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Abstract
In today’s data-intensive applications, machine learning constructs algorithms that are capable of learning and making 
predications on the data. Margin setting algorithm (MSA) is a novel machine learning algorithm for pattern classification. 
It employs an artificial immune system approach to generates prototype regions as the classification boundaries. How-
ever, its computation time limited its applications in real-world application. When the datasets grow in size and algorithm 
complexity increases, it is necessary to spread the work among multiple cores and processors. To reduce the execution 
time during classification, a parallel implementation of MSA, called PMSA is proposed for multicore and multiprocessor 
system. It is the first work to scale up the classification time of MSA using parallel implementation. To evaluate the pro-
posed PMSA algorithm, we used standard image datasets of 512 × 512 pixels and 321 × 481 pixels. Besides, benchmark 
datasets from University of California, Irvine Machine Learning Repository are also used. They are 768 data samples from 
dataset Pima Indian Diabetes, 683 data samples from dataset Wisconsin Breast Cancer, 690 data samples from dataset 
Australian Credit Approval, 178 data samples from dataset Wine and 391 data samples from dataset Svmguide2. The 
classification performance is compared with another two state-of-the-art classification algorithms: the artificial neural 
network and the support vector machine. The results show the proposed PMSA gains significant improvements in terms 
of execution time, with a promising speedup compared to the single-threaded CPU counterpart.
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1  Introduction

Machine learning is a form of artificial intelligence (AI) that 
has been explored in computer vision, natural language 
processing, speech recognition, robot control, social net-
works, financial analysis, medical diagnosis, security, and 
other applications. Machine learning enables the system 
to learn and improve from the experience rather than 
through explicit programming. Specifically, machine learn-
ing does not solve the problem by manually programming 
for all possible input. Instead, an easier way for machine 
learning is to train on some input–output behaviors and 
get learning models using statistical learning analysis. The 
models learn the inherent structure from the input data for 

unsupervised machine learning or predict the outcome 
from the input data for supervised machine learning. Many 
problems that machine learning algorithms tackle are 
data-intensive applications. They contain large volumes 
of data which needs to be processed [1, 2]. For example, 
a large amount of time series sensor log data collected 
in the smart home Internet of Things (IoT) environments 
feed in artificial neural networks (ANN), or support vector 
machine (SVM) to track and recognize resident activities, 
which helps old people living alone [3, 4]. Vast amounts 
of sentiment data from social networks are learned by 
decision trees, k-nearest neighbor, SVM, and Bayes, to 
manipulates people’s sentiments, opinions towards prod-
ucts, events, topics, etc. [5, 6]. Large-scale driving video 
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datasets are trained by the convolutional neural network 
(CNN) to predict driver action [7]. In addition, large storage 
and database of multimedia datasets are also trained by 
CNN for content-based image retrieval analysis [8]. How-
ever, most machine learning algorithms contain iterative 
processes that are computationally intensive. When these 
data sets grow in size, the execution time grows signifi-
cantly. Therefore, it is necessary to spread the computa-
tional intensive part among multiple cores or threads to 
reduce the time complexity.

Much research has been conducted into parallel 
implementations of machine learning algorithms. Recent 
developments include parallel implementation running 
on multi-core central processing units (CPUs) and graphic 
processing units (GPUs). GPUs are capable of processing 
data with higher peak computing power than CPUs alone 
[9]. The parallel programming models using GPUs include 
CUDA (Compute Unified Device Architecture), OpenCL 
(Open Computing Language), DirectCompute and many 
other approaches. Cuomo et al. [10] proposed a novel par-
allel implementation of self-organization map (SOM) neu-
ral networks on CUDA-GPU architectures. This approach 
uses the latest cuBLAS library from NVIDIA to achieve fast 
accelerated execution of standard linear algebra subrou-
tines. Tan et al. [11] presented a parallel implementation 
of SVM for hyperspectral image classification by utilizing 
CUDA and OpenMP. The advantage of the method is a two 
level parallelization that optimizes both the kernel func-
tions of SVM, and the cost in communication between GPU 
and host. Some high-level abstractions models are used 
to simply the parallel design and implementation along 
with GPU, such as MapReduce and GraphLab [12, 13]. 
MapReduce model uses mapper operation that is applied 
independently to each datum of a large datasets, then a 
reducer operation aggregates the outputs from each map-
per. However, MapReduce has a limitation when dealing 
with data dependencies. GraphLab model is able to pre-
sent dependencies using data graph and a shared data 
table.

On the other hand, parallel implementation on mul-
ticore CPUs gains overall performance improvement by 
using common low-level parallel programming practice 
for machine learning algorithms. There are POSIX thread, 
Open Multi-Processing (OpenMP) and Message Passing 
Interface (MPI) for shared and distributed memory archi-
tectures [14]. This method heavily relies on parallel data 
representation and programming challenges. Lotrič pre-
sents a parallel implementation of feed-forward neural 
network using MPI [15]. This method achieves accelera-
tion by updating the weights iteratively in batch mode 
for two gradient-based algorithms: the classical gradient 
descent algorithm and Levenberg–Marquardt algorithm. 

