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Abstract
Acoustic emission (AE) is a passive nondestructive testing (NDT) technique which is employed to identify critical dam-
age in structures before failure can occur. Currently, AE monitoring is carried out by calculating the features of the signal 
received by the AE sensor. User-defined acquisition settings (i.e., timing and threshold) significantly affect many traditional 
AE features such as count, energy, centroid frequency, rise time and duration. In AE monitoring, AE features are strongly 
related to the damage sources. Therefore, AE features that are calculated due to inaccurate user-defined acquisition set-
tings can result in inaccurately classified damage sources. This work presents a new feature of the signal based on the 
measure of randomness calculated using second-order Renyi’s entropy. The new feature is computed from its discrete 
amplitude distribution making it independent of acquisition settings. This can reduce the need for human judgement in 
measuring the feature of the signal. To investigate the effectiveness of the presented feature, fatigue testing is conducted 
on an un-notched steel sample with simultaneous AE monitoring. Digital image correlation (DIC) is measured alongside 
AE monitoring to correlate both monitoring methods with material damage. The results suggest that the new feature is 
sensitive in identifying critical damages in the material.
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1  Introduction

Acoustic emission (AE) is a passive nondestructive testing 
(NDT) technique for examining the behavior of materials 
under stress [1]. It can be defined as a mechanism where 
materials emit elastic waves when they fail at a micro-
scopic level due to stress. The emitted elastic waves are 
detected as analog signals using AE sensors. The analog 
signals are fed to a data acquisition system which digi-
tizes each signal and measures its features (i.e., count, 
energy, centroid frequency, rise time, duration and peak 
amplitude). The digitized waveform of the signal and their 
features can be stored in a computer for post-processing. 
Figures 1 and 2 highlight the AE working principle and 

definitions of the features, respectively. AE has been 
adopted as an efficient structural health monitoring 
(SHM) technique as it can provide real-time information 
regarding the damage location, damage stages and their 
characteristics. Many other NDT techniques are not able to 
do this. It has been shown to be successful in monitoring 
many structures and components [2, 3].  

AE features are sensitive to several stages and charac-
teristics of damage in metal such as crack formation/initia-
tion, stable and accelerated crack propagation, brittle frac-
ture, plastic yielding, and twinning and change in fracture 
mode [4–12]. For example, crack formation in Incoloy 901 
has been proven in [5, 6] to be accompanied by a very low 
count rate. Sinclair et al. [7] showed in a fracture toughness 
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test of a wide range of steels (AISI 1060, AISI 1080, SA333 
and AISI 304LN) that crack initiation in brittle and ductile 
material can be correlated with an increase in count and 
energy.

Peak amplitude exhibits a significant increase due to 
crack initiation in both brittle and ductile materials. Cumu-
lative count in Incoloy 901 and Q345 steel has been shown 
in [5, 6, 8, 9] to increase steadily during stable crack propa-
gation and rapidly during accelerated crack propagation. 
Shi et al. [10] showed that the cleavage fractures in R260 
steel are correlated with a significant increase in cumula-
tive energy. It has been shown in [11] that damage sources 
in AZ31 magnesium alloy (i.e., cleavage facture, twinning, 
yielding at plastic zone, crack extension and the tear of 
ligament between micro-cracks and micro-voids) can be 
distinguished by rise time and peak amplitude observa-
tion. Fracture mode changes (i.e., tensile to shear) in Q345 
are accompanied by a noticeable increase in rise time and 
peak amplitude [9]. Fracture mode changes in aluminum 
(AA 7075) have been shown to have a noticeable increase 
in duration, rise time and RA value [12]. Robert et al. [13] 
demonstrated a quantitative approach to estimate crack 
length based on the count rate of the signals. Despite the 
reported success of AE, damage identification is still chal-
lenging. This is because the current method of analysis 
for AE monitoring is based on the traditional AE features. 
AE features are representative of the damage source, and 
many traditional AE features depend on the user-defined 
acquisition settings (i.e., threshold and timing). AE features 
calculated due to inaccurate user-defined acquisition set-
tings will be misleading and can make damage detection 
difficult. Also, several noise sources may be present dur-
ing AE data collection, e.g., noise from the loading train, 

which may mask the signal generated from the primary 
AE source.

