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Abstract
Traditional word embeddings approaches, such as bag-of-words models, tackles the problem of text data representation 
by linking words in a document to a binary vector, marking their occurrence or not. Additionally, a term frequency-inverse 
document frequency encoding provides a numerical statistic reflecting how important a particular word is in a docu-
ment. Nevertheless, the major vulnerability of such models concerns with the loss of contextual meaning, which inhibits 
them from learning proper pieces of information. A new neural-based embedding approach, known as Word2Vec, tries 
to mitigate that issue by minimizing the loss of predicting a vector from a particular word considering its surrounding 
words. Furthermore, as these embedding-based methods produce low-dimensional data, it is impossible to visualize 
them accurately. With that in mind, dimensionality reduction techniques, such as t-SNE, presents a method to generate 
bi-dimensional data, allowing its visualization. One common problem of such reductions concerns with the setting of 
their hyperparameters, such as the perplexity parameter. Therefore, this paper addresses the problem of selecting a suit-
able perplexity through a meta-heuristic optimization process. Meta-heuristic-driven techniques, such as Artificial Bee 
Colony, Bat Algorithm, Genetic Programming, and Particle Swarm Optimization, are employed to find proper values for 
the perplexity parameter. The results revealed that optimizing t-SNE’s perplexity is suitable for improving data visualiza-
tion and thus, an exciting field to be fostered.
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1 Introduction

Humans are capable of mastering communication tech-
niques and creating several tools to express themselves, 
such as language and speech. Nevertheless, these tools are 
non-trivial when considering computer-based individuals, 
leaving a huge blank on how to produce a “natural” per-
ception of the real world. An arising subarea under artificial 
intelligence, known as natural language processing (NLP), 
tries to mitigate that issue by fostering machine learning 
research and creating meaningful knowledge regarding 
natural language understanding. The NLP area has been 
widely researched throughout the last years, establishing 

various hallmarks in an extensive range of applications, 
such as language modeling [24], word embeddings [7], 
sentiment classification [8], among others.

A common problem when working with natural lan-
guage copes with the fact that text data are discrete 
structures, being infeasible to work with modern machine 
learning algorithms, e.g., recurrent neural networks. Tradi-
tional approaches, known as bag-of-words models, tackles 
this problem by encoding the text data into binary vectors 
(one-hot encoding), where each vector’s position repre-
sents the existence or not of a particular word. Although 
this seems to be a fair representation, there is vital con-
textual information lost in the process. Moreover, newer 
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bag-of-words models, such as count vectorizer and term 
frequency-inverse document frequency, encode statisti-
cal information of how relevant a particular word is in a 
document. Nonetheless, these models produce high-
dimensional sparse feature vectors, being impracticable 
when collated with large vocabularies.

A contextual information-based text representation, 
known as word embeddings,1 tackles the problem by 
learning a distributed representation for words. In other 
words, this approach is capable of encoding semantic 
relationships among words and producing a vector space 
model (VSM), where closer vectors have a higher degree of 
similarity than distant vectors. Essentially, one can divide 
word embeddings into three distinct categories:

• Topics models: one of the most influential was Latent 
Semantic Analysis (LSA) [4], which was fostered in the 
context of information retrieval and latter enhanced as 
Latent Dirichlet Allocation (LDA) [2];

• Neural language models: based on neural networks, 
such as Convolutional Neural Networks (CNN) [17], 
Recurrent Neural Networks (RNN) [5] and Autoencod-
ers [19];

• Distributional semantic models: often based on word 
co-occurrences representations, e.g., Hyperspace Ana-
logue to Language (HAL) [20], Random Indexing [12] 
and BEAGLE [11].

The main difference between these models lies in the 
type of contextual information they use. Topic models 
use documents as their contexts, while neural language 
and distributional semantic models use words as contexts. 
Additionally, document-based models capture semantic 
relatedness, while word-based models capture semantic 
similarity.

A recent neural-based successful word embedding 
model, known as Word2Vec [22], uses shallow neural net-
works to minimize the loss of predicting a vector from a 
particular word considering its surrounding words, pro-
ducing low-dimensional data. Notwithstanding, high or 
low dimensional data prevent humans from visualizing 
them, inhibiting important decision or insights making. 
With that in mind, it is possible to employ dimensional-
ity reduction techniques, such as Principal Component 
Analysis (PCA) [10] or t-Distributed Stochastic Neighbour 
Embedding (t-SNE) [21], to generate bi-dimensional spaces 
and allow their visualization. One common problem con-
cerning the t-SNE dimensionality reduction technique is 
the setting of its hyperparameters, such as the perplexity. 

To the best of the authors’ knowledge, there is only one 
work that tries to set this parameter automatically [3].