Zhao et al. [16] proposed a parallel implementation of SVM 
with multi-core and multiprocessor system.

Margin setting algorithm (MSA) is a novel machine 
learning algorithm that is proposed by Caulfield et al. [17] 
for pattern recognition. It has been applied in many fields, 
including segmentation analysis in hyperspectral images 
and impulse noise removal in color images [18–21]. 
Recently, it has been applied for anomaly detection for 
false data injection attack in smart grids and human activ-
ity learning [22, 23]. However, MSA still leaves a room for 
improvement in computational efficiency. To the best of 
our knowledge, this is the first work that MSA algorithm is 
improved with parallel implementation. Due to the mul-
tiple applications of MSA, its massive parallelization is a 
relevant contribution. Multicore processor is a suitable 
platform to implement MSA in terms of its flexibility, high 
performance, and energy-efficiency. The proposed parallel 
MSA, called PMSA, can significantly reduce the execution 
time.

The main contribution of this paper is twofold. First, 
a parallel pool of workers with the specified number of 
workers is used to reduce the MSA classification testing 
time. Second, we implement PMSA that can dynamically 
spawn a number of threads during runtime to perform 
parallelism. These two parallel mechanisms are per-
formed through experiments on image segmentation and 
machine learning benchmark datasets. The experimental 
results show that PMSA classification gains a significant 
speedup, comparing to serial implementation.

2 � Related work

A large body of research has been dedicated to parallel 
machine learning algorithms. Works have been conducted 
on supervised learning scenarios for Decision trees, K-near-
est neighbors (KNN), Naïve Bayes, SVM, ANN and CNN.

Decision tree is a tree structure that presents a natural 
way of decision-making. The decision tree takes examples 
as inputs. Each example includes a collection of attributes, 
together with an outcome (or class). To induce a decision 
tree, there are three basic elements: decision node, branch, 
and leaf. Decision node specifies a test attribute. Each 
branch is the outcome of that test attribute. Leaf node 
indicates the class that test example belongs to. There are 
mainly four methods for parallelism: horizontal, vertical, 
task and hybrid. Horizontal parallelism partitions the data 
to different processors, while vertical parallelism partitions 
the attributes to different processors, and task parallelism 
partitions the tree nodes to different professors. Hybrid 
parallelism implements the all other three parallelisms 
during different stages. For example, Ben-Haim et al. pro-
posed a new algorithm called streaming parallel decision 
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tree (SPDT). It builds the decision tree using horizontal 
parallelism for large datasets [24, 25].

KNN algorithm calculates the class of the unknown data 
based on the closest K neighbor examples with known 
class labels. KNN can be implemented in parallel using 
various methods. One is to partition the data using spa-
tial indexing structures [26]. However, this method is not 
efficient for high-dimensional data. To overcome this limi-
tation, parallelized brute-force KNN is proposed using a 
merge-path function and implement a truncated merge 
sort to find the K smallest squared distance of each ele-
ment in a query set Q to each element in a fixed set R [27].

Bayesian network is a probabilistic graphic model that 
is represented by directed acyclic graphs(DAG). The Naïve 
Bayes classifier is a simple Bayesian network that is com-
posed of DAGs with only one root (parent) node and sev-
eral child nodes. It assumes that that child nodes are inde-
pendent and will not consider any correlations between 
them. Naïve Bayes can be accelerated using GPU for auto-
matic document classification. It uses different threads 
running during the two steps of model generation: calcu-
lation of the probability of the terms within classes, and 
calculation of document term frequencies [28, 29].

SVM performs classification by finding the separat-
ing hyperplane that has the largest margin between two 
classes. For non-linear separable data, SVM employs ker-
nel functions that map the non-linear separable data from 
original space to feature space where the maximum mar-
gin hyperplane can be found. SVM has wide applications in 
various fields. Ali et al. [30] proposed a new image retrieval 
method that utilized the SVM for normalized histograms 
which is constructed by using the visual words integration 
of Scale Invariant Feature Transform (SIFT) and Speeded 
Up Robust Features (SURF). SVM was also applied to 3D 
face recognition on GavabDB database with an accuracy of 
87.5% [31, 32]. Besides, a method using SVM was proposed 
for satellite image classification based on Pairs Orthogonal 
Vector Histogram (POVH). The advantage is computing the 
discriminative spatial clues, which is robust to image rota-
tion and getting better performance than CNN [33]. Many 
parallel versions of SVM have been proposed. Lin et al. [34] 
presented a method using sparse matrix format to achieve 
better performance. Chang et al. proposed a method that 
performs a parallel row-based Incomplete Cholesky Fac-
torization (ICF) on the loaded data. In addition, a parallel 
interior-point method (IPM) is used to solve the quadratic 
programming problem using linear constraints for SVM 
[35]. However, this method does not consider advanced 
multicore architectures. You et al. considered X86-based 
multicore and many-core architectures, such as Ivy Bridge 
CPUs and Intel Xeon Phi (MIC), and presented a parallel 
sequential minimal optimization (SMO) algorithm for SVM. 
This method includes several analysis and optimizations in 

SVM to achieve multilevel parallelism, e.g., data parallelism 
and task parallelism [36, 37].