The aim of this research is to improve the state-of-the-art 
AE monitoring technique for SHM application. The improved 
technique is based on a new AE feature to identify damages. 
It is based on the measure of randomness of the waveform 
which is calculated using Renyi’s entropy. The new feature 
is based on the fact that the discrete amplitude values of 
each waveform will have a unique probability distribution 
and level of randomness. A spreadsheet of a digital wave-
form shows all the discrete amplitude values including the 
ones which are well below the threshold. The number of 
digital values in a transient waveform depends on its page 
length (e.g., 2500 µs) and sampling frequency. In fixed page 
length settings (FPLS), discrete amplitude values are not 
strongly dependent on the threshold and timing settings. 
For example, a burst signal sampled with different settings 
(e.g., threshold and timing) with a given FPLS (e.g., 2500 µs) 
will have an almost identical waveform and probability 
distribution. The little difference between them as a result 
of different thresholds can be explained by the difference 
in pre-trigger samples. Renyi’s entropy computation takes 
into account all the discrete amplitude values in a wave-
form (even below threshold). As a result, provided a FPLS 
is used, it will not be significantly affected by threshold and 
timing settings. The threshold and timing independence 
of Renyi’s entropy is unlike many AE traditional features. If 
implemented in AE data acquisition systems, it may improve 
damage identification. Moreover, computation of entropy 
uses more information of the waveform than the traditional 
AE features. The effectiveness of the proposed idea is vali-
dated by computing Renyi’s entropy of AE signals recorded 
in 316L stainless steel during fatigue tests and compared 
with the traditional AE features. Prior to the analysis, AE data 
is filtered in order to remove unwanted noise. The material 
behavior (i.e., plastic zone) is correlated with AE activity by 
using the digital image correlation (DIC) simultaneously with 
AE monitoring.

The paper is divided into several sections. Section 2 pre-
sents the methodology including experimental setup, mate-
rial, specimen and Renyi’s Entropy. In Sect. 3, results of DIC, 
AE data filtration technique and AE are documented. This 
section compares the new feature with the traditional fea-
tures and correlates AE and DIC data. Section 4 addresses 
the challenges associated with the new feature and suggests 
future work. Section 5 summarizes the important message 
of this research.

Fig. 1   AE working principle
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Fig. 2   Definition of AE features: 
a rise time, peak amplitude, 
duration, b energy, c counts
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2 � Methodology

2.1 � Experimental procedure

Renyi’s entropy of transient AE waveforms recorded in a 
sample of 316L stainless steel during fatigue endurance 
test is computed with a Matlab script. Table 1 shows the 
mechanical properties of the material used for the experi-
ment. The experimental procedure for the tests was similar 
to our previous work in Ref. [14]. Two samples were designed 
using the guidelines of Standard E466-15 and tested at room 
temperature. The samples were polished with up to 1200 grit 
emery paper before the test to reduce the stress concen-
tration areas. The 1200 grit provided a mirror finish of the 
specimens’ surface (which was not achieved with lower grit 
paper); as a result, the small surface defects were removed. 
During the test in an Instron machine, the specimens were 
subjected to sinusoidal loading of 5 Hz and maximum and 
minimum stress of 480 MPa and 48 MPa.

The elastic waves emitted in the samples were captured 
as analog signals by a couple of resonant AE sensors (VS-160, 
resonance range 100–450 kHz) manufactured by Vallen. Fig-
ure 3 shows an image of the experimental setup, and Fig. 4 
shows a schematic illustration of the fatigue endurance test. 
The analog signals were amplified with a 34 dB Vallen pre-
amplifier. The amplified signals were fed to the AMSY-6 data 

acquisition system which digitized the signals with a sam-
pling frequency of 5 MHz. After digitization, AE signals were 
stored as a waveform and their features were calculated. 
The two ways of recording a waveform are as AE events 
and as a waveform stream. In a waveform stream, the entire 
waveform from the start of the test until failure is recorded. 
A waveform stream is also sometimes called as continuous 
recording. In AE events, the dominant portion of a wave-
form stream is recorded as a separate and individual wave-
form. AE features are then calculated from the individual 
waveform. The technique records a continuous waveform 
and requires a significant amount of storage capacity in the 
hardware. It may be impractical to use this technique if the 
application requires long-term monitoring. The AE events 
technique was chosen for this research because it requires 
much less space to save the data in hardware and at it also 
retains information regarding the dominant portion of the 
continuous waveform. Traditional AE features require some 
user-defined acquisition settings. Therefore, the acquisition 
settings shown in Table 2 were used for this test.

