
Vol.:(0123456789)

SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6

Research Article

A novel parallel learning algorithm for pattern classification

Yi Wang1 · Jian Fu2 · Bingyang Wei3

Received: 26 September 2019 / Accepted: 13 November 2019 / Published online: 20 November 2019
© Springer Nature Switzerland AG 2019

Abstract
In today’s data-intensive applications, machine learning constructs algorithms that are capable of learning and making
predications on the data. Margin setting algorithm (MSA) is a novel machine learning algorithm for pattern classification.
It employs an artificial immune system approach to generates prototype regions as the classification boundaries. How-
ever, its computation time limited its applications in real-world application. When the datasets grow in size and algorithm
complexity increases, it is necessary to spread the work among multiple cores and processors. To reduce the execution
time during classification, a parallel implementation of MSA, called PMSA is proposed for multicore and multiprocessor
system. It is the first work to scale up the classification time of MSA using parallel implementation. To evaluate the pro-
posed PMSA algorithm, we used standard image datasets of 512 × 512 pixels and 321 × 481 pixels. Besides, benchmark
datasets from University of California, Irvine Machine Learning Repository are also used. They are 768 data samples from
dataset Pima Indian Diabetes, 683 data samples from dataset Wisconsin Breast Cancer, 690 data samples from dataset
Australian Credit Approval, 178 data samples from dataset Wine and 391 data samples from dataset Svmguide2. The
classification performance is compared with another two state-of-the-art classification algorithms: the artificial neural
network and the support vector machine. The results show the proposed PMSA gains significant improvements in terms
of execution time, with a promising speedup compared to the single-threaded CPU counterpart.

Keywords  Parallel computing · Margin setting · Machine learning, pattern classification, prototypes

1  Introduction

Machine learning is a form of artificial intelligence (AI) that
has been explored in computer vision, natural language
processing, speech recognition, robot control, social net-
works, financial analysis, medical diagnosis, security, and
other applications. Machine learning enables the system
to learn and improve from the experience rather than
through explicit programming. Specifically, machine learn-
ing does not solve the problem by manually programming
for all possible input. Instead, an easier way for machine
learning is to train on some input–output behaviors and
get learning models using statistical learning analysis. The
models learn the inherent structure from the input data for

unsupervised machine learning or predict the outcome
from the input data for supervised machine learning. Many
problems that machine learning algorithms tackle are
data-intensive applications. They contain large volumes
of data which needs to be processed [1, 2]. For example,
a large amount of time series sensor log data collected
in the smart home Internet of Things (IoT) environments
feed in artificial neural networks (ANN), or support vector
machine (SVM) to track and recognize resident activities,
which helps old people living alone [3, 4]. Vast amounts
of sentiment data from social networks are learned by
decision trees, k-nearest neighbor, SVM, and Bayes, to
manipulates people’s sentiments, opinions towards prod-
ucts, events, topics, etc. [5, 6]. Large-scale driving video

 *  Yi Wang, yi.wang@manhattan.edu; Jian Fu, jian.fu@aamu.edu; Bingyang Wei, b.wei@tcu.edu | 1Electrical and Computer Engineering
Department, Manhattan College, Riverdale, NY 10471, USA. 2Electrical Engineering and Computer Science Department, Alabama A&M
University, Normal, AL 35762, USA. 3Computer Science Department, Texas Christian University, Fort Worth, Texas 76129, USA.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1687-6&domain=pdf

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6

datasets are trained by the convolutional neural network
(CNN) to predict driver action [7]. In addition, large storage
and database of multimedia datasets are also trained by
CNN for content-based image retrieval analysis [8]. How-
ever, most machine learning algorithms contain iterative
processes that are computationally intensive. When these
data sets grow in size, the execution time grows signifi-
cantly. Therefore, it is necessary to spread the computa-
tional intensive part among multiple cores or threads to
reduce the time complexity.