In this paper, the problem of fine-tuning the perplexity 
parameter in t-SNE is modeled as a meta-heuristic-driven 
optimization task, in which agents encode the values of 
the perplexity in a search problem guided by the Kull-
back–Leibler divergence over the datasets. As far as we 
are concerned, this is the first work that attempted to 
address the problem of fine-tuning the perplexity param-
eter in t-SNE by meta-heuristic techniques. In order to 
validate the proposed approach, we employed Artificial 
Bee Colony (ABC) [13], Bat Algorithm (BA) [27], and Par-
ticle Swarm Optimization (PSO) [14], as we opted to use 
only swarm-based algorithms. Nevertheless, this might 
be not interesting because other meta-heuristics’ taxono-
mies may perform differently in our proposed approach. 
Thus, we opted also to employ an evolutionary-based 
algorithm known as the Genetic Programming (GP) [15]. 
Finally, the main contributions of this paper are twofold: 
(1) to introduce meta-heuristic techniques to the context 
of fine-tuning perplexity in t-SNE, and (2) to fill the lack of 
research regarding dimensionality reduction hyperparam-
eters optimization.

The remainder of this paper is organized as follows. 
Sections 2, 3 and 4 present some theoretical background 
concerning word embeddings, dimensionality reduction, 
and meta-heuristic techniques, respectively, while Sect. 5 
discusses the methodology employed in this work. Sec-
tion 6 presents the experimental results and Sect. 7 states 
conclusions and future works.

2  Word embeddings

The necessity of interpreting text data into continuous 
representations fostered the research on word embed-
dings. Essentially, an embedding is a numerical encoding 
of a text, where words or phrases from a particular vocabu-
lary are mapped to vectors of real numbers. In this section, 
we present an overview regarding a neural-based word 
embedding, known as Word2Vec.

2.1  Word2Vec

Word2Vec [22] is a neural-based word embedding, rep-
resented by a shallow two-layer neural network, which is 
trained to reconstruct linguistic concepts of input words. 
Mainly, Word2Vec takes a corpus of text and produces a 
vector space model, typically composed of several hun-
dred dimensions, where each unique word in the corpus 
is assigned to a corresponding vector in this space. Addi-
tionally, semantically similar words are mapped to nearby 
points in the vector space.

1 The computational linguistics area prefers this term as distribu-
tional semantic models.
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Two distinct architectures are used to produce a con-
tinuous-based representation of words: continuous bag-
of-words (CBOW) or continuous Skip-gram. Considering 
the CBOW architecture, the model predicts a current word 
based on its surrounding context words, while in the Skip-
gram architecture, the model weights nearby context 
words more than distant context words. Figure 1 illustrates 
the CBOW and Skip-gram architectures.

3  Dimensionality reduction

In a machine learning problem, the factors that define the 
characteristics of the data are usually called features. Even 
with modern visualization techniques, it is still impossible 
for humans to visualize over three-dimensional spaces, 
i.e., four features or more. With that in mind, one can per-
ceive that it gets harder to visualize data as the features’ 
size grows. Additionally, some features correlate between 
themselves, being redundant.

The dimensionality reduction procedure arises in an 
attempt to mitigate the issue mentioned above. It is a 
process of reducing the number of features by obtain-
ing new sets of principal features and is divided into two 
categories:

• Feature selection: tries to find a subset of the origi-
nal set of features, composing a new and smaller set 
used to model the problem, e.g., filter-, wrapper-, and 
embedded-based approaches;

• Feature extraction: reduces the data from a high-
dimensional to a low-dimensional space, e.g., principal 
component analysis, linear discriminant analysis (LDA), 
and t-distributed stochastic neighbour embedding.

3.1  t‑Distributed stochastic neighbour embedding

The t-Distributed Stochastic Neighbour Embedding [21] 
is a nonlinear dimensionality reduction technique used 
to embed high-dimensional data into low-dimensional 
spaces, easing its visualization. It models each high-dimen-
sional sample in an n-dimensional point where nearby 
points model similar samples and distant points model 
distinct samples.

Firstly, the t-SNE algorithm constructs a probability dis-
tribution over the high-dimensional samples, where simi-
lar samples have a high probability of being picked, while 
divergent samples have a low probability of being chosen. 
Secondly, it defines a similar probability distribution in a 
low-dimensional space and minimizes the Kullback–Lei-
bler (KL) divergence between these two distributions. As 
the algorithm approximates these distributions, the KL 
divergence gets lower, and hence, makes the dimension-
ality reduction better.

