
Vol.:(0123456789)

SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4

Research Article

How optimizing perplexity can affect the dimensionality reduction
on word embeddings visualization?

Gustavo H. de Rosa1 · José R. F. Brega1 · João P. Papa1

Received: 5 September 2019 / Accepted: 13 November 2019 / Published online: 25 November 2019
© Springer Nature Switzerland AG 2019

Abstract
Traditional word embeddings approaches, such as bag-of-words models, tackles the problem of text data representation
by linking words in a document to a binary vector, marking their occurrence or not. Additionally, a term frequency-inverse
document frequency encoding provides a numerical statistic reflecting how important a particular word is in a docu-
ment. Nevertheless, the major vulnerability of such models concerns with the loss of contextual meaning, which inhibits
them from learning proper pieces of information. A new neural-based embedding approach, known as Word2Vec, tries
to mitigate that issue by minimizing the loss of predicting a vector from a particular word considering its surrounding
words. Furthermore, as these embedding-based methods produce low-dimensional data, it is impossible to visualize
them accurately. With that in mind, dimensionality reduction techniques, such as t-SNE, presents a method to generate
bi-dimensional data, allowing its visualization. One common problem of such reductions concerns with the setting of
their hyperparameters, such as the perplexity parameter. Therefore, this paper addresses the problem of selecting a suit-
able perplexity through a meta-heuristic optimization process. Meta-heuristic-driven techniques, such as Artificial Bee
Colony, Bat Algorithm, Genetic Programming, and Particle Swarm Optimization, are employed to find proper values for
the perplexity parameter. The results revealed that optimizing t-SNE’s perplexity is suitable for improving data visualiza-
tion and thus, an exciting field to be fostered.

Keywords Word embeddings · Dimensionality reduction · Meta-heuristic optimization

1 Introduction

Humans are capable of mastering communication tech-
niques and creating several tools to express themselves,
such as language and speech. Nevertheless, these tools are
non-trivial when considering computer-based individuals,
leaving a huge blank on how to produce a “natural” per-
ception of the real world. An arising subarea under artificial
intelligence, known as natural language processing (NLP),
tries to mitigate that issue by fostering machine learning
research and creating meaningful knowledge regarding
natural language understanding. The NLP area has been
widely researched throughout the last years, establishing

various hallmarks in an extensive range of applications,
such as language modeling [24], word embeddings [7],
sentiment classification [8], among others.

A common problem when working with natural lan-
guage copes with the fact that text data are discrete
structures, being infeasible to work with modern machine
learning algorithms, e.g., recurrent neural networks. Tradi-
tional approaches, known as bag-of-words models, tackles
this problem by encoding the text data into binary vectors
(one-hot encoding), where each vector’s position repre-
sents the existence or not of a particular word. Although
this seems to be a fair representation, there is vital con-
textual information lost in the process. Moreover, newer

 * Gustavo H. de Rosa, gustavo.rosa@unesp.br; José R. F. Brega, remo.brega@unesp.br; João P. Papa, joao.papa@unesp.br | 1Department
of Computing, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, Brazil.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1689-4&domain=pdf
http://orcid.org/0000-0002-6442-8343

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4

bag-of-words models, such as count vectorizer and term
frequency-inverse document frequency, encode statisti-
cal information of how relevant a particular word is in a
document. Nonetheless, these models produce high-
dimensional sparse feature vectors, being impracticable
when collated with large vocabularies.

A contextual information-based text representation,
known as word embeddings,1 tackles the problem by
learning a distributed representation for words. In other
words, this approach is capable of encoding semantic
relationships among words and producing a vector space
model (VSM), where closer vectors have a higher degree of
similarity than distant vectors. Essentially, one can divide
word embeddings into three distinct categories:

• Topics models: one of the most influential was Latent
Semantic Analysis (LSA) [4], which was fostered in the
context of information retrieval and latter enhanced as
Latent Dirichlet Allocation (LDA) [2];

• Neural language models: based on neural networks,
such as Convolutional Neural Networks (CNN) [17],
Recurrent Neural Networks (RNN) [5] and Autoencod-
ers [19];

• Distributional semantic models: often based on word
co-occurrences representations, e.g., Hyperspace Ana-
logue to Language (HAL) [20], Random Indexing [12]
and BEAGLE [11].

The main difference between these models lies in the
type of contextual information they use. Topic models
use documents as their contexts, while neural language
and distributional semantic models use words as contexts.
Additionally, document-based models capture semantic
relatedness, while word-based models capture semantic
similarity.

A recent neural-based successful word embedding
model, known as Word2Vec [22], uses shallow neural net-
works to minimize the loss of predicting a vector from a
particular word considering its surrounding words, pro-
ducing low-dimensional data. Notwithstanding, high or
low dimensional data prevent humans from visualizing
them, inhibiting important decision or insights making.
With that in mind, it is possible to employ dimensional-
ity reduction techniques, such as Principal Component
Analysis (PCA) [10] or t-Distributed Stochastic Neighbour
Embedding (t-SNE) [21], to generate bi-dimensional spaces
and allow their visualization. One common problem con-
cerning the t-SNE dimensionality reduction technique is
the setting of its hyperparameters, such as the perplexity.

To the best of the authors’ knowledge, there is only one
work that tries to set this parameter automatically [3].