Much research has been conducted into parallel
implementations of machine learning algorithms. Recent
developments include parallel implementation running
on multi-core central processing units (CPUs) and graphic
processing units (GPUs). GPUs are capable of processing
data with higher peak computing power than CPUs alone
[9]. The parallel programming models using GPUs include
CUDA (Compute Unified Device Architecture), OpenCL
(Open Computing Language), DirectCompute and many
other approaches. Cuomo et al. [10] proposed a novel par-
allel implementation of self-organization map (SOM) neu-
ral networks on CUDA-GPU architectures. This approach
uses the latest cuBLAS library from NVIDIA to achieve fast
accelerated execution of standard linear algebra subrou-
tines. Tan et al. [11] presented a parallel implementation
of SVM for hyperspectral image classification by utilizing
CUDA and OpenMP. The advantage of the method is a two
level parallelization that optimizes both the kernel func-
tions of SVM, and the cost in communication between GPU
and host. Some high-level abstractions models are used
to simply the parallel design and implementation along
with GPU, such as MapReduce and GraphLab [12, 13].
MapReduce model uses mapper operation that is applied
independently to each datum of a large datasets, then a
reducer operation aggregates the outputs from each map-
per. However, MapReduce has a limitation when dealing
with data dependencies. GraphLab model is able to pre-
sent dependencies using data graph and a shared data
table.

On the other hand, parallel implementation on mul-
ticore CPUs gains overall performance improvement by
using common low-level parallel programming practice
for machine learning algorithms. There are POSIX thread,
Open Multi-Processing (OpenMP) and Message Passing
Interface (MPI) for shared and distributed memory archi-
tectures [14]. This method heavily relies on parallel data
representation and programming challenges. Lotrič pre-
sents a parallel implementation of feed-forward neural
network using MPI [15]. This method achieves accelera-
tion by updating the weights iteratively in batch mode
for two gradient-based algorithms: the classical gradient
descent algorithm and Levenberg–Marquardt algorithm.

Zhao et al. [16] proposed a parallel implementation of SVM
with multi-core and multiprocessor system.

Margin setting algorithm (MSA) is a novel machine
learning algorithm that is proposed by Caulfield et al. [17]
for pattern recognition. It has been applied in many fields,
including segmentation analysis in hyperspectral images
and impulse noise removal in color images [18–21].
Recently, it has been applied for anomaly detection for
false data injection attack in smart grids and human activ-
ity learning [22, 23]. However, MSA still leaves a room for
improvement in computational efficiency. To the best of
our knowledge, this is the first work that MSA algorithm is
improved with parallel implementation. Due to the mul-
tiple applications of MSA, its massive parallelization is a
relevant contribution. Multicore processor is a suitable
platform to implement MSA in terms of its flexibility, high
performance, and energy-efficiency. The proposed parallel
MSA, called PMSA, can significantly reduce the execution
time.

The main contribution of this paper is twofold. First,
a parallel pool of workers with the specified number of
workers is used to reduce the MSA classification testing
time. Second, we implement PMSA that can dynamically
spawn a number of threads during runtime to perform
parallelism. These two parallel mechanisms are per-
formed through experiments on image segmentation and
machine learning benchmark datasets. The experimental
results show that PMSA classification gains a significant
speedup, comparing to serial implementation.

2 � Related work

A large body of research has been dedicated to parallel
machine learning algorithms. Works have been conducted
on supervised learning scenarios for Decision trees, K-near-
est neighbors (KNN), Naïve Bayes, SVM, ANN and CNN.

Decision tree is a tree structure that presents a natural
way of decision-making. The decision tree takes examples
as inputs. Each example includes a collection of attributes,
together with an outcome (or class). To induce a decision
tree, there are three basic elements: decision node, branch,
and leaf. Decision node specifies a test attribute. Each
branch is the outcome of that test attribute. Leaf node
indicates the class that test example belongs to. There are
mainly four methods for parallelism: horizontal, vertical,
task and hybrid. Horizontal parallelism partitions the data
to different processors, while vertical parallelism partitions
the attributes to different processors, and task parallelism
partitions the tree nodes to different professors. Hybrid
parallelism implements the all other three parallelisms
during different stages. For example, Ben-Haim et al. pro-
posed a new algorithm called streaming parallel decision

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6	 Research Article

tree (SPDT). It builds the decision tree using horizontal
parallelism for large datasets [24, 25].