Let x ∈ ℜn be high-dimensional points, such that the 
similarity of xj to xi is the conditional probability p(j|i), 
defined as follows:

Additionally, let y ∈ ℜn be low-dimensional points, such 
that the similarity of yj to yi is the conditional probability 
q(j|i), defined as follows:

If the similarity between x and y is modeled correctly, 
the conditional probabilities p(j|i) and q(j|i) will be equal. 
Therefore, the Kullback–Leibler divergence is used to 
measure the faithfulness in which q(j|i) models p(j|i), such 
as follows:

where Pi represents the conditional probability distribu-
tion over all other samples given sample xi , and Qi repre-
sents the conditional probability distribution over all other 
samples given sample yi.

Additionally, one of most important parts of the algo-
rithm is the definition of �i , which defines the local scale 

(1)p(j�i) =
exp(−��xi − xj��2∕2�2

i
)

∑
k≠i exp(−��xi − xj��2∕2�2

i
)
.

(2)q(j�i) =
exp(−��yi − yj��2)∑
k≠i exp(−��yi − yj��2)

.

(3)KL(Pi|Qi) =
∑

i

∑
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p(j|i)log
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)
,

Fig. 1  Word2Vec architectures: CBOW and Skip-gram
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around xi . Its value is not defined by hand, but rather 
found by a binary search, denominated Perplexity ( � ). The 
perplexity of Pi is defined as:

where

The perplexity is a smooth measure of the effective num-
ber of neighbors, being a valuable hyperparameter to be 
adjusted according to the problem itself.

4  Meta‑heuristic optimization

Traditional optimization methods [1], such as the iterative 
methods, e.g., Newton method, Quasi-Newton method, 
Gradient Descent, Interpolation methods, use the evalua-
tion of gradients and Hessians, being unfeasible to several 
applications due to their computational burden. Recently, 
an exciting proposition denoted as meta-heuristic has 
been employed to solve several optimization problems. 
A meta-heuristic technique consists of a high-level pro-
cedure, projected to generate or select a heuristic, which 
provides a sufficiently feasible solution to the optimization 
problem. Moreover, a meta-heuristic is a procedure that 
combines the concepts of exploration, used to perform 
searches throughout the search space, and exploitation, 
which is used to refine a promising solution based on its 
neighborhood.

Essentially, meta-heuristic techniques [26] are strate-
gies that guide the process of searching for quasi-opti-
mum solutions. They are mostly constituted of simple 
local searches and complex learning procedures, usually 
inspired by biological behaviors. Additionally, they are 
non-domain specific and have mechanisms to avoid being 
trapped in local optima points. Furthermore, one can clas-
sify them according to their taxonomy, as stated by Fister 

(4)�(Pi) = 2H(Pi ),

(5)H(Pi) = −
∑

j

p(j|i)log2p(j|i).

Jr. et al. [6], i.e., swarm intelligence, bio-inspired, physics- 
and chemistry-based, and evolutionary ones. In this work, 
we opted to use three swarm-based algorithms, as well as 
an evolutionary-based one.

4.1  Artificial bee colony

Artificial Bee Colony is a nature-inspired algorithm based 
on honey bee swarms, which is composed of three dis-
tinct groups of bees: employees, onlookers, and scouts. 
Each group has particular importance and function to 
the swarm, such as choosing a food source, going to the 
food source, and randomly searching food in new areas 
[13]. Additionally, the whole bee colony is split in half 
into employees2 and onlookers bees. Moreover, when the 
employee bee exhausts its food source, it becomes a scout 
bee.

Let S = (s1, s2,… , sM) be a set of food sources such that 
si ∈ ℜN stands for the position of food source i. Also, let 
T = (t1, t2,… , tM) be the number of cycles for each food 
source, known as the “food source trials”, which is regu-
lated by the n_trials parameter. After exploring a food 
source or discovering a newer one, bees share their dis-
covered information about the nectar (food). Hence, an 
onlooker bee chooses a nectar source based on a prob-
ability associated with its achieved fitness, as formulated 
below:

where Fi is the fitness value of food source i.
Finally, one can use Eq.  7 to formulate a new food 

source position, as follows:

where i ≠ k and � ∈ [−1, 1] denotes a random value that 
controls the bee visualization of other food sources. Algo-
rithm 1 depicts the pseudo-code of ABC.

(6)pi =
Fi

∑M

k=1
Fk

,

(7)si = si + �(si − sk),

2 An employee bee is only responsible for a single food source.
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Fig. 2  A GP solution representing the expression 3log(x) + 5exp(y)

4.2  Bat algorithm

Bat Algorithm is a biological-inspired algorithm proposed 
by Yang et al. [27] primarily used for solving engineering 
optimization tasks. It takes into account the advanced 
capability of the bats’ echolocation system, where they 
have a sonar-like mechanism that enables them to 
detect food, avoid obstacles, and communicate among 
themselves.