ANN is a non-linear data modeling tools for classifica-
tion and regression challenges. ANN is a self-adaptive and 
universal functional approximator for mapping any func-
tional relationship between the features and class labels. 
The most widely used algorithm for ANN is backpropa-
gation for building a feed-forward network composed of 
layers and neurons. Dahl et al. proposed a network parallel 
training technique to divide the neurons of the ANN across 
different threads on different machines. Each thread main-
tains one ANN copy and trains a randomly selected disjoin 
set of training samples. Over a certain number of epochs, 
the weights of all threads are collected and broadcast to 
other threads again. The process continued until the error 
is less than a threshold value. It is implemented using 
MPI [38]. The same parallel approach is used on multicore 
CPU for face recognition implemented by OpenMP. The 
disadvantage of this method is that the ANN should be 
very large to offset the communication overhead between 
neurons on different threads. Huqqani et al. also presented 
the GPU based approach by putting only one copy in GPU. 
Each thread on GPU executes independently. One auxiliary 
array is needed to store the weights and input data for the 
looping GPU [39].

CNN is an important deep learning algorithm that 
attempts to learn multiple layers of representations and 
abstractions to get the complex relationship of the data. 
There is a large body of research conducted on application 
of CNN. For example, Ratyal et al. presented a pose invari-
ant deeply learned multi-view 3D face recognitions using 
deep convolutional neural network, which yields superior 
performance as compared to other existing methods [40]. 
Additionally, CNN was also used to assist makeup-invariant 
face recognition using augmented face dataset, as well 
as accurate age estimation by investigating the asym-
metric left and asymmetric right face images [41, 42]. The 
practical implementations of CNN heavily reply on paral-
lel processors, such as GPU. Nowadays, most of the deep 
learning algorithms have been implemented using deep 
learning existing frameworks. The implementation most 
focus on high-level issues so that developers do not need 
to worry about the close optimization of parallel kernels 
with respect to different hardware platforms. For example, 
Catanzaro et al. proposed a library with optimized routines 
for deep learning workloads and it is easy to be integrated 
to existing frameworks, e.g., Caffe. This approach opti-
mized the performance on matrix multiplication routines 
which are converted from convolutions. They do not use 
any auxiliary memory [43, 44].
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3 � Parallel margin setting algorithm

3.1 � Background

The invention of margin setting algorithm motivates by 
pattern recognition. Pattern recognition in machine learn-
ing is a method of making statistical inferences from the 
perceptual data. One central important work of pattern 
recognition is classification. The main purpose of classifica-
tion is to understand and perceive the discriminant among 
patterns. In particular, a pattern is defined as a pair of ⟨x, y⟩ , 
where x is a feature vector composed of a collection of 
features. Features can be a series of attributes or properties 
of data, which can be numerical (i.e., length), or symbolic 
(i.e. shape). If the feature vector x has m features, x is inside 
the m-dimension feature space. Note that examples ⟨xi , yi⟩ 
of a pattern, share similar features values may belong to 
the same class, and if they share different features, they 
should be categorized into different classes. Therefore, it is 
desirable that a good feature vector contains features that 
can discriminate among one another very well.

MSA is different from SVM in two-fold. First, the original 
design of margin setting classifier can be more applica-
ble to difficult non-separable scenarios, but the original 
design of SVM is motivated by a linear classifier. Second, in 
the non-separable scenario, SVM can seek a linearly sepa-
ration by mapping data into higher dimensional space. 
However, MSA only considers classifying the data in its 
original feature space with optimal classifiers. The optimal 
classifiers are the union of all the prototypes of its class.

3.2 � Training

Each class region of MSA is as a set of prototype regions - 
hyperspheres. Prototypes are classifiers of MSA, so we use 
prototypes and classifier interchangeably. Specifically, the 
prototype is defined as a hypersphere, or n-sphere, where 
n is a natural number and represents the n-dimension 
space. �i is the centroid of G, Ri is the radius of G , Cp is the 
class label. i and k are natural numbers. N is the number 
of prototypes belonging to class Cp . The prototypes G are 
a set of center-radius form with class label Cp(p = 1, 2, ..P)

The training process of MSA includes two concurrent 
processes: evolution and partition, as shown in Fig. 1. The 
evolution process is a process that seeks an optimal pro-
totype for each class after a number of iterations. Each 
iteration is called one mutation. After the evolution pro-
cess ends, it enters into the partition process. The parti-
tion process separates the training data into subsets after 

(1)Gi =
(
�i , Ri ,Cp

)
, 1 ≤ i ≤ N, p = 1, 2,… , P

several iterations. Each iteration is called one generation. 
We discuss these two iterative processes respectively.