In this paper, the problem of fine-tuning the perplexity
parameter in t-SNE is modeled as a meta-heuristic-driven
optimization task, in which agents encode the values of
the perplexity in a search problem guided by the Kull-
back–Leibler divergence over the datasets. As far as we
are concerned, this is the first work that attempted to
address the problem of fine-tuning the perplexity param-
eter in t-SNE by meta-heuristic techniques. In order to
validate the proposed approach, we employed Artificial
Bee Colony (ABC) [13], Bat Algorithm (BA) [27], and Par-
ticle Swarm Optimization (PSO) [14], as we opted to use
only swarm-based algorithms. Nevertheless, this might
be not interesting because other meta-heuristics’ taxono-
mies may perform differently in our proposed approach.
Thus, we opted also to employ an evolutionary-based
algorithm known as the Genetic Programming (GP) [15].
Finally, the main contributions of this paper are twofold:
(1) to introduce meta-heuristic techniques to the context
of fine-tuning perplexity in t-SNE, and (2) to fill the lack of
research regarding dimensionality reduction hyperparam-
eters optimization.

The remainder of this paper is organized as follows.
Sections 2, 3 and 4 present some theoretical background
concerning word embeddings, dimensionality reduction,
and meta-heuristic techniques, respectively, while Sect. 5
discusses the methodology employed in this work. Sec-
tion 6 presents the experimental results and Sect. 7 states
conclusions and future works.

2 Word embeddings

The necessity of interpreting text data into continuous
representations fostered the research on word embed-
dings. Essentially, an embedding is a numerical encoding
of a text, where words or phrases from a particular vocabu-
lary are mapped to vectors of real numbers. In this section,
we present an overview regarding a neural-based word
embedding, known as Word2Vec.

2.1 Word2Vec

Word2Vec [22] is a neural-based word embedding, rep-
resented by a shallow two-layer neural network, which is
trained to reconstruct linguistic concepts of input words.
Mainly, Word2Vec takes a corpus of text and produces a
vector space model, typically composed of several hun-
dred dimensions, where each unique word in the corpus
is assigned to a corresponding vector in this space. Addi-
tionally, semantically similar words are mapped to nearby
points in the vector space.

1 The computational linguistics area prefers this term as distribu-
tional semantic models.

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4 Research Article

Two distinct architectures are used to produce a con-
tinuous-based representation of words: continuous bag-
of-words (CBOW) or continuous Skip-gram. Considering
the CBOW architecture, the model predicts a current word
based on its surrounding context words, while in the Skip-
gram architecture, the model weights nearby context
words more than distant context words. Figure 1 illustrates
the CBOW and Skip-gram architectures.

3 Dimensionality reduction

In a machine learning problem, the factors that define the
characteristics of the data are usually called features. Even
with modern visualization techniques, it is still impossible
for humans to visualize over three-dimensional spaces,
i.e., four features or more. With that in mind, one can per-
ceive that it gets harder to visualize data as the features’
size grows. Additionally, some features correlate between
themselves, being redundant.

The dimensionality reduction procedure arises in an
attempt to mitigate the issue mentioned above. It is a
process of reducing the number of features by obtain-
ing new sets of principal features and is divided into two
categories:

• Feature selection: tries to find a subset of the origi-
nal set of features, composing a new and smaller set
used to model the problem, e.g., filter-, wrapper-, and
embedded-based approaches;

• Feature extraction: reduces the data from a high-
dimensional to a low-dimensional space, e.g., principal
component analysis, linear discriminant analysis (LDA),
and t-distributed stochastic neighbour embedding.

3.1 t‑Distributed stochastic neighbour embedding

The t-Distributed Stochastic Neighbour Embedding [21]
is a nonlinear dimensionality reduction technique used
to embed high-dimensional data into low-dimensional
spaces, easing its visualization. It models each high-dimen-
sional sample in an n-dimensional point where nearby
points model similar samples and distant points model
distinct samples.

Firstly, the t-SNE algorithm constructs a probability dis-
tribution over the high-dimensional samples, where simi-
lar samples have a high probability of being picked, while
divergent samples have a low probability of being chosen.
Secondly, it defines a similar probability distribution in a
low-dimensional space and minimizes the Kullback–Lei-
bler (KL) divergence between these two distributions. As
the algorithm approximates these distributions, the KL
divergence gets lower, and hence, makes the dimension-
ality reduction better.

Let x ∈ ℜn be high-dimensional points, such that the
similarity of xj to xi is the conditional probability p(j|i),
defined as follows:

Additionally, let y ∈ ℜn be low-dimensional points, such
that the similarity of yj to yi is the conditional probability
q(j|i), defined as follows:

If the similarity between x and y is modeled correctly,
the conditional probabilities p(j|i) and q(j|i) will be equal.
Therefore, the Kullback–Leibler divergence is used to
measure the faithfulness in which q(j|i) models p(j|i), such
as follows:

where Pi represents the conditional probability distribu-
tion over all other samples given sample xi , and Qi repre-
sents the conditional probability distribution over all other
samples given sample yi.

Additionally, one of most important parts of the algo-
rithm is the definition of �i , which defines the local scale

(1)p(j�i) =
exp(−��xi − xj��2∕2�2

i
)

∑
k≠i exp(−��xi − xj��2∕2�2

i
)
.