Mathematically speaking, let B = (b1, b2,… , bM) be a set 
of bats that compose the swarm, such that bi = (w i , zi) , 
where w i ∈ ℜN and zi ∈ ℜN stand for the position and 
velocity of bat i, respectively. Additionally, each bat is asso-
ciated with a frequency value of f ∈ [fmin, fmax] , a loudness 
value of A and a pulse rate of r. Each bat is initialized with 
random values for its position, velocity, and frequency. 
During each iteration, Eqs. 8, 9 and 10 are responsible for 
updating their frequency, velocity and position values, 
respectively:

and

and

(8)fi = fmin + (fmax − fmin)�

(9)zt+1
i

= zt
i
+ (wt

i
− ŵ)fi ,

where � is a uniform random number between [0, 1], and 
ŵ denotes the current best global position (solution).

Furthermore, if a bat’s pulse rate is smaller than a sam-
pled probability p, e.g., ri < p , a new solution is generated 
around the current best solution. Equation 11 formulates 
this procedure, as follows:

where � is a random value between [−1, 1] , and Ā is the 
mean loudness of all bats in the swarm. Algorithm 2 pre-
sents the pseudo-code of BA.

(10)wt+1
i

= wt
i
+ zt+1

i
,

(11)wt+1
i

= ŵ + 𝜖Ā,
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4.3  Genetic programming

Genetic Programming [15] is an evolutionary-based meta-
heuristic that has arisen from the principles of Darwin’s 
Theory of Evolution. Essentially, GP automatically creates 
expressions (solutions) that might solve a particular task 
and perform genetical operators in order to achieve more 
proper solutions.

Even though GP looks like the standard Genetic Algo-
rithm (GA), there is a significant difference between them. 
Instead of using a binary “chromosome‘ holding the genes, 
GP uses a tree-based structure composed of terminal and 
function nodes, which is illustrated by Fig. 2. The termi-
nal nodes represent constant values, while the function 

nodes are mathematical operators applied over the termi-
nal nodes. During each generation, several operators are 
employed to improve the current population, such as (1) 
selection, (2) reproduction, (3) mutation, and (4) crossover.

Initially, the best individuals across the population are 
selected and reproduced to guarantee the best ones over 
the generations. Moreover, mutation and crossover proce-
dures attempt to provide a variability factor in the popula-
tion, i.e., mutation changes an individual gene arbitrarily, 
while the crossover switch branches between two trees. 
Furthermore, after the stopping criterion is satisfied, the 
best solution (individual) is recovered from the tree. Algo-
rithm 3 presents the pseudo-code of GP.
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4.4  Particle swarm optimization

Particle Swarm Optimization is a swarm intelligence algo-
rithm inspired by social behavior dynamics [14]. The idea 
behind employing social behavior learning is to allow each 
possible solution to move onto the search space, combin-
ing details from its previous and current locations with the 
ones provided by other swarm particles. One can under-
stand this process as a simulation of the social interaction 
of birds looking for food or even humans trying to achieve 
a common objective.

Let D = (d1, d2,… , dM) be a set of particles that com-
pose the swarm, such that di = (� i ,�i) , where � i ∈ ℜN 
and �i ∈ ℜN stand for the position and velocity of parti-
cle i, respectively. Also, for each particle, we know its best 
local solution �̂ , as well as the best solution (global) of the 
entire swarm g . Each particle is initialized with random val-
ues for both velocity and position. Hence, each individual 
is evaluated with respect to a given fitness function, thus 
having its local minimum updated. At the end, the global 

minimum for each decision variable is updated with the 
value of the particle that achieved the best position in the 
swarm. This process is repeated until a convergence crite-
rion is satisfied. Equations 12 and 13 present the update 
formulation concerning the velocity and position of par-
ticle i at time step t, respectively:

and

where � is the inertia weight that controls the interaction 
among particles, and r1, r2 ∈ [0, 1] are random variables 
that give a stochastic trait to PSO. Additionally, variables 
c1 and c2 are constants that conduct the swarm’s members 
onto the search space. Algorithm 4 depicts the pseudo-
code of PSO.