KNN algorithm calculates the class of the unknown data
based on the closest K neighbor examples with known
class labels. KNN can be implemented in parallel using
various methods. One is to partition the data using spa-
tial indexing structures [26]. However, this method is not
efficient for high-dimensional data. To overcome this limi-
tation, parallelized brute-force KNN is proposed using a
merge-path function and implement a truncated merge
sort to find the K smallest squared distance of each ele-
ment in a query set Q to each element in a fixed set R [27].

Bayesian network is a probabilistic graphic model that
is represented by directed acyclic graphs(DAG). The Naïve
Bayes classifier is a simple Bayesian network that is com-
posed of DAGs with only one root (parent) node and sev-
eral child nodes. It assumes that that child nodes are inde-
pendent and will not consider any correlations between
them. Naïve Bayes can be accelerated using GPU for auto-
matic document classification. It uses different threads
running during the two steps of model generation: calcu-
lation of the probability of the terms within classes, and
calculation of document term frequencies [28, 29].

SVM performs classification by finding the separat-
ing hyperplane that has the largest margin between two
classes. For non-linear separable data, SVM employs ker-
nel functions that map the non-linear separable data from
original space to feature space where the maximum mar-
gin hyperplane can be found. SVM has wide applications in
various fields. Ali et al. [30] proposed a new image retrieval
method that utilized the SVM for normalized histograms
which is constructed by using the visual words integration
of Scale Invariant Feature Transform (SIFT) and Speeded
Up Robust Features (SURF). SVM was also applied to 3D
face recognition on GavabDB database with an accuracy of
87.5% [31, 32]. Besides, a method using SVM was proposed
for satellite image classification based on Pairs Orthogonal
Vector Histogram (POVH). The advantage is computing the
discriminative spatial clues, which is robust to image rota-
tion and getting better performance than CNN [33]. Many
parallel versions of SVM have been proposed. Lin et al. [34]
presented a method using sparse matrix format to achieve
better performance. Chang et al. proposed a method that
performs a parallel row-based Incomplete Cholesky Fac-
torization (ICF) on the loaded data. In addition, a parallel
interior-point method (IPM) is used to solve the quadratic
programming problem using linear constraints for SVM
[35]. However, this method does not consider advanced
multicore architectures. You et al. considered X86-based
multicore and many-core architectures, such as Ivy Bridge
CPUs and Intel Xeon Phi (MIC), and presented a parallel
sequential minimal optimization (SMO) algorithm for SVM.
This method includes several analysis and optimizations in

SVM to achieve multilevel parallelism, e.g., data parallelism
and task parallelism [36, 37].

ANN is a non-linear data modeling tools for classifica-
tion and regression challenges. ANN is a self-adaptive and
universal functional approximator for mapping any func-
tional relationship between the features and class labels.
The most widely used algorithm for ANN is backpropa-
gation for building a feed-forward network composed of
layers and neurons. Dahl et al. proposed a network parallel
training technique to divide the neurons of the ANN across
different threads on different machines. Each thread main-
tains one ANN copy and trains a randomly selected disjoin
set of training samples. Over a certain number of epochs,
the weights of all threads are collected and broadcast to
other threads again. The process continued until the error
is less than a threshold value. It is implemented using
MPI [38]. The same parallel approach is used on multicore
CPU for face recognition implemented by OpenMP. The
disadvantage of this method is that the ANN should be
very large to offset the communication overhead between
neurons on different threads. Huqqani et al. also presented
the GPU based approach by putting only one copy in GPU.
Each thread on GPU executes independently. One auxiliary
array is needed to store the weights and input data for the
looping GPU [39].

CNN is an important deep learning algorithm that
attempts to learn multiple layers of representations and
abstractions to get the complex relationship of the data.
There is a large body of research conducted on application
of CNN. For example, Ratyal et al. presented a pose invari-
ant deeply learned multi-view 3D face recognitions using
deep convolutional neural network, which yields superior
performance as compared to other existing methods [40].
Additionally, CNN was also used to assist makeup-invariant
face recognition using augmented face dataset, as well
as accurate age estimation by investigating the asym-
metric left and asymmetric right face images [41, 42]. The
practical implementations of CNN heavily reply on paral-
lel processors, such as GPU. Nowadays, most of the deep
learning algorithms have been implemented using deep
learning existing frameworks. The implementation most
focus on high-level issues so that developers do not need
to worry about the close optimization of parallel kernels
with respect to different hardware platforms. For example,
Catanzaro et al. proposed a library with optimized routines
for deep learning workloads and it is easy to be integrated
to existing frameworks, e.g., Caffe. This approach opti-
mized the performance on matrix multiplication routines
which are converted from convolutions. They do not use
any auxiliary memory [43, 44].