During AE monitoring of fatigue, several unwanted 
signals originating from the loading train mask the useful 
signal and make the interpretation of the results difficult. 
Therefore, AE signal filtration is an important step in AE 
monitoring. Several AE filtration techniques for fatigue 
tests have been proposed in the literature. It has been sug-
gested in [13, 15, 16] that signals originating near the max-
imum of the load cycle are from material damage. There-
fore, signals in the lower load range are considered to be 
noise and hence filtered out. Pascoe et al. [17] suggested 
that damage in the material occurs neither at maximum 
load nor at minimum load in a cycle, but occurs in a seg-
ment of the cycle which is above a certain load threshold 

Table 1   Mechanical properties of the material

Young’s modulus (GPa) 193 GPA
Yield strength (MPa) 347 MPA
UTS (MPa) 613 MPA

DIC Camera

AE Sensor

Loading Jaw

Fig. 3   Experimental setup

Fig. 4   Specimen dimensions (mm) and test illustration

Table 2   Acquisition settings

Hit definition time (HDT) 400 μs
Re-arm time 1 ms
Threshold 40 dB
Max duration TR page length 26,214 μs
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value. Load threshold value is not a material constant and 
depends on load history and test frequency. Therefore, 
the effectiveness of the peak load filtration technique 
remains questionable. Work performed in Ref. [18] used 
two filtration techniques. Firstly, a frequency filter elimi-
nated all the transient signals of frequencies below 25 kHz 
from the data set. Secondly, a count filter eliminated all 
the transient signals with counts of less than 10. Although 
these filtration techniques were highly effective, some 
noise of long duration (10 ms) remained in the data set, 
which was removed manually. The work performed in 
[9, 19, 20] used a localization filtration technique to filter 
out unwanted signals and ensured that the signals were 
received only from the area of interest. In our work, a 1D 
localization filtration technique was used to avoid reflec-
tions and noise generated at the grips (i.e., loading con-
tact point). The wave velocity chosen for the localization 
filtration technique was 5000 m/s. It was calculated in 316L 
stainless steel with the AMSY-6 data acquisition system 
by pulsing waves from one sensor and receiving the sig-
nal with another sensor. The wave velocity calculated by 
this method is consistent with the asymmetric (A0) wave 
velocity of 4873.3 m/s and symmetric (0) wave velocity of 
4500 m/s below 200 kHz. The reliability of the calculated 
wave velocity was checked by performing pencil lead 
breaks (PLB—an artificial damage source) on the surface 
of the specimen and checking it against the mapped accu-
racy (i.e., by checking the mapped location in software 
with the physical location where the pencil lead was bro-
ken). The localization results from the PLB test show good 
agreement with the actual location in the specimen where 
PLB was performed. This filtration technique considered 
signals generated within the gauge section of the speci-
men to be useful and avoided unwanted signals from the 
grips. To correlate both material behavior and AE activity 
during the test, the specimens were monitored simultane-
ously with DIC. The DIC measurement setup was identical 
to our previous work in Ref. [14].

2.2 � Renyi’s entropy

In physics and mathematics, entropy of a waveform is 
the measure of information contained in it [21]. Several 
attempts have been made in the past to successfully meas-
ure the entropy of a waveform. Hartley [22] proposed a 
mathematical model to calculate the total information 
in a waveform, which was later known as max entropy. 
Shannon [23] extended Hartley’s theory by introducing a 
weighting function in the calculation, which is recognized 
as Shannon’s entropy. Renyi [24] pointed out that Shan-
non’s entropy restricts the additivity of independent event 
in a signal to the first (linear) functional class and there 
exists a second functional class that could also be used. He 

developed a continuous family of methods to measure the 
information in a waveform, by introducing a second (expo-
nential) functional class in the additivity of independent 
events in a waveform. This computation was regarded as 
a flexible form of information measure [21] and was later 
known as Renyi’s entropy. Renyi’s entropy of a waveform 
having a random amplitude distribution {x1, x2, x3…xn} can 
be calculated using Eq. (1) as:

where:
The term ‘α’ in Eq. (1) represents the order of the entropy 

and P(xK) is the discrete probability distribution of the Kth 
number of bin.

