM). DIM simulations are domi-
nant to the study of logical imaging structures [1, 2], by 
means of SAR ( synthetic aperture radar), laser imaging 
and ultrasound imaging. Due to the logical environment 
of these image achievement procedures, the normal 
additive noise structure is insufficient for meting out such 
images. In its place, DIM simulations deliver a high score 

explanation of logical imaging structures. There are differ-
ent techniques deal with removing DIM based on the dif-
fusion equation formal, partial differential equations, varia-
tion methods, gradient operational method and fractional 
differential equations [2–5].

The fractional calculus (FC) is briefly suggested in all 
sciences, including social science, law and economy with 
applications for the last 5 decades. In computer science, 
it has been deliberated, especially in the field of image 
processing [6–10]. It has been employed in image process-
ing for medical MR image enhancement (see for recent 
work [11]). Image noise mentions to any undesired signal 
that perverts images. Noise acts in digital images primarily 
by image achievement, during which an optical image is 
transformed into continuous electrical signals.
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With former effort, fractional Conway polynomials (using 
differential and integral fractional operators to general-
ize these polynomials) with normalized fractional power 
parameters have been suggested for image denoising [6]. 
The advantage of utilizing these polynomials is paid to its 
capability to professionally eliminate (remove) the image 
noise. In [7], an upgraded denoised procedure founded by 
fractional Alexander polynomials is offered for eliminating 
diverse kinds of image noise. Investigates consequences 
presented that these polynomials effectively removed the 
noise and enhanced the image information as well. In addi-
tion, image noise removal procedure utilizing both fractional 
Tsallis entropy with the fractional Riesz has been showed in 
[9]. The developments attained in eliminating image noise 
were well-matched with typical image denoing filters.

Multiplicative noise representations are essential to the 
study of logical imaging systems, such as synthetic crack 
sonar, radar and ultrasound and laser imaging. These rep-
resentations familiarize two further layers of problems with 
respect to the regular Gaussian additive noise setting: firstly, 
the noise is multiplied by the creative image; secondly, the 
noise is not Gaussian, where Gamma actuality utilized com-
pactness. In this investigation, we suggest a new method 
created by a special type of FC, called conformable fractional 
calculus (CFC) involving Gamma function. The advantages 
of CFC are that its formulation includes a controller, which 
can be employed in a complex system such as images. The 
anticipated constructions of CFC windows are assumed by 
four masks suggested for x and y directions. Different filters 
are employed for measurements. The experiments showed 
that the skillful filtering outcomes are indicated a high score 
than some well-known filers.

The rest of this study is organized as follows: Section 2 is 
related works in multiplicative noise; Sect. 3, the proposed 
model is explained. In Sect. 4, the experimental results are 
described. Finally, the comparison with other methods and 
conclusion are presented in Sects. 5 and 6 respectively.

2 � Related works

Yousef and Reza [12] introduced an image denoising 
method based on the wavelet transform domain for 
multiplicative noise. This method did not involve prior 
exhibiting of either the image or the noise information. 
Later Rudin et al. [13] reserved optimization category of 
numerical procedure for restoring blurry, noisy images. 
The authors presented both theoretical and experimen-
tal explanation for the technique. Dias et al. [14] designed 
a system by employing the variable splitting and con-
strained optimization, while the Douglas-Rachford split-
ting methods are indicated by Steid Teuber [15]. Li and 
Xie applied the concept of fractional calculus of small 

probability strategy [16]. Other fractional approaches uti-
lized by considering different types of diffusion equations, 
smooth diffusion equation, differential operators, integral 
operators of fractional order, fractional entropy and Wave-
let energy entropy (see for recent efforts [17–20]). All these 
methods described fractional masks by using different val-
ues of gamma function and its compositions. Other frac-
tional techniques formulated by using polynomials and 
series such as fractional Fourier transform (see [21–23]). 
In this place, we note that this is the first application of 
conformable fractional calculus in image processing. The 
important of this calculus is that one of its term is based 
on controller function (gradient); therefore, we include the 
gradient implicitly in the processing and analysis of the 
image. Moreover, the fractional power comes from two 
sides. The first one is by multiplying the image by a frac-
tional function and the second by multiplying the gradi-
ent of the image by another fractional function. For extra 
works, we advice the reader to check [24–27].

Images detection and description from fixed-motivated 
and self-motivated acts is a dynamic stud and investiga-
tion of research and one of the most considered issues 
in computer vision works. The notion of image detection 
and description discusses to the progression of identify-
ing points in an image (interest points) that can apply 
to describe the image’s contents such as corners, edges, 
ridges and blobs (for review work see [28]). The skill of treat-
ing digital features kept within the computer developed an 
important technology in numerous arenas and employed 
as a fundamental measure in an outsized number of manu-
facturing vision applications (see Hassaballah et al. [29]). 
Moreover, Hassaballah et al. [30] discussed the size of digi-
tal feature sources continue to develop, with the progress 
of the Internet, reduction in data-storage costs, and devel-
opments in expertise for feature-capturing strategies.