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6

3 � Parallel margin setting algorithm

3.1 � Background

The invention of margin setting algorithm motivates by
pattern recognition. Pattern recognition in machine learn-
ing is a method of making statistical inferences from the
perceptual data. One central important work of pattern
recognition is classification. The main purpose of classifica-
tion is to understand and perceive the discriminant among
patterns. In particular, a pattern is defined as a pair of ⟨x, y⟩ ,
where x is a feature vector composed of a collection of
features. Features can be a series of attributes or properties
of data, which can be numerical (i.e., length), or symbolic
(i.e. shape). If the feature vector x has m features, x is inside
the m-dimension feature space. Note that examples ⟨xi , yi⟩
of a pattern, share similar features values may belong to
the same class, and if they share different features, they
should be categorized into different classes. Therefore, it is
desirable that a good feature vector contains features that
can discriminate among one another very well.

MSA is different from SVM in two-fold. First, the original
design of margin setting classifier can be more applica-
ble to difficult non-separable scenarios, but the original
design of SVM is motivated by a linear classifier. Second, in
the non-separable scenario, SVM can seek a linearly sepa-
ration by mapping data into higher dimensional space.
However, MSA only considers classifying the data in its
original feature space with optimal classifiers. The optimal
classifiers are the union of all the prototypes of its class.

3.2 � Training

Each class region of MSA is as a set of prototype regions -
hyperspheres. Prototypes are classifiers of MSA, so we use
prototypes and classifier interchangeably. Specifically, the
prototype is defined as a hypersphere, or n-sphere, where
n is a natural number and represents the n-dimension
space. �i is the centroid of G, Ri is the radius of G , Cp is the
class label. i and k are natural numbers. N is the number
of prototypes belonging to class Cp . The prototypes G are
a set of center-radius form with class label Cp(p = 1, 2, ..P)

The training process of MSA includes two concurrent
processes: evolution and partition, as shown in Fig. 1. The
evolution process is a process that seeks an optimal pro-
totype for each class after a number of iterations. Each
iteration is called one mutation. After the evolution pro-
cess ends, it enters into the partition process. The parti-
tion process separates the training data into subsets after

(1)Gi =
(
�i , Ri ,Cp

)
, 1 ≤ i ≤ N, p = 1, 2,… , P

several iterations. Each iteration is called one generation.
We discuss these two iterative processes respectively.

1.	 Evolution process the evolution process of MSA
employs an artificial immune system approach by
continually developing new antibodies to fight off the
antigens. It can be seen in Fig. 2 that this process per-
forms three steps repeatedly until the stopping condi-
tions are reached. The three steps are: (a) prototypes
generation, (b) fitness calculation and (c) prototypes
mutation.

Prototypes generation starts with N random points in
the normalized space. The N random points are antibod-
ies. The training sample set T are antigens. Prototypes are

Fig. 1   MSA training process

Fig. 2   PMSA classification at thread-level

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6	 Research Article

constructed by using antibodies as the center. If the clos-
est antigen belongs to class Cp to this center, this proto-
type covers class Cp. The radius is the distance between
this center and the closest antigen of a different class C

′

p
 .

In this case, the constructed prototypes of class Cp only
covers training points of class Cp. However, some con-
structed prototypes are redundant since they cover the
same training sample points. To remove the redundancy,
the prototypes are evaluated for fitness.

Fitness calculation is measured using a metric called,
Figure of Merit. Given a prototype G, the figure of merit
F is defined as the number of points belongs to class Cp
inside the prototype G . Figure of merit represents the fit-
ness of the prototype classifier. A large F is considered bet-
ter in fitness than a smaller value of F . Then all the F values
of prototypes are calculated. The largest F is LF . Only the
prototypes with LF is used for this generation. Other pro-
totypes are discarded. In order to find a prototype with a
larger LF , MSA starts a search in the neighborhood area
using mutation.