The most interesting property of Renyi’s entropy is its 
generality because of the choice of ‘a’ in Eq. (1). As ‘α’ in 
Eq. (1) increases, more weight is provided to the events 
with higher probability [25]. A study performed in Ref. 
[26] suggests more weight is given to the events with high 
probability when α > 1, whereas more weight is given to 
the events with low probability when α < 1. Depending on 
the choice of ‘ α,’ Renyi’s entropy defines many other forms 
of entropy, such as:

•	 When ‘α’ approaches 0, it becomes Hartley’s entropy or 
max entropy, shown in Eq. (2). 

•	 When ‘α’ approaches 1, the limiting value of H(xk) yields 
Shannon’s entropy [27], shown in Eq. (3). 

•	 When ‘α’ approaches 2, it becomes quadratic Renyi’s 
entropy, shown in Eq. (4). 

•	 When ‘α’ approaches infinity, it yields min entropy, 
shown in Eq. (5). 

In our research, we have chosen quadratic Renyi’s 
entropy (α = 2) for measuring the information contained 
in a AE waveform because of two reasons. Firstly, the 
contribution of events with large probabilities is higher 
in entropy computation than that of events with lower 
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1
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probability. Therefore, it becomes reasonable to empha-
size more on the events with higher probabilities by 
choosing α > 1. On the other hand, choosing a higher value 
of ‘α’ would significantly weaken the contribution of events 
with smaller probability. Considering this trade off, α = 2 
provides an optimum solution because it provides more 
weight to the events with higher probability and it is close 
to Shannon’s entropy and thus contains information on 
all probability events. Secondly, quadratic Renyi’s entropy 
has significant computational advantage compared to any 
other measures of entropy. By using the Prazen window 
and kernel, it can be estimated directly from the random 
amplitude distribution {x1, x2, x3…xn} very quickly, bypass-
ing the need to accurately measure the probability distri-
bution [28–30]. This may reduce the computation time of 
entropy if the Prazen window and kernel density is imple-
mented in an AE data acquisition system.

There are a number of methods to generate the discrete 
probability distribution [31–33]. In our previous work [14], 
discrete probability distribution was generated by consid-
ering the original spectrum of the waveform. This tech-
nique has been widely used in signal processing [34, 35]. 
Discrete probability distribution in the research performed 
in [36, 37] was based on the frequency of occurrence with 
a bin width. A comparison between these two techniques 
in Ref. [32] suggests that an entropy computation by con-
sidering the probability distribution with frequency of 
occurrence and a bin width to be more reliable than the 
original spectrum of the signal. In this work, entropy was 
computed by taking into account the probability distri-
bution with frequency of occurrence and a bin width of 
0.00305 mV. In order to measure the signal entropy in bits, 
the base of the log was chosen to be 2. This research will 
refer to quadratic Renyi’s entropy of transient AE wave-
form as AE entropy. The following steps demonstrate the 
AE entropy calculation procedure.

Step 1 AE waveforms recorded by the AMSY-6 data 
acquisition system were copied into a spreadsheet con-
taining the amplitude distribution values (Table 3).

Step 2 The spreadsheet containing the amplitude distri-
bution values were imported into Matlab. Discrete prob-
ability distribution of the amplitude sequence was then 
generated using a bin width of 0.000153 mV (see Fig. 5).

Step 3 From the discrete probability distribution, cal-
culation of AE entropy was accomplished by Eq. (1). AE 

entropy of the discrete amplitude distribution in Fig. 5 was 
found to be 8.3. This value represents the degree of disor-
derness in the discrete amplitude distribution and is the 
average number of bits required to store it. The larger the 
disorderness in discrete amplitude distribution, the larger 
will be the average number of bits required to store it.