(2)q(j�i) =
exp(−��yi − yj��2)∑
k≠i exp(−��yi − yj��2)

.

(3)KL(Pi|Qi) =
∑

i

∑

j

p(j|i)log
(
p(j|i)
q(j|i)

)
,

Fig. 1 Word2Vec architectures: CBOW and Skip-gram

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4

around xi . Its value is not defined by hand, but rather
found by a binary search, denominated Perplexity (�). The
perplexity of Pi is defined as:

where

The perplexity is a smooth measure of the effective num-
ber of neighbors, being a valuable hyperparameter to be
adjusted according to the problem itself.

4 Meta‑heuristic optimization

Traditional optimization methods [1], such as the iterative
methods, e.g., Newton method, Quasi-Newton method,
Gradient Descent, Interpolation methods, use the evalua-
tion of gradients and Hessians, being unfeasible to several
applications due to their computational burden. Recently,
an exciting proposition denoted as meta-heuristic has
been employed to solve several optimization problems.
A meta-heuristic technique consists of a high-level pro-
cedure, projected to generate or select a heuristic, which
provides a sufficiently feasible solution to the optimization
problem. Moreover, a meta-heuristic is a procedure that
combines the concepts of exploration, used to perform
searches throughout the search space, and exploitation,
which is used to refine a promising solution based on its
neighborhood.

Essentially, meta-heuristic techniques [26] are strate-
gies that guide the process of searching for quasi-opti-
mum solutions. They are mostly constituted of simple
local searches and complex learning procedures, usually
inspired by biological behaviors. Additionally, they are
non-domain specific and have mechanisms to avoid being
trapped in local optima points. Furthermore, one can clas-
sify them according to their taxonomy, as stated by Fister

(4)�(Pi) = 2H(Pi),

(5)H(Pi) = −
∑

j

p(j|i)log2p(j|i).

Jr. et al. [6], i.e., swarm intelligence, bio-inspired, physics-
and chemistry-based, and evolutionary ones. In this work,
we opted to use three swarm-based algorithms, as well as
an evolutionary-based one.

4.1 Artificial bee colony

Artificial Bee Colony is a nature-inspired algorithm based
on honey bee swarms, which is composed of three dis-
tinct groups of bees: employees, onlookers, and scouts.
Each group has particular importance and function to
the swarm, such as choosing a food source, going to the
food source, and randomly searching food in new areas
[13]. Additionally, the whole bee colony is split in half
into employees2 and onlookers bees. Moreover, when the
employee bee exhausts its food source, it becomes a scout
bee.

Let S = (s1, s2,… , sM) be a set of food sources such that
si ∈ ℜN stands for the position of food source i. Also, let
T = (t1, t2,… , tM) be the number of cycles for each food
source, known as the “food source trials”, which is regu-
lated by the n_trials parameter. After exploring a food
source or discovering a newer one, bees share their dis-
covered information about the nectar (food). Hence, an
onlooker bee chooses a nectar source based on a prob-
ability associated with its achieved fitness, as formulated
below:

where Fi is the fitness value of food source i.
Finally, one can use Eq. 7 to formulate a new food

source position, as follows:

where i ≠ k and � ∈ [−1, 1] denotes a random value that
controls the bee visualization of other food sources. Algo-
rithm 1 depicts the pseudo-code of ABC.

(6)pi =
Fi

∑M

k=1
Fk

,

(7)si = si + �(si − sk),

2 An employee bee is only responsible for a single food source.

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4 Research Article

Fig. 2 A GP solution representing the expression 3log(x) + 5exp(y)

4.2 Bat algorithm

Bat Algorithm is a biological-inspired algorithm proposed
by Yang et al. [27] primarily used for solving engineering
optimization tasks. It takes into account the advanced
capability of the bats’ echolocation system, where they
have a sonar-like mechanism that enables them to
detect food, avoid obstacles, and communicate among
themselves.

Mathematically speaking, let B = (b1, b2,… , bM) be a set
of bats that compose the swarm, such that bi = (w i , zi) ,
where w i ∈ ℜN and zi ∈ ℜN stand for the position and
velocity of bat i, respectively. Additionally, each bat is asso-
ciated with a frequency value of f ∈ [fmin, fmax] , a loudness
value of A and a pulse rate of r. Each bat is initialized with
random values for its position, velocity, and frequency.
During each iteration, Eqs. 8, 9 and 10 are responsible for
updating their frequency, velocity and position values,
respectively:

and

and

(8)fi = fmin + (fmax − fmin)�

(9)zt+1
i

= zt
i
+ (wt

i
− ŵ)fi ,

where � is a uniform random number between [0, 1], and
ŵ denotes the current best global position (solution).

Furthermore, if a bat’s pulse rate is smaller than a sam-
pled probability p, e.g., ri < p , a new solution is generated
around the current best solution. Equation 11 formulates
this procedure, as follows:

where � is a random value between [−1, 1] , and Ā is the
mean loudness of all bats in the swarm. Algorithm 2 pre-
sents the pseudo-code of BA.