1.	 Evolution process the evolution process of MSA 
employs an artificial immune system approach by 
continually developing new antibodies to fight off the 
antigens. It can be seen in Fig. 2 that this process per-
forms three steps repeatedly until the stopping condi-
tions are reached. The three steps are: (a) prototypes 
generation, (b) fitness calculation and (c) prototypes 
mutation.

Prototypes generation starts with N random points in 
the normalized space. The N random points are antibod-
ies. The training sample set T are antigens. Prototypes are 

Fig. 1   MSA training process

Fig. 2   PMSA classification at thread-level
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constructed by using antibodies as the center. If the clos-
est antigen belongs to class Cp to this center, this proto-
type covers class Cp. The radius is the distance between 
this center and the closest antigen of a different class C

′

p
 . 

In this case, the constructed prototypes of class Cp only 
covers training points of class Cp. However, some con-
structed prototypes are redundant since they cover the 
same training sample points. To remove the redundancy, 
the prototypes are evaluated for fitness.

Fitness calculation is measured using a metric called, 
Figure of Merit. Given a prototype G, the figure of merit 
F is defined as the number of points belongs to class Cp 
inside the prototype G . Figure of merit represents the fit-
ness of the prototype classifier. A large F is considered bet-
ter in fitness than a smaller value of F . Then all the F values 
of prototypes are calculated. The largest F is LF . Only the 
prototypes with LF is used for this generation. Other pro-
totypes are discarded. In order to find a prototype with a 
larger LF , MSA starts a search in the neighborhood area 
using mutation.

Prototypes mutation starts after the LF of the proto-
types for each class is calculated. The aim of mutation is 
to find a larger LF . MSA starts a search by selecting one 
prototype each class to mutate to several prototypes. This 
selection is a stochastic method that randomly select one 
prototype within figure of merit distribution of the proto-
types. This distribution can ensure that prototypes with 
larger figure merit will have higher probability during our 
selection. After this prototype is chosen, the center of this 
prototypes will mutate to N points. The mutations of the 
points follow a certain randomness to ensure that they 
are in the neighborhood areas. The mutation usually rans 
for several iterations. It stops when we could not find a 
larger LF for all classes or it reaches to certain number of 
iterations, which is set by user. Once the mutation stops, 
these mutated points are used as random points when it 
returns to step a) to generate new prototypes. Therefore, 
the artificial immune system approach is to continually 
develop new prototypes (antibodies) to cover as many as 
samples points (antigens).

2.	 Partition process this process begins after mutation 
stops. The training sample points inside the prototypes 
with LF of each class is denoted as subset T1 , which 
are considered training points that covered by optimal 
prototypes. These prototypes are optimal and strong 
classifiers which classify class points correctly. It is dif-
ferent from Boosting algorithm which combines weak 
classifiers [45]. The partition process removes T1 out 
from the original training set T  . Then the remaining 
sets will enter the evolution process to construct new 
prototypes again.

Compare to the training process for some machine 
learning algorithms, such as SVM, which uses the whole 
training set to seek hyperplane classifiers that has the 
largest margin, MSA gradually divides the training set 
into smaller subsets. MSA trains classifiers for those smaller 
problems with a margin preset by the user for error. The 
advantage of this decomposition is breaking the whole 
training sets into a number of small subsets makes it eas-
ier to find classifiers for non-separable cases. Specifically, 
given training set S, MSA generates a partition of the set 
T  and each partition is denoted as subsets T1 , T2 , T3,….The 
training set can be viewed as a union of its subsets and the 
subsets are non-empty and non-overlapping. In particular, 
we formulate the partition process as below:

The above partition process is conducted at runtime. 
MSA iteratively seeks the prototypes for the subsets, and 
the partition subsets are generated sequentially. Next, 
those training points fall into the prototypes are removed 
from the whole training set, and the remaining training 
sets recursively perform the partition task until no train-
ing points left.

Ideally, MSA stops when all the points are partitioned 
out and the reduced set becomes empty However, con-
sidering the misclassified and unclassified points, the 
ideal case may not be reached. Therefore, some param-
eters values are preset to prevent the algorithm does not 
converge for a long time. First, the portion of the mem-
bers in the reduced set drops to a user set small limit, e.g., 
0.001%. Second, the number of generations raises to a user 
set limit, e.g., 20. As long as one of the above conditions 
meets, MSA stops the training process.

3.3 � Parallel MSA

PMSA iteratively solve the problems and get the optimized 
classifier, i.e., prototypes. The prototype regions are the 
decision boundaries for classification. The classification 
process is proposed to implement it in parallel. The algo-
rithms of PMSA is presented as follows:

Consider a multiclass ( P classes) problem. Each class can 
be denoted as class Cp(p = 1, 2, ..P) . There are O objects 
in raw data belongs to P classes. Each sample point is an 
n-dimensional feature vector x with m attributes, and it 
can be denoted as xi =

(
x1,… , xm

)
 . We present margin set-

ting algorithm in five phases below: prototype generation, 
fitness calculation, prototype mutation, partition and par-
allel classification testing.