3 � Results

3.1 � Digital image correlation (DIC)

The DIC measurement and AE data were synchronized by 
starting the DIC camera and AE data acquisition system at 
the same time, such that they start capturing data simulta-
neously. There were several images taken by the DIC camera 
during the entire length of the test. Figure 6 highlights a few 
important images of strain map (εyy) taken by the DIC for test 
1. Figure 6a shows the reference image; this image was taken 
before the onset of loading. The image in Fig. 6b was taken at 
10,000 s after the onset of loading, and it can be observed in 
this image that strain maximizes at the middle of the gauge 
section. The image in Fig. 6c at 21,556 s does not show any 
difference from the image in Fig. 6b. This suggests that the 
surface strain remains stable within this time. The image in 
Fig. 6d at 22,911 s shows that the strain concentrates at the 
edge of the specimen forming a plastic zone (marked by a 
black arrow). The plastic zone at this point is likely due to 
significant formation and coalescence of a micro-crack. This 
phenomenon is explained in Ref. [38]. The image in Fig. 6e at 
23,250 s shows an increase in the plastic zone area found at 
the edge of the image in Fig. 6d (marked by a black arrow). 
The image in Fig. 6f at 23,590 s shows that the plastic zone 
area becomes clearly highlighted (marked by a black arrow). 
The image in Fig. 6g shows a macro-fatigue crack initiation 

Table 3   Entropy computation 
step 1 X1 − 0.88291329

X2 − 0.71850872
… …
X3899 4.9595370
X3900 − 5.4953742
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from the plastic zone formed earlier. The time instance of 
plastic zone localization and macro-crack initiation will be 
cross-validated with AE activity.

Figure 7 shows a few important images of strain map (εyy) 
taken by DIC for test 2. The image in Fig. 7a shows the refer-
ence image taken before the onset of loading. The image 
in Fig. 7b was taken 10,000 s after the onset of loading. Like 
the image in Fig. 6b, the image in Fig. 7b also shows strain 
maximization at the center of the gauge section. The image 
in Fig. 7c at 23,636 s does not show any difference from 
the image in Fig. 7b. This suggests that there is no change 

in surface strain within this time. The image in Fig. 7d at 
25,084 s shows slight changes in the strain map of the gauge 
section as compared to the image in Fig. 7c. The image 7e at 
25,265 s shows two strain concentrated areas (marked by 
black arrows). The formation of two strain concentrated areas 
could be a result of the plastic zone formed by the crack initi-
ation on the other side of the specimen, which is not covered 
by the DIC camera. This is very likely because the thickness of 
the specimen was very small (2.5 mm). The formation of two 
strain concentrated areas becomes very evident in the image 
in Fig. 7f at 25,446 s (marked by black arrows). The image in 

Fig. 6   DIC images test 1: a reference stage, b at 10,000 s, c at 21,556 s, d at 22,911 s, e at 23,250 s, f at 23,590 s and g at 23,928 s
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Fig. 7g at 25,627 shows a crack initiation from the middle of 
the two strain concentrated areas. The time instance of the 
strain concentration will be cross-validated with AE activity.

3.2 � Acoustic emission data filtration

Figure 8a, c shows the unfiltered data of cumulative count 
for tests 1 and 2, respectively. It is mentioned in [5, 6, 39] 
that cumulative trend remains stable in the early stages 
and increases at the later stages of fatigue. It can be 

observed in these figures that no typical trend as men-
tioned in [5, 6, 39] can be identified in these plots. 1D linear 
localization filtration technique mentioned in Sect. 2.1 was 
applied to these unfiltered data sets. Figure 8b, d shows 
the cumulative count plot of the filtered data for tests 1 
and 2. It can be observed in Fig. 8b, d that the cumula-
tive count begins to increase during the later stage of test 
and is consistent with the observations of other research-
ers [5, 6, 39]. The trend observed in these plots will be 
discussed in detail later in Sect. 3.3. It can be concluded 

Fig. 7   DIC images test 2: a reference stage, b at 10,000 s, c at 23,636 s, d at 25,084 s, e at 25,265 s, f at 25,446 s and g at 25,627 s
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that the filtration technique had a significant effect in de-
noising the data because the filtered data of cumulative 
count possess the same trend as those mentioned in the 
literature. After the noise filtration, AE entropy was com-
puted on the remaining data set and compared with the 
traditional AE features.