(10)wt+1
i

= wt
i
+ zt+1

i
,

(11)wt+1
i

= ŵ + 𝜖Ā,

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4

4.3 Genetic programming

Genetic Programming [15] is an evolutionary-based meta-
heuristic that has arisen from the principles of Darwin’s
Theory of Evolution. Essentially, GP automatically creates
expressions (solutions) that might solve a particular task
and perform genetical operators in order to achieve more
proper solutions.

Even though GP looks like the standard Genetic Algo-
rithm (GA), there is a significant difference between them.
Instead of using a binary “chromosome‘ holding the genes,
GP uses a tree-based structure composed of terminal and
function nodes, which is illustrated by Fig. 2. The termi-
nal nodes represent constant values, while the function

nodes are mathematical operators applied over the termi-
nal nodes. During each generation, several operators are
employed to improve the current population, such as (1)
selection, (2) reproduction, (3) mutation, and (4) crossover.

Initially, the best individuals across the population are
selected and reproduced to guarantee the best ones over
the generations. Moreover, mutation and crossover proce-
dures attempt to provide a variability factor in the popula-
tion, i.e., mutation changes an individual gene arbitrarily,
while the crossover switch branches between two trees.
Furthermore, after the stopping criterion is satisfied, the
best solution (individual) is recovered from the tree. Algo-
rithm 3 presents the pseudo-code of GP.

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4 Research Article

4.4 Particle swarm optimization

Particle Swarm Optimization is a swarm intelligence algo-
rithm inspired by social behavior dynamics [14]. The idea
behind employing social behavior learning is to allow each
possible solution to move onto the search space, combin-
ing details from its previous and current locations with the
ones provided by other swarm particles. One can under-
stand this process as a simulation of the social interaction
of birds looking for food or even humans trying to achieve
a common objective.

Let D = (d1, d2,… , dM) be a set of particles that com-
pose the swarm, such that di = (� i ,�i) , where � i ∈ ℜN
and �i ∈ ℜN stand for the position and velocity of parti-
cle i, respectively. Also, for each particle, we know its best
local solution �̂ , as well as the best solution (global) of the
entire swarm g . Each particle is initialized with random val-
ues for both velocity and position. Hence, each individual
is evaluated with respect to a given fitness function, thus
having its local minimum updated. At the end, the global

minimum for each decision variable is updated with the
value of the particle that achieved the best position in the
swarm. This process is repeated until a convergence crite-
rion is satisfied. Equations 12 and 13 present the update
formulation concerning the velocity and position of par-
ticle i at time step t, respectively:

and

where � is the inertia weight that controls the interaction
among particles, and r1, r2 ∈ [0, 1] are random variables
that give a stochastic trait to PSO. Additionally, variables
c1 and c2 are constants that conduct the swarm’s members
onto the search space. Algorithm 4 depicts the pseudo-
code of PSO.

(12)�
t+1
i

= 𝜇�t
i
+ c1r1(�̂ i − �

t
i
) + c2r2(g − �

t
i
)

(13)�
t+1
i

= �
t
i
+ �

t+1
i

,

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4

Table 1 Word2Vec parameters configuration

Parameter Value

Number of features 300
Window size 5
Minimum word-occurence 100
Algorithm CBOW
� (learning rate) 0.1
t (number of iterations) 10

Table 2 t-SNE parameters configuration

Parameter Value

c (number of components) 2
� (learning rate) 200
t (number of iterations) 1000
� (perplexity) [1, 100]

Table 3 Meta-heuristic algorithms parameters configuration

Algo-
rithm

Parameters

ABC �_������ = 10

BA f = [0, 2] ∣ A = 0.5 ∣ r = 0.5

GP �_��������� = 2 ∣ ����� = [2, 5] ∣ ��������� = [SUM,
SUB, MUL, DIV]

�_������������ = 0.25 ∣ �_�������� = 0.1 ∣ �_��������� = 0.2

PSO � = 0.7 ∣ c1 = 1.7 ∣ c2 = 1.7

5 Methodology

In this section, we present the proposed approach to fine-
tune the perplexity parameter concerning t-SNE dimen-
sionality reduction, as well as describe the employed data-
sets and the experimental setup.

5.1 Modeling t‑SNE optimization

We propose to model the problem of selecting a suitable
perplexity parameter considering t-SNE in the task of word
embeddings dimensionality reduction. As aforementioned
in Sect. 3, the t-SNE learning step has four parameters: the
number of components c, the perplexity � , the learning

rate � and the number of iterations t. As we are interested
in fine-tuning the perplexity only, we fixed the 3-tuple
(c, �, t) and played with parameter � in order to minimize
the Kullback–Leibler divergence (KL) of the t-SNE’s dimen-
sionality reduction.

5.2 Datasets

We considered three English-based text datasets in the
experimental section, as follows:

• 20 Newsgroups3 [16]: comprises around 18,000 news-
groups posts on 20 distinct topics;

• Movie Reviews4 [23]: composed of 2000 movie reviews;
• Reuters-21578 (ApteMod)5 [18]: it is a collection of

10,788 documents from the Reuters financial newswire
service.

3 http://qwone .com/~jason /20New sgrou ps.
4 http://cs.corne ll.edu/peopl e/pabo/movie -revie w-data.
5 https ://marti n-thoma .com/nlp-reute rs.

http://qwone.com/%7ejason/20Newsgroups
http://cs.cornell.edu/people/pabo/movie-review-data
https://martin-thoma.com/nlp-reuters

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4 Research Article

5.3 Experimental setup

Before feeding the word embeddings into the t-SNE, we
need to obtain them by training a Word2Vec algorithm.6
Table 1 depicts the parameters employed to train the
Word2Vec architecture. Such values are the same used for
all datasets.