(2)
T =

⋃

i>1

Ti

where Ti ≠ �& Ti ∩ Tj = �(i ≠ j).
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Algorithm 1 PMSA
Notation:
Unif (A): uniform distribution on set A.
χ: margin
M ∶ number of iterations during mutation
Q ∶ number of partitions/generations
MM: Maximum Mutation
MQ: Maximum Generation
N: Number of random points
INPUT:

        1) Training set T =
{(

x1,… , xm
)}

 , consists of m training 
samples. Each training sample xk(1 ≤ k ≤ m) is n-dimension 
vector ( n ≥ 2) with class label Cp(p = 1,… , P) . ( P > 1 ) clas-
sification problem,

        2) Testing set S =
{(

y1,… , yn
)}

 ., consists of n unknown label 
testing samples.

INITILIZE:
Set MM ← 20; MG ← 20; N ← 20; M ← 0; N ← 0;
REPEATE:

        1. Normalize T  into [0, 1] space. Randomly select N n-dimen-
sion points ωi(1 ≤ i ≤ N) ∈ Unif [0, 1].

REPEATE:
Prototype Generation

        2. Build prototypes Gi =
(
�i , Ri ,Cp

)
, 1 ≤ i ≤ N, p = 1, 2,… , P} . 

Compute the centers ωi of Gi of class Cp that has the minimum 
Euclidean distance from �i to xk:

dk = min||||ωi − xk
||||.                       (3)

        3. Compute the radius Rk of Gi . It equals the minimum Euclid-
ean distance from �i to xj:
Rk = min�i − xj , j ≠ k .                     (4)

Fitness Calculation
        4. Compute the fitness, measured by figure of merit of the 

prototype. The figure of merit of prototype Gi is denoted as FGi
 , 

i.e., the number of class Cp data samples inside of Gi geometri-
cally. Suppose class label Cp contains total h prototypes for 
during the current iteration. The largest figure of merit among 
all h prototypes is LF:

LF = max
{
FG1

, FG2
,… , FGh

}
 . (5)

Prototypes Mutation

        5. Select one center �
′

i
 of prototype Gi each class to mutate to 

N random points in the neighborhood area of �
′

i
 . Calculate the 

proportional of the prototypes of figure of merit fp:

fp =
FGi∑h

1
FGi  . (6)

If i in �
′

i
 satisfy the following distribution function and 

ζ ∈ Unif [0, 1] : 

i−1∑
𝜉=1

f
𝜉
< ζ ≤

i∑
𝜉=1

f
𝜉

 . Select �
′

i
 to mutate to another N 

points. The mutated N points are:

      �
�

i
+ ��U . (7)

Where � is random sign symbol {-1,1}. � ∈ Unif [0, 1] . U is the maxi-
mum perturbation:

U =

{
�

�

i
if�k ≤

min{xk}+max{xk}
2

max
{
xk
}
− �

�

i
Otherwise

(1 ≤ k ≤ m)

 . (8)

        6. M ← M + 1 , enter the next mutation round. The largest 
figure of merit in current generation M + 1 is denoted as LFM+1 , 
the previous generation is LFM.

UNTIL M > MW  ∥ LFM > LFM+1

Partition
        7. Partition the training set T  by removing all data in the 

prototype Go
i
 . Go

i
 is the optimal prototyope with largest figure 

of merit LFM , and radius Ri,Q , where
Ri,Q = (1 − �)Ri,Q . (9)

We tune the margin 𝜒(0 ≤ 𝜒 < 1) to shrink the radius of hyper-
spheres. A larger margin tends to yield better generalization. The 
reduced training set is T ′.
        8. T ← T ′ , update the training set T  as the content of reduced 

set T ′.
        9. Q ← Q + 1 , enter the next generation round.

UNTILE T � = � ∥ Q > MQ

Parallel Classification
        10. After partition completes and all the prototypes gener-

ated in all Q generations for all classes Cp(p = 1, 2,… P) ., the 
prototypes for all p classes are

G� =
Q⋃
t=1

P⋃
Cp=1

Go
i
�t,Cp

 . (10)
        11. Dynamically assign n threads/processes for testing. 

Each thread/process handles one prototype G′. Each thread 
execute: For all points yi in test set S , we compute the Euclid-
ean distance between yi and ωi , where ωi is all the centers of 
prototypes G’

(
�i , Ri ,Cp

)
, , and if

||||yi − ωi
|||| ≤ Rk . (11)

Set variable Output = 1. The points yi belongs to class Cp . yi = Cp . 
Otherwise, Output = 0.
        12. Gather results from all threads. Logic OR operators is 

performed on all output to detersmine the classification 
results. yi = Cp when Output = 1. Otherwise, Output = 0. yi is 
not classified.