(12)�
t+1
i

= 𝜇�t
i
+ c1r1(�̂ i − �

t
i
) + c2r2(g − �

t
i
)

(13)�
t+1
i

= �
t
i
+ �

t+1
i

,



Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4

Table 1  Word2Vec parameters configuration

Parameter Value

Number of features 300
Window size 5
Minimum word-occurence 100
Algorithm CBOW
� (learning rate) 0.1
t (number of iterations) 10

Table 2  t-SNE parameters configuration

Parameter Value

c (number of components) 2
� (learning rate) 200
t (number of iterations) 1000
� (perplexity) [1, 100]

Table 3  Meta-heuristic algorithms parameters configuration

Algo-
rithm

Parameters

ABC �_������ = 10

BA f = [0, 2] ∣ A = 0.5 ∣ r = 0.5

GP �_��������� = 2 ∣ ����� = [2, 5] ∣ ��������� = [SUM, 
SUB, MUL, DIV]

�_������������ = 0.25 ∣ �_�������� = 0.1 ∣ �_��������� = 0.2

PSO � = 0.7 ∣ c1 = 1.7 ∣ c2 = 1.7

5  Methodology

In this section, we present the proposed approach to fine-
tune the perplexity parameter concerning t-SNE dimen-
sionality reduction, as well as describe the employed data-
sets and the experimental setup.

5.1  Modeling t‑SNE optimization

We propose to model the problem of selecting a suitable 
perplexity parameter considering t-SNE in the task of word 
embeddings dimensionality reduction. As aforementioned 
in Sect. 3, the t-SNE learning step has four parameters: the 
number of components c, the perplexity � , the learning 

rate � and the number of iterations t. As we are interested 
in fine-tuning the perplexity only, we fixed the 3-tuple 
(c, �, t) and played with parameter � in order to minimize 
the Kullback–Leibler divergence (KL) of the t-SNE’s dimen-
sionality reduction.

5.2  Datasets

We considered three English-based text datasets in the 
experimental section, as follows:

• 20 Newsgroups3 [16]: comprises around 18,000 news-
groups posts on 20 distinct topics;

• Movie Reviews4 [23]: composed of 2000 movie reviews;
• Reuters-21578 (ApteMod)5 [18]: it is a collection of 

10,788 documents from the Reuters financial newswire 
service.

3 http://qwone .com/~jason /20New sgrou ps.
4 http://cs.corne ll.edu/peopl e/pabo/movie -revie w-data.
5 https ://marti n-thoma .com/nlp-reute rs.

http://qwone.com/%7ejason/20Newsgroups
http://cs.cornell.edu/people/pabo/movie-review-data
https://martin-thoma.com/nlp-reuters
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5.3  Experimental setup

Before feeding the word embeddings into the t-SNE, we 
need to obtain them by training a Word2Vec algorithm.6 
Table 1 depicts the parameters employed to train the 
Word2Vec architecture. Such values are the same used for 
all datasets.

After obtaining the word embeddings, we fixed each 
t-SNE7 architecture parameters according to Table 2. Con-
cerning the perplexity rates, we set � ∈ [1, 100] , which 
means we used such ranges to initialize the optimization 
techniques. Such a range of values was chosen by previous 

experimental analysis. Note that the baseline experiments 
also use the very same configurations. The main difference 
lies in the value of � , where the ‘default-perplexity’ t-SNE 

Table 4  Mean results and their respective standard deviation over 
20 Newsgroups dataset

Algorithm KL-Divergence Perplexity

ABC 1.6535 ± 0.0037 99.93 ± 0.21
BA 1.6512 ± 0.0032 99.91 ± 0.28
GP 1.6489 ± 0.0014 100.00 ± 0.00
PSO 1.6519 ± 0.0035 99.98 ± 0.08
RS 1.9373 ± 0.1671 44.88 ± 27.65
Tl 1.6733 ± 0.0077 1.00 ± 0.00
Td 2.0154 ± 0.0056 30.00 ± 0.00
Th 1.6570 ± 0.0056 100.00 ± 0.00

Fig. 3  t-SNE’s dimensionality reduction over 20 Newsgroups dataset: a GP, b RS, c Tl and d Td

6 We opted to use the Word2Vec provided by the Gensim package.
7 We opted to use the t-SNE implementation provided by the 
Scikit-Learn package.
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uses � = 30 ( Td ), the ‘low-perplexity’ t-SNE uses � = 1 ( Tl ), 
and the ‘high-perplexity’ version uses � = 100 ( Th).

For every dataset, each meta-heuristic8 was evaluated 
under the whole dataset, as we are trying to find the data-
set’s most suitable word embeddings visualization.9 As 
we are dealing with only a one-dimension optimization 
task, we performed a small previous grid-search experi-
ment to select the number of agents, ranging from 1 to 
10 and found out that the most suitable value was 5. Thus, 
for every meta-heuristic, 5 agents (particles) were used 
over 10 convergence iterations.10 To provide a thorough 
and fair comparison among meta-heuristics in the context 
of t-SNE perplexity parameter fine-tuning, we have cho-
sen different techniques, ranging from swarm-based to 

evolutionary-inspired ones: Artificial Bee Colony, Bat Algo-
rithm, and Genetic Programming, Particle Swarm Optimiza-
tion, as well as a Random Search (RS), i.e., a random initiali-
zation of the � parameter. Table 3 exhibits the parameter 
configuration for every meta-heuristic technique.11

To perform a reasonable comparison among distinct 
meta-heuristic techniques, we must rely on mathematical 
methods that will sustain these observations. The first step 
is to decide whether to use a parametric or a non-paramet-
ric statistical test [9]. Unfortunately, we can not consider a 
normality state from our experiments due to insufficient 
data and sensitive outliers, restraining our analysis to non-
parametric approaches.