After obtaining the word embeddings, we fixed each
t-SNE7 architecture parameters according to Table 2. Con-
cerning the perplexity rates, we set � ∈ [1, 100] , which
means we used such ranges to initialize the optimization
techniques. Such a range of values was chosen by previous

experimental analysis. Note that the baseline experiments
also use the very same configurations. The main difference
lies in the value of � , where the ‘default-perplexity’ t-SNE

Table 4 Mean results and their respective standard deviation over
20 Newsgroups dataset

Algorithm KL-Divergence Perplexity

ABC 1.6535 ± 0.0037 99.93 ± 0.21
BA 1.6512 ± 0.0032 99.91 ± 0.28
GP 1.6489 ± 0.0014 100.00 ± 0.00
PSO 1.6519 ± 0.0035 99.98 ± 0.08
RS 1.9373 ± 0.1671 44.88 ± 27.65
Tl 1.6733 ± 0.0077 1.00 ± 0.00
Td 2.0154 ± 0.0056 30.00 ± 0.00
Th 1.6570 ± 0.0056 100.00 ± 0.00

Fig. 3 t-SNE’s dimensionality reduction over 20 Newsgroups dataset: a GP, b RS, c Tl and d Td

6 We opted to use the Word2Vec provided by the Gensim package.
7 We opted to use the t-SNE implementation provided by the
Scikit-Learn package.

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4

uses � = 30 (Td), the ‘low-perplexity’ t-SNE uses � = 1 (Tl),
and the ‘high-perplexity’ version uses � = 100 (Th).

For every dataset, each meta-heuristic8 was evaluated
under the whole dataset, as we are trying to find the data-
set’s most suitable word embeddings visualization.9 As
we are dealing with only a one-dimension optimization
task, we performed a small previous grid-search experi-
ment to select the number of agents, ranging from 1 to
10 and found out that the most suitable value was 5. Thus,
for every meta-heuristic, 5 agents (particles) were used
over 10 convergence iterations.10 To provide a thorough
and fair comparison among meta-heuristics in the context
of t-SNE perplexity parameter fine-tuning, we have cho-
sen different techniques, ranging from swarm-based to

evolutionary-inspired ones: Artificial Bee Colony, Bat Algo-
rithm, and Genetic Programming, Particle Swarm Optimiza-
tion, as well as a Random Search (RS), i.e., a random initiali-
zation of the � parameter. Table 3 exhibits the parameter
configuration for every meta-heuristic technique.11

To perform a reasonable comparison among distinct
meta-heuristic techniques, we must rely on mathematical
methods that will sustain these observations. The first step
is to decide whether to use a parametric or a non-paramet-
ric statistical test [9]. Unfortunately, we can not consider a
normality state from our experiments due to insufficient
data and sensitive outliers, restraining our analysis to non-
parametric approaches.

Secondly, acknowledging that our experiments’ results
are independent (e.g., reconstruction error) and continu-
ous over a particular dependent variable (e.g., number of
observations), we can identify that the Wilcoxon signed-
rank test [25] will satisfy our obligations. It is a non-par-
ametric hypothesis test used to compare two or more
related observations (in our case, repeated measurements
over a certain meta-heuristic) to assess whether there are
statistically significant differences between them.

6 Experimental results

This section aims at presenting the experimental results
concerning t-SNE perplexity parameter fine-tuning.12

6.1 20 Newsgroups

Table 4 depicts the mean results concerning the t-SNE
optimization over 20 Newsgroups dataset (vocabulary
size = 4581), where the bolded values are the best ones
according to Wilcoxon signed-rank test. One can perceive
that the meta-heuristic techniques were almost trapped
into the upper bound, mainly due to the direct correla-
tion between the perplexity parameter and the KL diver-
gence. As the perplexity increases, the KL divergence
decreases, thus, making it unfeasible to explore the search
space properly. Additionally, it is crucial to highlight that
the default perplexity parameter (Td) obtained the worst
result among all techniques, creating a gap of parameter
selection and allowing meta-heuristic techniques to fulfill
it. Moreover, while the RS algorithm obtained a feasible
perplexity parameter, it also produced a high standard
deviation, being an extremely random search algorithm,
as its name suggests.

Fig. 4 Mean fitness convergence over 20 Newsgroups dataset opti-
mization

Table 5 Mean results and their respective standard deviation over
Movie Reviews dataset

Algorithm KL-Divergence Perplexity

ABC 0.9943 ± 0.0059 99.65 ± 0.57
BA 0.9860 ± 0.0073 99.77 ± 0.49
GP 0.9850 ± 0.0041 100.00 ± 0.00
PSO 0.9869 ± 0.0044 100.00 ± 0.00
RS 1.1366 ± 0.1324 74.46 ± 21.87
Tl 1.0306 ± 0.0160 1.00 ± 0.00
Td 1.4135 ± 0.0260 30.00 ± 0.00
Th 1.0152 ± 0.0228 100.00 ± 0.00

8 All meta-heuristics are available in the Opytimizer library: https ://
githu b.com/gugar osa/opyti mizer .
9 Each dataset was evaluated 10 times in the attempt to mitigate
the meta-heuristics stochastic nature.
10 The number of iterations is our stopping criteria.