The shape contents is one of the important factor in fea-
ture deblurring. The image formula is generally imposed 
by B = I ∗ k + �, where B is the blurred input image, I is 
the latent sharp image, k is the blur kernel, ∗ is the con-
volution operator, and � is the noise term [31]. Since our 
algorithm based on convolution property, then we can say 
that the proposed method can determine and cover this 
factor. Ancuti et al. [32] introduced another study in image 
processing describing the hand-designed features, such as 
the dark channel, color disparity and maximum contrast, 
with complex synthesis structures, limit the presentation 
of remaining image dehazing systems.

Finaly, different methods of image processing devel-
oped and presented; for example Khan et al. [33] pre-
sented a method by using particle swarm optimization, 
Nazir et al. [34] created a histogram of oriented gradi-
ents based on transformed features and Munir et al. [35] 
merged different methods to obtain good results.
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3 � CFC model

The noise smooth in digital images may differ from organ-
ism practically invisible to organism obvious. Image denois-
ing procedures is aim to yield a new image that has less 
noise, i.e., closer to the novel noise-free image. Image 
denoising methods can gather into two central methods: 
pixel-based image filtering and patch-based filtering. The 
first approach is a proximity operation utilized operating 
one pixel at a based on its 3-D neighboring pixels situated 
inside a kernel. While, the second type is using “blocks,” 
which are then operated distinctly in order to deliver an 
estimate of the exact pixel prices based on similar bits situ-
ated within a examine window. This method operates the 
redundancy and the likeness among the numerous shares 
of the effort image (see Figs. 1 and 2 respectively). Our 
method can recognize the second type. CFC is an extension 
of differentiation and integration of the functions defined 
on fractal sets. The notion of CFC has been a subject of 
attentiveness, not only among mathematicians, but also 
among engineers and scientists. There are many forms of 
CFC derivatives and CFC integrals [36–38]. The proposed 
model is based on Anderson-Ulness definition [36].

Let �∈[0, 1] , then a differential operator D� is conform-
able if and only if D0 is the identity operator and D1 is the 
classical differential operator. Specifically, D� is conform-
able if and only if for differentable function f = f (t),

In [36] the authors noted that in control theory, a propor-
tional-derivative controller for controlling output � at time 
t with two tuning parameters has the algorithm

where �p is the proportional gain, �d is the derivative gain, 
and Υ is the error between the state changing and the pro-
cess changing. From the controller � , Anderson and Ulness 
introduced the following CFC.

Definition 1  Assume that � ∈ [0, 1] and two continu-
ous functions �0, �1 ∶ [0, 1] ×ℝ → [0,∞) achieving the 
approximations

and

Then for a differential function Υ the following CFC is given

where Υ is the true image, x is the pixel, �1, �0 are the multi-
plicative and additive noise components, respectively, and 
D�Υ is is the observed image.

In imaging, we refer to Υ�(x) as the discrete Laplaciana 
operator (or its average formal operator, which converges to 

(3.1)D
0g(t) = g(t) and D

1g(t) =
d

dt
g(t) = g�(t).

(3.2)�(t) = �pΥ(t) + �d
d

dt
Υ(t),

lim
�→0

�1(�, x) = 1, lim
�→1

�1(�, x) = 0,

�1(�, x) ≠ 0, ∀x ∈ ℝ, � ∈ (0, 1),

lim
�→0

�0(�, x) = 0, lim
�→1

�0(�, x) = 1,

�0(�, x) ≠ 0, ∀x ∈ ℝ � ∈ (0, 1).

(3.3)D�Υ(x) = �1(�, x)Υ(x) + �0(�, x)Υ
�(x),

Fig. 1   The first type method in image denoising

Fig. 2   The second type method in image denoising
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the solution Υ ). Thus, as a conclusion, we shall use symbol-
ized CFC formal by

3.1 � Construction of CFC filter

To construct, the CFC filter, we assume that

It is clear that �1, �0 satisfy Definition 1. Let 
��(�, �) ∶= �1(�, �) + �0(�, �) . Since the image is a function of 
two variables; therefore, we extend D�Υ into two variables 
to get

with the coefficients

These coefficients are used to enhance the images. The 
CFC for image denoising is Υd , which is computed from 
input noising image Υn:

where � is the window’s mask, and * is the convolution 
product. The CFC-filter window’s mask is given by the coef-
ficients ��(�, �) . In this note, four masks are systematized 
as follows:

The pixel values of CFC window’s mask are computed by 
shifting the window’s mask over the input image. One of 

(3.4)D�Υ = �
�

1
Υ + �

�

0
ΔΥ ≈

(
�
�

1
+ �

�

0

)
Υ.