Prototypes mutation starts after the LF of the proto-
types for each class is calculated. The aim of mutation is
to find a larger LF . MSA starts a search by selecting one
prototype each class to mutate to several prototypes. This
selection is a stochastic method that randomly select one
prototype within figure of merit distribution of the proto-
types. This distribution can ensure that prototypes with
larger figure merit will have higher probability during our
selection. After this prototype is chosen, the center of this
prototypes will mutate to N points. The mutations of the
points follow a certain randomness to ensure that they
are in the neighborhood areas. The mutation usually rans
for several iterations. It stops when we could not find a
larger LF for all classes or it reaches to certain number of
iterations, which is set by user. Once the mutation stops,
these mutated points are used as random points when it
returns to step a) to generate new prototypes. Therefore,
the artificial immune system approach is to continually
develop new prototypes (antibodies) to cover as many as
samples points (antigens).

2.	 Partition process this process begins after mutation
stops. The training sample points inside the prototypes
with LF of each class is denoted as subset T1 , which
are considered training points that covered by optimal
prototypes. These prototypes are optimal and strong
classifiers which classify class points correctly. It is dif-
ferent from Boosting algorithm which combines weak
classifiers [45]. The partition process removes T1 out
from the original training set T  . Then the remaining
sets will enter the evolution process to construct new
prototypes again.

Compare to the training process for some machine
learning algorithms, such as SVM, which uses the whole
training set to seek hyperplane classifiers that has the
largest margin, MSA gradually divides the training set
into smaller subsets. MSA trains classifiers for those smaller
problems with a margin preset by the user for error. The
advantage of this decomposition is breaking the whole
training sets into a number of small subsets makes it eas-
ier to find classifiers for non-separable cases. Specifically,
given training set S, MSA generates a partition of the set
T and each partition is denoted as subsets T1 , T2 , T3,….The
training set can be viewed as a union of its subsets and the
subsets are non-empty and non-overlapping. In particular,
we formulate the partition process as below:

The above partition process is conducted at runtime.
MSA iteratively seeks the prototypes for the subsets, and
the partition subsets are generated sequentially. Next,
those training points fall into the prototypes are removed
from the whole training set, and the remaining training
sets recursively perform the partition task until no train-
ing points left.

Ideally, MSA stops when all the points are partitioned
out and the reduced set becomes empty However, con-
sidering the misclassified and unclassified points, the
ideal case may not be reached. Therefore, some param-
eters values are preset to prevent the algorithm does not
converge for a long time. First, the portion of the mem-
bers in the reduced set drops to a user set small limit, e.g.,
0.001%. Second, the number of generations raises to a user
set limit, e.g., 20. As long as one of the above conditions
meets, MSA stops the training process.

3.3 � Parallel MSA

PMSA iteratively solve the problems and get the optimized
classifier, i.e., prototypes. The prototype regions are the
decision boundaries for classification. The classification
process is proposed to implement it in parallel. The algo-
rithms of PMSA is presented as follows:

Consider a multiclass ( P classes) problem. Each class can
be denoted as class Cp(p = 1, 2, ..P) . There are O objects
in raw data belongs to P classes. Each sample point is an
n-dimensional feature vector x with m attributes, and it
can be denoted as xi =

(
x1,… , xm

)
 . We present margin set-

ting algorithm in five phases below: prototype generation,
fitness calculation, prototype mutation, partition and par-
allel classification testing.

(2)
T =

⋃

i>1

Ti

where Ti ≠ �& Ti ∩ Tj = �(i ≠ j).

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6

Algorithm 1 PMSA
Notation:
Unif (A): uniform distribution on set A.
χ: margin
M ∶ number of iterations during mutation
Q ∶ number of partitions/generations
MM: Maximum Mutation
MQ: Maximum Generation
N: Number of random points
INPUT:

 1) Training set T =
{(

x1,… , xm
)}

 , consists of m training
samples. Each training sample xk(1 ≤ k ≤ m) is n-dimension
vector ( n ≥ 2) with class label Cp(p = 1,… , P) . ( P > 1 ) clas-
sification problem,

 2) Testing set S =
{(

y1,… , yn
)}

 ., consists of n unknown label
testing samples.