3.3 � Comparison of traditional AE analysis with AE 
entropy

To investigate the performance of AE entropy, it is cru-
cial to understand the damage mechanism and its corre-
sponding AE activity. At the onset of loading, AE activity is 
generally higher due to yielding of the material as a result 

of the change in stress state. After the onset of loading AE 
activity is lower, this stage is regarded as the damage incu-
bation stage. At the end of this stage, AE activity increases 
significantly as a result of growth and coalescence of a 
micro-crack initiated in the earlier stage. These trends have 
been validated in Refs. [5, 6, 39]. When the growth and 
coalescence become concentrated in an area, it gives rise 
to a plastic zone in the material.

Fatigue studies using AE are mostly based on the cumula-
tive analysis of energy and count [6, 8, 20, 40]. Therefore, the 
cumulative trend in AE entropy was compared with these 
features in Figs. 9 and 10 for tests 1 and 2, respectively. It is 
clear from Figs. 9 and 10 that cumulative entropy and cumu-
lative count exhibit the same trend during the entire fatigue 
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test. It can be observed in Fig. 9 that at around 23,000 s, there 
is a significant jump in all the cumulative features. This time is 
associated with the plastic zone formation in the DIC images 
shown in Fig. 6 (for test 1). Therefore, it can be concluded that 
the significant jump in AE activity is an indicator of plastic 
zone formation. Figure 9 shows that cumulative features 

(especially count and entropy) begin to increase slightly after 
15,000 s and noticeably after around 20,000 s. DIC images in 
Fig. 6 do not show any change in surface strain until 21,556 s. 
The noticeable increase in cumulative features from around 
20,000 s could be as a result of growth and coalescence of a 
micro-crack, before it manifests into plastic zone formation. 

Fig. 9   Comparison of cumulative features (test 1)

Fig. 10   Comparison of cumulative features (test 2)
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Therefore, it can also be concluded that AE is more sensitive 
than DIC for damage identification. The merit of the sensi-
tivity of AE over other NDT techniques has been shown by 
other researchers [8, 12]. Figure 10 shows a comparison of 
traditional cumulative features with cumulative entropy for 
test 2. Figure 10 shows that there is a significant jump in all 
the cumulative features at around 22,500 s. No significant 
changes can be observed in the DIC images during this time 
in Fig. 7; in fact, no significant changes are observed in the 
DIC images until 25,265 s. At 25,265 s, DIC images in Fig. 7 
show two distinct strain concentration areas which becomes 
clearer at 25,446 s. The significant jump in Fig. 10 at around 
22,500 s could be attributed to plastic zone formation on 
the other side of the specimen which is not covered by the 
DIC camera. Cumulative parameters (especially count and 
entropy) begin to increase noticeably from around 15,000 s, 
and this could be attributed to growth and coalescence of 
a micro-crack.

It is evident from Figs. 9 and 10 that there is a noticeable 
difference in the cumulative trend between AE entropy and 
energy. In both tests, cumulative entropy begins to increase 
noticeably before the damage manifests into plastic zone 
formation and significantly at the onset of plastic zone for-
mation, whereas, in neither of the tests, there is a noticeable 
increase in cumulative energy before plastic zone formation. 
In fact, cumulative energy is sensitive only at the formation 
of plastic zone and ultimate fracture of the specimen.

The observed difference in trend is due to the nature of 
the respective feature extraction processes. Energy is the area 
under the waveform, and plastic zone formation and frac-
ture is accompanied by waveforms with significantly higher 
energy than the other stages. The sudden burst of events 
and a few highly energetic waveforms at fracture masks the 
collective cumulative trend in energies prior to the plastic 
zone formation. In the case of AE entropy, the spread in the 
data (individual AE events) used to construct the cumulative 
trend is significantly lower than that of cumulative energy. For 
instance, the spread in data points used to construct cumula-
tive entropy is 0–10 bits, whereas for cumulative energy it is 
0–401 × 103 eu. Although AE events at fracture are associated 
with high AE entropy, there is no significant jump observed 
in the cumulative entropy plot. A few high AE entropy events 
at fracture are not able to produce a jump in the cumulative 
plot due to the lower spread in the data.