11 Note that these values were empirically chosen according to
their author’s definition.
12 The experiments’ source code can be found at https ://gist.githu
b.com/gugar osa/fbbc2 94da2 7b163 caed9 24062 ad69a 7e.

https://github.com/gugarosa/opytimizer
https://github.com/gugarosa/opytimizer
https://gist.github.com/gugarosa/fbbc294da27b163caed924062ad69a7e
https://gist.github.com/gugarosa/fbbc294da27b163caed924062ad69a7e

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4 Research Article

Figure 3 illustrates the t-SNE’s dimensionality reduction
process over 20 Newsgroups dataset using four distinct
perplexity values. One can observe that lower perplex-
ity values spread the words over the space, while higher
perplexity values aggregate them into clusters of similar
meanings, e.g., ‘post’ and ‘posts’ being closer with � = 30
and � = 100.

Moreover, Fig. 4 displays the mean fitness convergence
for all the employed meta-heuristic techniques. We can
highlight that GP and BA were able to achieve the lowest
fitness and corroborate the results exhibited in Table 4.
Also, ABC was able to converge well and obtain a slightly
worse value than BA, GP, and PSO.

6.2 Movie reviews

Table 5 depicts the mean results concerning the t-SNE
optimization over Movie Reviews dataset (vocabulary size
= 1392), where the most significant results according to
Wilcoxon signed-rank test are in bold. One can observe
that the meta-heuristic techniques were trapped into the
upper bound (unless ABC and BA, which almost achieved
the upper bound). Nevertheless, even trapped by the upper
bound, they were able to achieve the lowest KL divergence
among all techniques and perform substantially better than
RS, which provides a plausible mean perplexity value but
with the cost of a higher standard deviation. Moreover, as
this dataset provides a smaller vocabulary size, the KL diver-
gence is smaller than the previous dataset experiments.

Fig. 5 t-SNE’s dimensionality reduction over Movie Reviews dataset: a GP, b RS, c Tl and d Td

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4

Figure 5 illustrates the t-SNE’s dimensionality reduc-
tion process over Movie Reviews dataset using four dis-
tinct perplexity values. Again, one can observe that lower
perplexity values spread the words over the space, while
higher perplexity values aggregate them into clusters of
similar meanings, e.g., ‘films’ and ‘batman’ being closer with
� = 100.

Figure 6 displays the mean fitness convergence for all
the employed meta-heuristic techniques. Considering the
Movie Reviews dataset, BA, GP, and PSO accomplished
the best mean convergence among all techniques and
obtained the best results according to Wilcoxon’s. Addi-
tionally, ABC did not achieve the same performance as
BA, GP, and PSO, being significantly worse result than its
counterparts.

6.3 Reuters‑21578 (ApteMod)

Table 6 depicts the mean results concerning the t-SNE
optimization over Reuters-21578 (ApteMod) dataset

(vocabulary size = 1595), where the best results according
to Wilcoxon signed-rank test are in bold. It is essential to
highlight that ABC was trapped into the lower and upper
bounds throughout the runnings, producing a mean per-
plexity value with a high standard deviation. Nevertheless,
one interesting point to elucidate is that it was able to
achieve the lowest KL divergence. Additionally, according
to Wilcoxon’s signed-rank test, ABC, BA, GP, PSO, and Tl
achieved the best results among all techniques. Another
vital point to highlight is that GP was trapped in the lower
bound, and achieved the lowest KL divergence, corrobo-
rating with the values found by Tl.

Figure 7 illustrates the t-SNE’s dimensionality reduc-
tion process over Reuters-21578 (ApteMod) dataset using
three distinct perplexity values. In this particular dataset,
higher values of perplexity aggregate the words almost
into a single cluster, losing valuable information regarding
their similarity. Lower values of perplexity, � = 1 , provides a
clearer visualization, where ‘corp’, ‘share’, and ‘pct’ are close
together. This is a fruitful insight as usually corporation
shares are measured in percentage values. Also, it is pos-
sible to correlate ‘oil’ and ‘gas’, which makes sense as these
two words share similar concepts. Moreover, one can see
in Fig. 7 the outcome of t-SNE’s dimensionality reduction
corroborating with the values depicted in Table 6.

Figure 8 displays the mean fitness convergence for all
the employed meta-heuristic techniques. Considering the
Reuters-21578 (ApteMod) dataset, GP achieved the best
mean convergence among all techniques. Nevertheless,
its performance can be compared with ABC, BA, and PSO
ones, as indicated by Wilcoxon’s signed-rank test.

6.4 Similarity discussion

When dealing with Word2Vec models, it is possible to
extract the similarity between two or more words through
a cosine distance metric, which varies from −1 to 1. Let w1
be the first word and w2 the second word. Also, let Eq. 14
be the cosine distance metric, used to calculate their simi-
larity, as follows:

In order to provide an additional experiment regarding
how the perplexity parameter influences the dimension-
ality reduction, we present a similarity discussion analysis
to check whether if t-SNE is suitable or not to visualize the
similarity between word embeddings. Note that we pro-
vide a visual similarity analysis and that the ‘positive’ term
(blue dots) stands for the most similar words, while the
‘negative’ term (red dots) stands for the least similar words.