Secondly, acknowledging that our experiments’ results 
are independent (e.g., reconstruction error) and continu-
ous over a particular dependent variable (e.g., number of 
observations), we can identify that the Wilcoxon signed-
rank test [25] will satisfy our obligations. It is a non-par-
ametric hypothesis test used to compare two or more 
related observations (in our case, repeated measurements 
over a certain meta-heuristic) to assess whether there are 
statistically significant differences between them.

6  Experimental results

This section aims at presenting the experimental results 
concerning t-SNE perplexity parameter fine-tuning.12

6.1  20 Newsgroups

Table 4 depicts the mean results concerning the t-SNE 
optimization over 20 Newsgroups dataset (vocabulary 
size = 4581), where the bolded values are the best ones 
according to Wilcoxon signed-rank test. One can perceive 
that the meta-heuristic techniques were almost trapped 
into the upper bound, mainly due to the direct correla-
tion between the perplexity parameter and the KL diver-
gence. As the perplexity increases, the KL divergence 
decreases, thus, making it unfeasible to explore the search 
space properly. Additionally, it is crucial to highlight that 
the default perplexity parameter ( Td ) obtained the worst 
result among all techniques, creating a gap of parameter 
selection and allowing meta-heuristic techniques to fulfill 
it. Moreover, while the RS algorithm obtained a feasible 
perplexity parameter, it also produced a high standard 
deviation, being an extremely random search algorithm, 
as its name suggests.

Fig. 4  Mean fitness convergence over 20 Newsgroups dataset opti-
mization

Table 5  Mean results and their respective standard deviation over 
Movie Reviews dataset

Algorithm KL-Divergence Perplexity

ABC 0.9943 ± 0.0059 99.65 ± 0.57
BA 0.9860 ± 0.0073 99.77 ± 0.49
GP 0.9850 ± 0.0041 100.00 ± 0.00
PSO 0.9869 ± 0.0044 100.00 ± 0.00
RS 1.1366 ± 0.1324 74.46 ± 21.87
Tl 1.0306 ± 0.0160 1.00 ± 0.00
Td 1.4135 ± 0.0260 30.00 ± 0.00
Th 1.0152 ± 0.0228 100.00 ± 0.00

8 All meta-heuristics are available in the Opytimizer library: https ://
githu b.com/gugar osa/opyti mizer .
9 Each dataset was evaluated 10 times in the attempt to mitigate 
the meta-heuristics stochastic nature.
10 The number of iterations is our stopping criteria.

11 Note that these values were empirically chosen according to 
their author’s definition.
12 The experiments’ source code can be found at https ://gist.githu 
b.com/gugar osa/fbbc2 94da2 7b163 caed9 24062 ad69a 7e.

https://github.com/gugarosa/opytimizer
https://github.com/gugarosa/opytimizer
https://gist.github.com/gugarosa/fbbc294da27b163caed924062ad69a7e
https://gist.github.com/gugarosa/fbbc294da27b163caed924062ad69a7e
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Figure 3 illustrates the t-SNE’s dimensionality reduction 
process over 20 Newsgroups dataset using four distinct 
perplexity values. One can observe that lower perplex-
ity values spread the words over the space, while higher 
perplexity values aggregate them into clusters of similar 
meanings, e.g., ‘post’ and ‘posts’ being closer with � = 30 
and � = 100.

Moreover, Fig. 4 displays the mean fitness convergence 
for all the employed meta-heuristic techniques. We can 
highlight that GP and BA were able to achieve the lowest 
fitness and corroborate the results exhibited in Table 4. 
Also, ABC was able to converge well and obtain a slightly 
worse value than BA, GP, and PSO.

6.2  Movie reviews

Table  5 depicts the mean results concerning the t-SNE 
optimization over Movie Reviews dataset (vocabulary size 
= 1392), where the most significant results according to 
Wilcoxon signed-rank test are in bold. One can observe 
that the meta-heuristic techniques were trapped into the 
upper bound (unless ABC and BA, which almost achieved 
the upper bound). Nevertheless, even trapped by the upper 
bound, they were able to achieve the lowest KL divergence 
among all techniques and perform substantially better than 
RS, which provides a plausible mean perplexity value but 
with the cost of a higher standard deviation. Moreover, as 
this dataset provides a smaller vocabulary size, the KL diver-
gence is smaller than the previous dataset experiments.