To aforementioned mathematical model of the parallel 
classification of MSA is presented in Fig. 2. Training pro-
cess of MSA completes after several iterations/generations, 
denoted as Gen 1, Gen2,…, Gen n, which yields multiple 
prototypes G1 … Gn as its classification decision bounda-
ries. For each generation, MSA splits the training set T into 
two subsets. One subset is the training points covered by 
the prototypes. The other subset is the remaining unclas-
sified class points. MSA usually keeps only one prototype 
with LF for each class. If the training points of one class are 
all classified after several generations, no more prototypes 
will be generated for that class. However, MSA still contin-
ues to generate prototypes to cover the remaining unclas-
sified training points. If there are P classes, the maximum 
number of prototypes can yield for one generation is P.

Take a look at a binary classification problem (class 1, 
2) shown in Fig. 2. The training set T is split into subsets T1 
and T2 in the first generation (Gen 1). Training set T1 is the 
class points containing class 1 points covered by G1 and 
class 2 points covered by G2 . The remaining class points 
are the training set T2 . In the next generation (Gen 2), T2 is 
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split to T3 and T4 . Training set T3 is the class points contain-
ing class 1 points covered by G3 and class 2 points covered 
by G4 . Training set T4 contains the remaining unclassified 
points. Eventually, all class points are classified by proto-
types {G1…Gn}. Note that each generation does not nec-
essarily yield one prototype for each class. For example, 
during some generation, all class 1 points have been clas-
sified, the remaining set only contains class 2 points. In 
this case, the next generation will only yield one prototype 
for class 2. Therefore, MSA tends to classify the total class 
points using a disjunction of several prototypes generated 
through multiple generations.

In addition, it can be seen from Fig. 2, the proposed par-
allel classification is conducted at thread-level parallelism 
(TLP). TLP concentrates on splitting the tasks so that each 
subtask is concurrently running on the same data across 
different processing unit [46]. MSA classification tasks are 
conducted sequentially through a series of classifiers. We 
consider an efficient parallel practice is to split this whole 
sequential task into several subtasks. In MSA, it generates 
a sequence of prototypes {G1…Gn} as classifiers. Each clas-
sifier exhibits good generation with a low VC dimension. 
The unknown or new data can be classified by the pro-
totypes {G1…Gn} in parallel for each class independently. 
Each classifier can be allocated a thread/process to test 
the unknown belongs to that class or not. If the classifier 
can classify the unknown correctly, output 1. Otherwise, 
output 0. Then the overall classification result is a simple 
logic OR of output from each thread. For example, it can 
be seen from Fig. 2, we allocate thread 1 to n to prototypes 
{G1 …Gn} . For class 1, {G1, G3,…} are the classifiers that use 
thread 1, 3,…to test the unknown data can be classified 
and recognized as class1 independently. For class 2, {G2, 
G4,…} are the classifiers that use thread 2, 4, …to test the 
unknown data can be classified and recognized as class2 
independently.

4 � Experiments and results

To test the efficiency of the proposed PMSA, our experi-
ment was conducted in two stages. First, we open a pool 
of workers for MSA classification applied to image seg-
mentation. Second, threads are used to spawn a number 
of threads during runtime and speed up the MSA classi-
fication. Several machine learning benchmark data sets 
are chosen for the classification tasks. Our parallel experi-
ments are all conducted on a machine with Intel Xeon 
processor E5520, 2.27  GHz. It is equipped with 2-pro-
cessors, and each processor has 4 cores. Each core uses 
hyper-threading. Totally we can utilize 16 logic processors 
to accelerate the performance of MSA classification in the 
testing phase.

4.1 � Image segmentation

MSA is a supervised learning algorithm that was applied 
to discriminate the objects in images. The intensity of the 
color pixels is chosen as the features for classification. Two 
benchmark color images: Airplane and Peppers are used in 
the experiment as shown in Fig. 3a and b. The image sizes 
of Airplane is 321 × 481 pixels and Peppers is 512 × 512 pix-
els in R, G, B components respectively. The image segmen-
tation tasks are as follows: MSA performs segmentation on 
the airplane from its background as shown in Fig. 3c. To 
implement it, we consider airplane and background are 
two classes. Training sets are constructed by randomly 
selecting 20 points from airplane and another 20 points 
from the pixels are not airplane. After MSA training, the 
generated prototypes are used to perform a binary clas-
sification on the image Airplane. For image Peppers, MSA 
remove the red peppers out from the image as shown 
in Fig. 3d. To perform MSA classification, red peppers is 
one class. Other peppers, including dark green and light 
green peppers, is another class. Training sets are 20 ran-
dom points from each class, i.e., total 40 points. Overall, it 
can be seen that MSA yields good performance for image 
segmentation. We also compare the results with SVM and 
ANN.