(3.5)

�
�

1
(�, �) =

1 − �

Γ(� + � − �)
, �

�

0
(�, �) =

�

Γ(� + � − �)
, �, � = 1, 2, 3,…

(3.6)D�Υ(x, y) =
∑
�

∑
�

�
�(�, �)Υ(x + �, y + �),

(3.7)
�
�(�, �) =

1 − �

Γ(� + � − �)
+

�

Γ(� + � − �)

=
1

Γ(� + � − �)
.

(3.8)Υd(x, y) = �
� ∗ Υn(x, y),

(3.9)

�0◦ =

⎡
⎢⎢⎣

0 0 0

��(2, 1) ��(2, 2) ��(2, 3)

0 0 0

⎤
⎥⎥⎦
,

�45◦ =

⎡⎢⎢⎣

0 0 ��(1, 3)

0 ��(2, 2) 0

��(3, 1) 0 0

⎤⎥⎥⎦

(3.10)

�90◦ =

⎡
⎢⎢⎣

0 ��(1, 2) 0

0 ��(2, 2) 0

0 ��(3, 2) 0

⎤
⎥⎥⎦
,

�135◦ =

⎡⎢⎢⎣

��(1, 1) 0 0

0 ��(2, 2) 0

0 0 ��(3, 3)

⎤⎥⎥⎦
.

the advantages of the proposed filter is that CFC, has a 
mathematical ability to consider the additive noise as a 
multiplicative noise (see Eq. 3.7). This behavior allows CFC 
to follow a gamma distribution [24]. The proposed CFC 
window’s mask image denoising can be summarized as 
follows (see Fig. 3):

•	 Begin CFC window’s mask utilizing 3 × 3 pixel measure;
•	 Give the adequate values of � with the range of 

0 < 𝛼 ≤ 1. We found a good result when � ∈ (0.5, 0.75) 
(see Fig. 4);

•	 Employ CFC in four directions over the input image;
•	 Utilize any well know filter, such as GSF, SEF, CEF, for 

comparison;
•	 Calculate the PSNR , and SSIM for all filters including 

CFC-filter.

For color images, the same algorithm is suggested and 
for gray-scale images is applied separately for each 
components.

Fig. 3   The algorithm of using CFC
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4 � Experimental outcomes

In this section, we apply the denoising presentation of 
CFC operator. Presentation assessments were employed 
by means of Mathematica 11.2. The two groups of images 
engaged two grayscale images, and two color images. 
The window’s mask of proposed CFC is deliberated to be 
functioned with a 3  ×  3 pixels’ window. The assessment 
performances of CFC were designed by both PSNR, and 
RMSD measures. The PSNR values for the altered values 

of � , are described in Fig. 4, when operating the recom-
mended CFC process image with Gaussian noise � values 
of 15, 20, and 25. A big value of � ∈ (0.5, 0.7) matches to a 
dramatic reduction in PSNR, and vice versa. Consequently, 
the ideal value of � represents the trade-off between � and 
PSNR which is required for removing the image noise. In 
this study, the value of � has been chosen in the interval 
(0.5,0.75) as shown in Fig. 4. Since the RMSD is an increas-
ing function with respect to � (see Fig. 5), therefore we 
conclude our results depending on PSNR.

The outcomes of three images are illustrated in Fig. 6 for 
iteration equals to 10 (for � = 0.5, 0.6, 0.7 ) and Table 1 for 
the iterations 15, 20, 25 and 30 with the fractional value 
� = 0.6 (because the best PSNR at � = 0.6 for all the expe-
rience images). The first row displays the original images 
and the three rows refer to the CFC method for different 
fractional order. It exhibits that the proposed CFC algo-
rithm offers better performance for all images with deep 
texture at � = 0.6, which congruent with the statistical 
analysis in Fig. 4. The proposed CFC algorithm eliminates 

Fig. 4   The relation between � and PSNR for three iterations:15 (blue), 20 (red), 25 (yellow). The first row contains ��(1, 1) and ��(2, 2) respec-
tively. The second row contains ��(3, 2) and ��(3, 3) respectively. The best value of PSNR is for � ∈ (0.5, 0.73)
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the noise professionally and keeps the image texture 
specifics (data, information). This because the fractional 
calculus allows outmoded initial and edge settings to be 
involved in the preparation of the processing. Moreover, 
the fractional calculus implies a historical information 
with deep knowledge for the image. Fractional calculus 

created approaches delivering further degree of freedom 
in optimization performance, which is very important test 
in image processing. Not astonishingly, fractional calculus 
established procedures have utilized in image processing 
area. Image without texture ignored these facilities (see 
the cloud image and blood cells image in Fig. 9).