Fig. 5  t-SNE’s dimensionality reduction over Movie Reviews dataset: a GP, b RS, c Tl and d Td
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Figure 5 illustrates the t-SNE’s dimensionality reduc-
tion process over Movie Reviews dataset using four dis-
tinct perplexity values. Again, one can observe that lower 
perplexity values spread the words over the space, while 
higher perplexity values aggregate them into clusters of 
similar meanings, e.g., ‘films’ and ‘batman’ being closer with 
� = 100.

Figure 6 displays the mean fitness convergence for all 
the employed meta-heuristic techniques. Considering the 
Movie Reviews dataset, BA, GP, and PSO accomplished 
the best mean convergence among all techniques and 
obtained the best results according to Wilcoxon’s. Addi-
tionally, ABC did not achieve the same performance as 
BA, GP, and PSO, being significantly worse result than its 
counterparts.

6.3  Reuters‑21578 (ApteMod)

Table 6 depicts the mean results concerning the t-SNE 
optimization over Reuters-21578 (ApteMod) dataset 

(vocabulary size = 1595), where the best results according 
to Wilcoxon signed-rank test are in bold. It is essential to 
highlight that ABC was trapped into the lower and upper 
bounds throughout the runnings, producing a mean per-
plexity value with a high standard deviation. Nevertheless, 
one interesting point to elucidate is that it was able to 
achieve the lowest KL divergence. Additionally, according 
to Wilcoxon’s signed-rank test, ABC, BA, GP, PSO, and Tl 
achieved the best results among all techniques. Another 
vital point to highlight is that GP was trapped in the lower 
bound, and achieved the lowest KL divergence, corrobo-
rating with the values found by Tl.

Figure 7 illustrates the t-SNE’s dimensionality reduc-
tion process over Reuters-21578 (ApteMod) dataset using 
three distinct perplexity values. In this particular dataset, 
higher values of perplexity aggregate the words almost 
into a single cluster, losing valuable information regarding 
their similarity. Lower values of perplexity, � = 1 , provides a 
clearer visualization, where ‘corp’, ‘share’, and ‘pct’ are close 
together. This is a fruitful insight as usually corporation 
shares are measured in percentage values. Also, it is pos-
sible to correlate ‘oil’ and ‘gas’, which makes sense as these 
two words share similar concepts. Moreover, one can see 
in Fig. 7 the outcome of t-SNE’s dimensionality reduction 
corroborating with the values depicted in Table 6.

Figure 8 displays the mean fitness convergence for all 
the employed meta-heuristic techniques. Considering the 
Reuters-21578 (ApteMod) dataset, GP achieved the best 
mean convergence among all techniques. Nevertheless, 
its performance can be compared with ABC, BA, and PSO 
ones, as indicated by Wilcoxon’s signed-rank test.

6.4  Similarity discussion

When dealing with Word2Vec models, it is possible to 
extract the similarity between two or more words through 
a cosine distance metric, which varies from −1 to 1. Let w1 
be the first word and w2 the second word. Also, let Eq. 14 
be the cosine distance metric, used to calculate their simi-
larity, as follows:

In order to provide an additional experiment regarding 
how the perplexity parameter influences the dimension-
ality reduction, we present a similarity discussion analysis 
to check whether if t-SNE is suitable or not to visualize the 
similarity between word embeddings. Note that we pro-
vide a visual similarity analysis and that the ‘positive’ term 
(blue dots) stands for the most similar words, while the 
‘negative’ term (red dots) stands for the least similar words.

(14)similarity = cos(�) =
w1 ⋅ w2

||w1||||w2||

Fig. 6  Mean fitness convergence over Movie Reviews dataset opti-
mization

Table 6  Mean results and their respective standard deviation over 
Reuters-21578 (ApteMod)

Algorithm KL-Divergence Perplexity

ABC 1.0399 ± 0.0216 40.60 ± 51.12
BA 1.0529 ± 0.0065 99.99 ± 0.04
GP 1.0247 ± 0.0112 1.00 ± 0.00
PSO 1.0507 ± 0.0044 100.00 ± 0.00
RS 1.3014 ± 0.1512 50.24 ± 28.93
Tl 1.0400 ± 0.0109 1.00 ± 0.00
Td 1.4004 ± 0.0063 30.00 ± 0.00
Th 1.0756 ± 0.0103 100.00 ± 0.00
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Figure 9 depicts the top-10 positive and negative most 
similar words to ‘posts’ on the 20 Newsgroups dataset. One 
can perceive that increasing the perplexity parameters, 
‘positive’ words start to become closer to the reference 
word (posts). Nevertheless, it is important to highlight that 
due to the loss of information in the dimensionality reduc-
tion process, there are no positive nor negative distinct 
clusters, undermining the similarity visualization.