To investigate fatigue damage evolution, a single cumu-
lative feature cannot solely be used, because of the varying 
degree of sensitivity of each cumulative feature in differ-
ent stages of fatigue. As a result, both cumulative count 
and cumulative energy have been used together in many 
fatigue tests. It is evident from Figs. 9 and 10 that cumulative 
count and entropy curves show the same trend. The similar 
increasing trend in cumulative count and entropy shows 
the feasibility and effectiveness of cumulative entropy as 

a damage identification feature. Unlike cumulative count, 
cumulative entropy is independent of user-defined acqui-
sition settings. This can reduce the need for human judge-
ment in measuring the feature of the signal. Therefore, in 
the future, entropy has the potential to replace count in AE 
monitoring.

4 � Discussion

The formation of a plastic zone facilitates macro-fatigue 
crack initiation. These fatigue cracks can propagate and 
lead to an ultimate failure of the material. Therefore, iden-
tifying the formation of a plastic zone is an indication of 
a critical stage of damage in a material. The results show 
that AE entropy, like the traditional features, is sensitive 
in identifying the onset of plastic zone formation in the 
material. Although AE entropy has the same trend as 
count and energy, it is independent of acquisition settings 
(unlike many traditional AE features) provided a FPLS set-
ting is used. In order to investigate the effect of acquisition 
settings such as threshold on the AE entropy, the filtered 
signals were analyzed by considering three distinct thresh-
old settings. Figures 11 and 12 show the total cumulative 
AE entropy and count versus each threshold setting for 
test 1 and test 2, respectively. It can be observed in these 

Fig. 11   Comparison of cumulative features

Fig. 12   Comparison of cumulative features
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figures that as the threshold increases, the total AE count 
decreases, whereas the entropy remains constant. The 
threshold independence of AE entropy is due to its com-
putation which takes into account of all the possible dis-
crete voltage values in each waveform.

In contrast, computation of the AE count relies only on 
peaks above the threshold. AE entropy has the potential to 
be implemented in commercial data acquisition systems 
as it can provide valuable condition monitoring indication 
of damage in structures during operation and mainte-
nance, with reduced reliance on human judgement to set 
AE acquisition settings. However, there are some aspects 
to be addressed while performing AE entropy computa-
tion, particularly the voltage distribution range and bin 
width.

Firstly, the voltage distribution range (VDR) is an impor-
tant aspect to consider while performing AE entropy 
computation. VDR is the range of voltages over which 

probability distribution is calculated. Ideally, VDR should 
be set by taking into account the highest and lowest 
voltage values of the highest peak amplitude signal in 
the dataset. However, it is not possible to predict these 
values prior to the experiment. Therefore, VDR of − 100 
to + 100 mV was chosen for these experiments, which is 
equal to the maximum limit of voltage range in an AE data 
acquisition system for transient waveform recording. Insuf-
ficient VDR can result in an inaccurate computation of AE 
entropy.

Figure 13 shows the effect of VDR on the calculated AE 
entropy of a waveform captured during the tests. It can 
be observed in graph (a) of this figure that VDR of − 10 to 
+ 10 restricts the probability distribution of the voltages 
from − 10 to + 10 mV and results in an AE entropy of 2.4. It 
can be observed in graphs (b) (c), (d), (e) and (f ) that with 
increasing VDR, the AE entropy also increases. It is also evi-
dent that the AE entropy in graph (f ) is almost four time 