(14)similarity = cos(�) =
w1 ⋅ w2

||w1||||w2||

Fig. 6 Mean fitness convergence over Movie Reviews dataset opti-
mization

Table 6 Mean results and their respective standard deviation over
Reuters-21578 (ApteMod)

Algorithm KL-Divergence Perplexity

ABC 1.0399 ± 0.0216 40.60 ± 51.12
BA 1.0529 ± 0.0065 99.99 ± 0.04
GP 1.0247 ± 0.0112 1.00 ± 0.00
PSO 1.0507 ± 0.0044 100.00 ± 0.00
RS 1.3014 ± 0.1512 50.24 ± 28.93
Tl 1.0400 ± 0.0109 1.00 ± 0.00
Td 1.4004 ± 0.0063 30.00 ± 0.00
Th 1.0756 ± 0.0103 100.00 ± 0.00

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4 Research Article

Figure 9 depicts the top-10 positive and negative most
similar words to ‘posts’ on the 20 Newsgroups dataset. One
can perceive that increasing the perplexity parameters,
‘positive’ words start to become closer to the reference
word (posts). Nevertheless, it is important to highlight that
due to the loss of information in the dimensionality reduc-
tion process, there are no positive nor negative distinct
clusters, undermining the similarity visualization.

Figure 10 depicts the top-10 positive and negative
most similar words to ‘posts’ on the Movie Reviews data-
set, while Fig. 11 depicts the top-10 positive and negative
most similar words to ‘gas’ on the Reuters-21578 (Apte-
Mod) dataset. As aforementioned, t-SNE impacts in the
loss of crucial information regarding words’ similarity.
Notwithstanding, another interesting point to elucidate

is the narrowing of the space when using higher perplexity
values, indicated by the labels ticks. When using a higher
perplexity parameter, words become closer to each other,
as the KL-divergence is minimized throughout the dimen-
sionality reduction procedure.

6.5 Computational load

Another crucial point to elucidate is the computational
burden between the meta-heuristic techniques. One
can perceive that it is vital to accomplish an optimiza-
tion task within feasible solutions and a viable time.
Figure 12 exhibits the computational load between all
meta-heuristics concerning the 20 Newsgroups dataset.
Some swarm-based techniques obtained the highest

Fig. 7 t-SNE’s dimensionality reduction over Reuters-21578 (ApteMod) dataset: a GP, b RS, c Tl and d Td

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4

computational loads, e.g., ABC and BA, as they have more
complex positions update mechanisms throughout each
iteration. Moreover, another swarm-based technique, e.g.,
PSO, almost reached the lowest computational time, as it is
a straightforward technique that does not need to create
additional particles nor evaluate specific ones throughout
the iterations. On the other hand, GP achieved the lowest
time throughout all runnings, as this evolutionary-based
technique selects, mutates, and crosses a population into
a new one, only evaluating it once per iteration.

Additionally, Figs. 13 and 14 depicts the computational
load concerning the Movie Reviews and Reuters-21578
(ApteMod) datasets, respectively. One can notice the
meta-heuristics behaved in the same way as the previous
dataset, i.e., ABC and BA obtained the highest computa-
tional burden, followed by PSO and GP. Therefore, we can
conclude that the most suitable technique to fulfill our
optimization task was GP, as it found suitable solutions
within the lowest computational load.

Fig. 8 Mean fitness convergence over Reuters-21578 (ApteMod)
dataset optimization

Fig. 9 Most similar words to ‘posts’ over 20 Newsgroups dataset: a Tl , b Td and c Th

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4 Research Article

Fig. 10 Most similar words to ‘films’ over Movie Reviews dataset: a Tl , b Td and c Th

Fig. 11 Most similar words to ‘gas’ over Reuters-21578 (ApteMod) dataset: a Tl , b Td and c Th

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4

7 Conclusions

This paper discussed the problem of fine-tuning the
perplexity parameter in t-SNE dimensionality reduction
through meta-heuristic optimization algorithms, such as
Artificial Bee Colony, Bat Algorithm, Genetic Programming,
and Particle Swarm Optimization.

All four algorithms were able to fine-tune the perplex-
ity parameter in all datasets, supported by the KL diver-
gence decay. Moreover, it is possible to correlate the KL
divergence directly to the perplexity’s choice, i.e., as the
perplexity value increases, the KL divergence decreases.
Therefore, it might be interesting to consider additional
variables over the search space in an attempt to modify
the fitness function and remove the direct correlation
between it and the employed decision variable.

Additionally, we provide a similarity analysis regarding
three different terms from the three assessed datasets,
where it was possible to visualize how t-SNE influences the
similarity visualization. As the t-SNE stands for a dimen-
sionality reduction technique, it plays a significant role
in losing vital information, making not so visual the dif-
ference between positive and negative similar words, i.e.,
positive and negative words were mixed in the visualiza-
tion plot. Moreover, we analyze the computational load
between all meta-heuristics techniques. Considering all
datasets, ABC obtained the highest computational time,
followed by BA, PSO, and GP. Also, it is essential to high-
light that GP obtained feasible solutions within the lowest
optimization times for all datasets, being the most suitable
meta-heuristic technique in this work.