Figure  10 depicts the top-10 positive and negative 
most similar words to ‘posts’ on the Movie Reviews data-
set, while Fig. 11 depicts the top-10 positive and negative 
most similar words to ‘gas’ on the Reuters-21578 (Apte-
Mod) dataset. As aforementioned, t-SNE impacts in the 
loss of crucial information regarding words’ similarity. 
Notwithstanding, another interesting point to elucidate 

is the narrowing of the space when using higher perplexity 
values, indicated by the labels ticks. When using a higher 
perplexity parameter, words become closer to each other, 
as the KL-divergence is minimized throughout the dimen-
sionality reduction procedure.

6.5  Computational load

Another crucial point to elucidate is the computational 
burden between the meta-heuristic techniques. One 
can perceive that it is vital to accomplish an optimiza-
tion task within feasible solutions and a viable time. 
Figure 12 exhibits the computational load between all 
meta-heuristics concerning the 20 Newsgroups dataset. 
Some swarm-based techniques obtained the highest 

Fig. 7  t-SNE’s dimensionality reduction over Reuters-21578 (ApteMod) dataset: a GP, b RS, c Tl and d Td
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computational loads, e.g., ABC and BA, as they have more 
complex positions update mechanisms throughout each 
iteration. Moreover, another swarm-based technique, e.g., 
PSO, almost reached the lowest computational time, as it is 
a straightforward technique that does not need to create 
additional particles nor evaluate specific ones throughout 
the iterations. On the other hand, GP achieved the lowest 
time throughout all runnings, as this evolutionary-based 
technique selects, mutates, and crosses a population into 
a new one, only evaluating it once per iteration.

Additionally, Figs. 13 and 14 depicts the computational 
load concerning the Movie Reviews and Reuters-21578 
(ApteMod) datasets, respectively. One can notice the 
meta-heuristics behaved in the same way as the previous 
dataset, i.e., ABC and BA obtained the highest computa-
tional burden, followed by PSO and GP. Therefore, we can 
conclude that the most suitable technique to fulfill our 
optimization task was GP, as it found suitable solutions 
within the lowest computational load.

Fig. 8  Mean fitness convergence over Reuters-21578 (ApteMod) 
dataset optimization

Fig. 9  Most similar words to ‘posts’ over 20 Newsgroups dataset: a Tl , b Td and c Th
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Fig. 10  Most similar words to ‘films’ over Movie Reviews dataset: a Tl , b Td and c Th

Fig. 11  Most similar words to ‘gas’ over Reuters-21578 (ApteMod) dataset: a Tl , b Td and c Th
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7  Conclusions

This paper discussed the problem of fine-tuning the 
perplexity parameter in t-SNE dimensionality reduction 
through meta-heuristic optimization algorithms, such as 
Artificial Bee Colony, Bat Algorithm, Genetic Programming, 
and Particle Swarm Optimization.

All four algorithms were able to fine-tune the perplex-
ity parameter in all datasets, supported by the KL diver-
gence decay. Moreover, it is possible to correlate the KL 
divergence directly to the perplexity’s choice, i.e., as the 
perplexity value increases, the KL divergence decreases. 
Therefore, it might be interesting to consider additional 
variables over the search space in an attempt to modify 
the fitness function and remove the direct correlation 
between it and the employed decision variable.

Additionally, we provide a similarity analysis regarding 
three different terms from the three assessed datasets, 
where it was possible to visualize how t-SNE influences the 
similarity visualization. As the t-SNE stands for a dimen-
sionality reduction technique, it plays a significant role 
in losing vital information, making not so visual the dif-
ference between positive and negative similar words, i.e., 
positive and negative words were mixed in the visualiza-
tion plot. Moreover, we analyze the computational load 
between all meta-heuristics techniques. Considering all 
datasets, ABC obtained the highest computational time, 
followed by BA, PSO, and GP. Also, it is essential to high-
light that GP obtained feasible solutions within the lowest 
optimization times for all datasets, being the most suitable 
meta-heuristic technique in this work.

For future works, we aim to explore the correlations 
between other t-SNE parameters, e.g., the learning rate 
and the number of iterations, as well as to consider such an 
approach in the context of additional word embeddings 
models, e.g., GloVe, ELMO, and BERT, alongside with 3-D 
visualization models.
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