Fig. 13   Effect of voltage distri-
bution range on AE entropy: 
a VDR − 10 to 10, b VDR − 20 
to 20, c VDR − 40 to 40, d VDR 
− 60 to 60, e VDR − 80 to 80 
and f VDR − 100 to 100
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that in graph (a), although both the graphs correspond 
to the same waveform. This increase in AE entropy with 
VDR is due to the increase in available probability of mass 
of the voltage. Like the effect of VDR on AE entropy, the 
traditional features are also affected by the maximum limit 
of the voltage range in the waveform. Figure 14 shows the 
waveforms, with a series of maximum limits of the volt-
age range, equivalent to each of the VDR in Fig. 13. Each 
graph in Fig. 14 contains some of its traditional features. 
It is evident from this figure that with the maximum limit 
of the voltage range, the traditional features of the wave-
form increase. This can be attributed to the additional volt-
age values at the higher limit of the voltage range. Unlike 
the acquisition setting, the maximum limit of the voltage 
range is not a user input parameter. In other words, the 
traditional features are always calculated from a built-in 
voltage range. Therefore, in every situation the traditional 
features are going to be extracted from the same volt-
age range. If AE entropy is implemented in the AE data 

acquisition system, the VDR can always be set equal to the 
built-in maximum limit of the voltage range. By doing this, 
the VDR will also be implemented as a built-in range rather 
than a user input parameter.

Secondly, the choice of bin width to generate the dis-
crete probability distribution is also of great importance. If 
the bin width is too large, there will be too many samples 
within each bin and the disorderness of the probability 
distribution will be lost. If the bin width is too small, there 
will be too few samples within each bin and the disorder-
ness of the probability distribution will be unreliable. For 
ideal AE entropy computation, the bin width range should 
be set close to the AE data acquisition systems resolu-
tion. The AE system used in this experiment was a 16-bit 
AMSY-6 system. For a 10 VDC range, it has a resolution of 
0.000153 mV. Therefore, a bin width of 0.000153 was cho-
sen for these tests.

In addition, it is worth noting that the present inves-
tigation was carried out in a controlled experimental 

Fig. 14   An AE waveform with 
a VDR of a − 10 to + 10, b − 20 
to + 20, c − 40 to + 40, d − 60 to 
+ 60, e − 80 to + 80 and f − 100 
to + 100
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environment, where the sensors were placed close to the 
damage source. In real condition monitoring of engineer-
ing structures using AE, a damage source may be located 
far away from the AE sensors and the AE signals would be 
subjected to attenuation and dispersion. Attenuation and 
dispersion is likely to affect the AE entropy value (as with 
all other traditional AE features). Moreover, noise gener-
ated from the grips and internal reflections within the test 
specimen were filtered out in these analysis. In real opera-
tional conditions, noise sources may be difficult to filter 
out and could bring difficulty in interpreting the damage 
using AE entropy. Further research needs to be carried out 
to investigate the effectiveness of AE entropy on complex 
engineering structures. Firstly, the effect of attenuation 
and dispersion on the calculated AE entropy needs to be 
understood. Secondly, the performance of AE entropy in 
noisy environments needs to be assessed.

5 � Conclusion

The results show the potential of AE entropy to identify 
damage in the sample of 316L stainless steel subjected 
to fatigue loading. AE entropy of a signal is derived from 
its discrete amplitude distribution and is independent of 
acquisition settings, such as threshold and timing. A simi-
lar trend in AE cumulative entropy and AE features, such 
as count and energy, suggests that the traditional analysis 
can be replaced with AE entropy for critical damage iden-
tification as it is independent of acquisition settings and 
therefore reduces the need for human judgement in meas-
uring the AE signal. The cumulative trend is consistent for 
the two tests performed. Moreover, it can be concluded 
that the sudden increase in AE entropy is generally an indi-
cation of critical damage, such as plastic zone formation 
as a result of growth and coalescence of micro-cracks; this 
would provide critical information to engineers monitor-
ing a structure.

There are, however, a few important parameters to con-
sider for AE entropy computation such as voltage VDR and 
bin width. Incorrect selection of these parameters will result 
in inaccurate AE entropy and may mask the signals gener-
ated from the damage mechanism. The influence of VDR can 
be avoided by setting it to the built-in maximum limit of the 
voltage range of the data acquisition equipment. The influ-
ence of bin width can be avoided by setting it close to the 
AE data acquisition systems resolution. Before the proposed 
parameter is implemented in the AE data acquisition system, 
more theoretical and experimental studies need to be con-
ducted. Some important ones are: the effect of AE entropy 
due to the change of cracking mode; entropy due to the 
change in sample geometry; and the effect of dispersion on 
the calculated AE entropy.
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