To accelerate the MSA classifications on the image data 
sets, we utilized the parallel pool. It opens a set of workers 
that uses parallel pool to execute the statements in paral-
lel as shown in Fig. 4. The number of workers corresponds 
to the number of processes that can be run simultane-
ously. To test the effectiveness of the parallel workers on 
multicore and multiprocessor system, we choose different 
size of the data sets. For simplicity, we resize the Airplane 
image by factor of 2, 3, 4…10, and perform the image 
segmentation tasks. The number of image pixels are the 
total of the data points during MSA classification. Each 
data has three features, i.e., the intensity value in R, G, B 
channels respectively. The execution time of non-parallel, 
2, 4, 6 8, 12 and 16 workers are reported in Table 1. Serial 
MSA execution time is when we run it on the single pro-
cessor system sequentially without any parallel scheme. It 
shows that the execution time is greatly reduced when the 
number of workers increases. Specifically, the execution 
time for 8 workers is reduced more than 6, 4 and 2 work-
ers. For example, when the image size is 3210 × 4810, the 
execution time for segmenting the airplane out from its 
background is reduced from 280.002 s for the non-parallel 
scenario to 58.724 s for 8 workers, and only 38.419 s for 
16 workers.

Next, we investigate the speedup ratio and parallel effi-
ciency obtained by the parallel pool. The speedup ratio R is 
the relative performance measurement between a single 
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processor system and a multiprocessor system. It is calcu-
lated as follows:

where Ts is the execution time on a single processor sys-
tem, Tm is the execution time on a multiprocessor system 
with m processors. The parallel efficiency E can be esti-
mated as the ratio of speedup to the number of proces-
sors. It measures the fraction of time for which a processor 
is being used on the computation. Efficiency is calculated 
as:

(12)R(n) = Ts∕Tm

(13)E =
Ts

mTm

Fig. 3   PMSA for image segmentation. a Image “Airplane”; b Image “Peppers”; c classification results for Image “Airplane”; d classification 
results for Image “Peppers”

Fig. 4   PMSA using parallel pool of workers
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The speedup ratio is reported in Table 2 and Fig. 5. It 
shows that the speedup increases when we increase the 
number of workers. The speedup has a higher value for 16 
workers than 12, 8, 4 and 2 workers for all image sizes. The 
average speedup ratio is 7.06 for 16 workers, and 4.54 for 
8 workers, comparing to 1.93 for 2 workers. We also note 
that the primary increase of speedup ratio happens before 
the image size increases to a certain amount. For exam-
ple, the speedup ratio increases from 3.11 to 4.26 after the 
image sizes rise up to 0.4 × 107 image pixels for 6 work-
ers. After that, the speedup ratio increases slowly, only to 
4.31 when the number of image pixels reach to 4.6 × 107 . 
Similarly for 16 worker case, the speedup ratio rises up 
quickly from 5.93 to 7.22 when we enlarge the image size 
to 963 × 1443 pixels in its R, G, B channel. After that, there 
is only an 0.06 speedup ratio gain after the image resizes 
to 3210 × 4810 pixels. 

The parallel efficiency E of different workers is presented 
in Fig. 6. It is expected that the E reaches to 1 if the parallel 
algorithm scales linearly and achieves very good perfor-
mance. When PMSA is tested with 2 workers, E reaches 
to 1 when the image contains 1.1 × 107 pixels. However, E 
drops to when the number of workers increases. Specifi-
cally, the average value of E falls to 0.81 for 4 workers, 0.68 

for 6 workers, 0.56 for 8 workers, 0.49 for 12 workers and 
0.44 for 16 workers. This comes from the fact that PMSA 
employs a thread-level data parallelism which distributes 
the generated prototypes across different workers. It is less 
efficient than a task-parallelism.

4.2 � Benchmark datasets

We also implement PMSA classification using Threads. For 
multicore and multiprocessor system, each independent 
processor owns a specific amount of physical resources. 
In order to take full advantage of the thread-level parallel-
ism, a practical way is to set the proper number of threads 
equaling to the number of prototypes generated. To test 
the PMSA performances, several machine learning bench-
mark datasets from the UCI machine learning repository 
are chosen for the experiment [47]. The details of the data-
sets are shown in Table 3 below. There are five datasets: 
Pima Indians Diabetes, Wisconsin Breast Cancer, Austral-
ian Credit Approval, Wine and Svmguide2. One-third of 
the datasets are randomly chosen for training, and the 
remaining data for testing. We repeat the experiments for 
ten times and compute the average results.