For future works, we aim to explore the correlations
between other t-SNE parameters, e.g., the learning rate
and the number of iterations, as well as to consider such an
approach in the context of additional word embeddings
models, e.g., GloVe, ELMO, and BERT, alongside with 3-D
visualization models.

Acknowledgements The authors are grateful to FAPESP Grant
#2019/02205-5.

Compliance with ethical standards

 Conflict of interest The authors declare that they have no conflict
of interest.

References

 1. Bertsekas DP (1999) Nonlinear programming. Athena Scientific,
Nashua

 2. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J
Mach Learn Res 3(Jan):993–1022

Fig. 12 Computational load over 20 Newsgroups dataset optimiza-
tion

Fig. 13 Computational load over Movie Reviews dataset optimiza-
tion

Fig. 14 Computational load over Reuters-21578 (ApteMod) dataset
optimization

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1673 | https://doi.org/10.1007/s42452-019-1689-4 Research Article

 3. Cao Y, Wang L (2017) Automatic selection of t-SNE perplexity.
arXiv preprint arXiv :1708.03229

 4. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman
R (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci
41(6):391–407

 5. Elman JL (1990) Finding structure in time. Cogn Sci
14(2):179–211

 6. Fister Jr I, Yang XS, Fister I, Brest J, Fister D (2013) A brief review
of nature-inspired algorithms for optimization. arXiv preprint
arXiv :1307.4186

 7. Ganguly D, Roy D, Mitra M, Jones GJ (2015) Word embedding
based generalized language model for information retrieval. In:
Proceedings of the 38th international ACM SIGIR conference on
research and development in information retrieval, pp 795–798.
ACM

 8. Go A, Bhayani R, Huang L (2009) Twitter sentiment classification
using distant supervision. CS224N Project Report, Stanford, vol
1(12), p 2009

 9. Hollander M, Wolfe DA (1999) Nonparametric statistical meth-
ods. Wiley, Hoboken

 10. Jolliffe I (2011) Principal component analysis. Springer, Berlin
 11. Jones MN, Mewhort DJ (2007) Representing word meaning and

order information in a composite holographic lexicon. Psychol
Rev 114(1):1

 12. Kanerva P, Kristoferson J, Holst A (2000) Random indexing of
text samples for latent semantic analysis. In: Proceedings of the
annual meeting of the Cognitive Science Society, vol 22

 13. Karaboga D, Basturk B (2007) A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm. J Global Optim 39(3):459–471

 14. Kennedy J, Eberhart R (2001) Swarm intelligence. M. Kaufman,
Vienna

 15. Koza JR (1992) Genetic programming: on the programming of
computers by means of natural selection. MIT Press, Cambridge

 16. Lang K (1995) Newsweeder: learning to filter netnews. In: Pro-
ceedings of the twelfth international conference on machine
learning, pp 331–339

 17. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278–2324

 18. Lewis DD (1991) Evaluating text categorization. In: Proceedings
of speech and natural language workshop, pp 312–318. Defense
Advanced Research Projects Agency, Morgan Kaufmann

 19. Liou CY, Cheng WC, Liou JW, Liou DR (2014) Autoencoder for
words. Neurocomputing 139:84–96

 20. Lund K, Burgess C (1996) Producing high-dimensional semantic
spaces from lexical co-occurrence. Behav Res Methods Instrum
Comput 28(2):203–208

 21. Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach
Learn Res 9(Nov):2579–2605

 22. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation
of word representations in vector space. arXiv preprint arXiv
:1301.3781

 23. Pang B, Lee L, Vaithyanathan S (2002) Thumbs up?: sentiment
classification using machine learning techniques. In: Proceed-
ings of the ACL-02 conference on empirical methods in natural
language processing, vol 10, pp 79–86. Association for Compu-
tational Linguistics

 24. Sundermeyer M, Schlüter R, Ney H (2012) LSTM neural networks
for language modeling. In: Thirteenth annual conference of the
international speech communication association

 25. Wilcoxon F (1945) Individual comparisons by ranking methods.
Biom Bull 1(6):80–83

 26. Yang XS (2011) Review of meta-heuristics and generalised evo-
lutionary walk algorithm. Int J Bio-Inspired Comput 3(2):77–84

 27. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach
for global engineering optimization. Eng Comput 29(5):464–483

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1708.03229
http://arxiv.org/abs/1307.4186
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

	How optimizing perplexity can affect the dimensionality reduction on word embeddings visualization?
	Abstract
	1 Introduction
	2 Word embeddings
	2.1 Word2Vec

	3 Dimensionality reduction
	3.1 t-Distributed stochastic neighbour embedding

	4 Meta-heuristic optimization
	4.1 Artificial bee colony
	4.2 Bat algorithm
	4.3 Genetic programming
	4.4 Particle swarm optimization

	5 Methodology
	5.1 Modeling t-SNE optimization
	5.2 Datasets
	5.3 Experimental setup

	6 Experimental results
	6.1 20 Newsgroups
	6.2 Movie reviews
	6.3 Reuters-21578 (ApteMod)
	6.4 Similarity discussion
	6.5 Computational load

	7 Conclusions
	Acknowledgements
	References