The PSNR and the RMSD values of the four tested 
images corrupted by two levels of Gaussian noise ( � = 15, 
20, 25) are shown in Fig. 6. In addition, Fig. 6 illustrates the 
numerical assessments of the proposed CFC algorithm. 
The qualitative results illustrate that the proposed CFC 
algorithm achieves the superior PSNR and RMSD values 
compared with the Gaussian smoothing filter.

CFC can be viewed as an iterated guided filter (IGF), which 
is an explicit filter of the image. This filter contains the guid-
ance image Υ , an input image � , and an output image � . 
Both Υ and � are introduced beforehand based on the appli-
cation, and they can be the same image. The filtering output 

Fig. 5   The RMSD with respect to 0 < 𝛼 < 1 is an increasing function

Fig. 6   Results by CFC and 
Gaussian filters noise 10

Table 1   (RMSE,PSNR) of CFC (for � = 0.6 ) with different iterations

Images 15 20 25 30

Flowers (4.30, 34.89) (4.4, 34.77) (4.44, 34.4) (4.6, 34.04)
City (2.7, 39.27) (2.2, 40.76) (2.9, 38.94) (3.0, 39.20)
Saturn (1.41, 45.2) (1.44, 44.86) (1.9, 44.30) (1.98, 43.89)
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at a pixel � is formulated as a weighted average for the pixel 
�:

where ��(�, �) considered as a weighted preparation ( see 
(3.7)) such that 

∑
�
��(�, �) = 1 (see Table 1). For our result, 

we used the formula

(4.1)�
�

�
=
∑
�

�
�(�, �)�,

(4.2)

1∕Γ(3 − 0.6) =

∞∑
k=0

(0.8)k

×

k∑
j=0

(
(−1)j�−j+k sin(1∕2�(−j + k + 2)

)

× Γj
(
1∕(j!(−j + k)!)

)
∕� ≈ 0.8.

Fig. 7   In this example the 
guidance Υ is identical to the 
input � with nIter = 60. The 
fractional power � = 0.6
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5 � Comparisons

To check the strength of the proposed CFC algorithm, we 
compare the proposed study with other approaches for 
image denoising given in [39–42]. Figure 8 illustrates the 
results of the proposed CFC algorithm with different denois-
ing algorithms for the “Cloud, Cake, Boat, Force, Cathedral”, 
and “Bike” images with noise � = 15. In [39], The procedure 

deals with the image pixel association in the special dimen-
sion as well as in the color dimension. The color frequencies 
of an image are first decor connected with a 3-point orthog-
onal transform. Each channel is denoised distinctly via local 
discrete cosine transform thresholding. In [40, 41], the 
authors generalized non-local means for removing noise in 
images. While, in [42], the authors regularized and weighted 
the pixel images by using some optical flow methods (Fig. 7).

Fig. 8   Results by CFC and different filters
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Figure 8 provides a general performance of different 
methods in image processing. Figure 8 shows that for image 
“Boat”, the PSNR values for the proposed CFC algorithm are 
slightly larger compared with the three standard methods 
for the noise standard deviation � of 15, 25. The proposed 
CFC algorithm offered satisfactory results (Fig. 9).

6 � Conclusion

A new image denoising filter based on conformable frac-
tional calculus for image denoising is illustrated to elimi-
nate Gaussian noise. The visual perception results with the 
PSNR and SSIM results are used to evaluate the denoising 
performance of a proposed CF-process. Four standard 
test images were used to validate the performance of the 
proposed CFC algorithm compared with available filters.
The proposed CFC algorithm has shown a good PSNR 
and RMSE results for all four testing images corrupted 

by Gaussian noise. In future works, we plan to apply CFC-
process for different image processing applications like 
texture enhancement of digital images.

Moreover, the CFC—process is a novel serves the devel-
opment. Corresponding to the other fractional mathemati-
cal techniques (fractional differential equations, fractional 
operators: derivative and integral, fractional special func-
tions, etc.), the CFC fulfills the properties of a fractional 
derivative. Thus, the CFC—process is the physical creation 
of image processing technique, because of its controller 
term. It can deal with indications that feature non-linear, 
no fundamental, no lowest phase system, non-Gaussian 
and combine the additive noise with weight linearly. 
Texture-enhancing is a small part of applications for 
CFC-processing.

Specific tests showed on the artificial texture images 
designate the efficiency and proficiency of the suggested 
method. Visual impresses establish that the offered pro-
cess achieves well in stabilizing texture specifics and edge 

Fig. 9   PNSR using Wolfram images
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data of test images. Also, the numerical processes, such as 
PSNR and SSIM, indicate that the offered technique overall 
owns more an extraordinary ability of noise decrease than 
some other traditional approaches.
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