Table 1   Execution time of 
PMSA for image segmentation 
(s)

Image size Serial 2 worker 4 worker 6 worker 8 worker 12 worker 16 worker

321*481 2.912 1.728 1.140 0.936 0.854 0.602 0.491
642*962 11.554 6.300 3.812 3.098 2.730 2.041 1.711
963*1443 25.186 12.832 7.748 5.906 5.352 4.105 3.486
1284*1924 44.974 22.646 13.336 10.548 9.940 7.553 6.384
1605*2405 70.614 35.124 21.090 16.720 14.984 11.496 9.763
1926*2886 100.390 51.092 30.884 23.736 20.848 16.074 13.686
2247*3367 137.626 68.954 40.676 33.210 29.210 22.409 19.031
2568*3848 178.840 90.952 53.082 41.672 37.012 28.560 24.326
2889*4329 226.638 113.626 66.584 52.624 47.900 36.783 31.254
3210*4810 280.002 141.668 81.894 64.938 58.724 45.175 38.419

Table 2   Performance of PMSA 
for image segmentation (s)

Image size Speedup 2 
worker

Speedup 4 
worker

Speedup 6 
worker

Speedup 8 
worker

Speedup 12 
worker

Speedup 
16 worker

321 * 481 1.685 2.554 3.111 3.409 4.840 5.930
642 * 962 1.833 3.030 3.729 4.232 5.662 6.752
963 * 1443 1.962 3.250 4.264 4.705 6.136 7.226
1284 * 1924 1.985 3.372 4.263 4.524 5.955 7.045
1605 * 2405 2.010 3.348 4.223 4.712 6.143 7.233
1926 * 2886 1.964 3.250 4.229 4.815 6.245 7.335
2247 * 3367 1.995 3.383 4.144 4.711 6.142 7.232
2568 * 3848 1.966 3.369 4.291 4.831 6.262 7.352
2889 * 4329 1.994 3.403 4.306 4.731 6.161 7.251
3210 * 4810 1.976 3.419 4.311 4.768 6.198 7.288
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To validate the classification performance, we com-
pared the PMSA to another two other state-of-the-art 
algorithms, SVM and ANN. There are two considerations. 
First, both PMSA and SVM are margin-based classifiers. 
Their performances are affected by margin, which is the 
distance from each example to the decision boundary. 
Second, both SVM and ANN are popular supervised clas-
sification algorithms that were applied to test UCI bench-
mark datasets. The default parameters are chosen for MSA. 
We set the margin χ of MSA from 0 to 0.5 for classification 
results. The SVM default parameters we chose are Radius 
basis function (RBF) kernel, with regularization parameter 
C = 1. The kernel parameter γ is set as the reciprocal of the 
number of features in the datasets. ANN implements a 

two-layer feed-forward backpropagation neural network 
with 10 neurons in its hidden layers. The classification per-
formance of PMSA is reported in Table 4. It can be seen 
that PMSA yields better performance than SVM and ANN 
for all datasets.

The execution time and speedup of PMSA are reported 
in Table 4. This approach generated the number of threads 
that equals to the number of prototypes. Therefore, the 
number of threads are dynamically determined after the 
training process of MSA. This thread-level parallelism 
achieves the best speedup ratio 65.69 for Indian Diabetes 
dataset. When a large number of prototypes are gener-
ated, the speedup capacity will be affected. In this case, 
the communication overhead increases when splitting 
the classification task to a large number of threads. Our 
algorithm overall shows good speedup results.

5 � Conclusion

In this work, we proposed a novel parallel implementation 
of a supervised learning algorithm, called margin setting 
algorithm. It is the first work to design a parallel mecha-
nism to speed up the classification phase of the MSA. 
Our proposed parallel mechanism includes using parallel 
pool of workers with the specified number of workers to 
run MSA classification in parallel. In addition, threads are 
implemented to dynamically spawn the number of threads 
in runtime, and they spread the classification work among 
multi-core and multiprocessor system. Extensive experi-
ments have been conducted to analyze the execution time 
and speedup of the PMSA. We applied PMSA on image 
data to perform image segmentation, and then classifica-
tion on benchmark data sets from the UCI machine learn-
ing repository. We vary the number of workers during par-
allel implementation on image segmentation. The results 
show that speedup ratio tends to be higher when the 
image increase to a certain size. To validate the correctness 
of the proposed algorithm, the classification performance 
is also compared with SVM and ANN for benchmark data. 
The experimental results show that the proposed PMSA 

Fig. 5   Speedup ratio of PMSA for image segmentation

Fig. 6   Parallel efficiency of PMSA for image segmentation

Table 3   Benchmark Datasets

Dataset # training # testing # features # classes

Pima Indians diabetes 257 511 8 2
Wisconsin breast 

cancer
228 455 10 2

Australian credit 
approval

231 459 14 2

Wine 60 118 13 3
Svmguide2 131 260 20 3
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yields good classification accuracy and greatly reduces the 
computation time during testing phase. In the future, we 
will work on parallel mechanism on the training process of 
PMSA. Larger scale datasets will be used to test the robust-
ness of the proposed parallel learning algorithm. One limi-
tation of this work is that the thread-level parallelism that 
PMSA employs only relies on multicore and multiprocessor 
system. We will deploy PMSA on GPU and compare it with 
other deep learning algorithms, such as convolutional 
neural networks and recurrent neural networks, for data-
intensive applications.
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