INITILIZE:
Set MM ← 20; MG ← 20; N ← 20; M ← 0; N ← 0;
REPEATE:

 1. Normalize T into [0, 1] space. Randomly select N n-dimen-
sion points ωi(1 ≤ i ≤ N) ∈ Unif [0, 1].

REPEATE:
Prototype Generation

 2. Build prototypes Gi =
(
�i , Ri ,Cp

)
, 1 ≤ i ≤ N, p = 1, 2,… , P} .

Compute the centers ωi of Gi of class Cp that has the minimum
Euclidean distance from �i to xk:

dk = min||||ωi − xk
||||. (3)

 3. Compute the radius Rk of Gi . It equals the minimum Euclid-
ean distance from �i to xj:
Rk = min�i − xj , j ≠ k . (4)

Fitness Calculation
 4. Compute the fitness, measured by figure of merit of the

prototype. The figure of merit of prototype Gi is denoted as FGi
 ,

i.e., the number of class Cp data samples inside of Gi geometri-
cally. Suppose class label Cp contains total h prototypes for
during the current iteration. The largest figure of merit among
all h prototypes is LF:

LF = max
{
FG1

, FG2
,… , FGh

}
 . (5)

Prototypes Mutation

 5. Select one center �
′

i
 of prototype Gi each class to mutate to

N random points in the neighborhood area of �
′

i
 . Calculate the

proportional of the prototypes of figure of merit fp:

fp =
FGi∑h

1
FGi  . (6)

If i in �
′

i
 satisfy the following distribution function and

ζ ∈ Unif [0, 1] :

i−1∑
𝜉=1

f
𝜉
< ζ ≤

i∑
𝜉=1

f
𝜉

 . Select �
′

i
 to mutate to another N

points. The mutated N points are:

 �
�

i
+ ��U . (7)

Where � is random sign symbol {-1,1}. � ∈ Unif [0, 1] . U is the maxi-
mum perturbation:

U =

{
�

�

i
if�k ≤

min{xk}+max{xk}
2

max
{
xk
}
− �

�

i
Otherwise

(1 ≤ k ≤ m)

 . (8)

 6. M ← M + 1 , enter the next mutation round. The largest
figure of merit in current generation M + 1 is denoted as LFM+1 ,
the previous generation is LFM.

UNTIL M > MW ∥ LFM > LFM+1

Partition
 7. Partition the training set T by removing all data in the

prototype Go
i
 . Go

i
 is the optimal prototyope with largest figure

of merit LFM , and radius Ri,Q , where
Ri,Q = (1 − �)Ri,Q . (9)

We tune the margin 𝜒(0 ≤ 𝜒 < 1) to shrink the radius of hyper-
spheres. A larger margin tends to yield better generalization. The
reduced training set is T ′.
 8. T ← T ′ , update the training set T as the content of reduced

set T ′.
 9. Q ← Q + 1 , enter the next generation round.

UNTILE T � = � ∥ Q > MQ

Parallel Classification
 10. After partition completes and all the prototypes gener-

ated in all Q generations for all classes Cp(p = 1, 2,… P) ., the
prototypes for all p classes are

G� =
Q⋃
t=1

P⋃
Cp=1

Go
i
�t,Cp

 . (10)
 11. Dynamically assign n threads/processes for testing.

Each thread/process handles one prototype G′. Each thread
execute: For all points yi in test set S , we compute the Euclid-
ean distance between yi and ωi , where ωi is all the centers of
prototypes G’

(
�i , Ri ,Cp

)
, , and if

||||yi − ωi
|||| ≤ Rk . (11)

Set variable Output = 1. The points yi belongs to class Cp . yi = Cp .
Otherwise, Output = 0.
 12. Gather results from all threads. Logic OR operators is

performed on all output to detersmine the classification
results. yi = Cp when Output = 1. Otherwise, Output = 0. yi is
not classified.

To aforementioned mathematical model of the parallel
classification of MSA is presented in Fig. 2. Training pro-
cess of MSA completes after several iterations/generations,
denoted as Gen 1, Gen2,…, Gen n, which yields multiple
prototypes G1 … Gn as its classification decision bounda-
ries. For each generation, MSA splits the training set T into
two subsets. One subset is the training points covered by
the prototypes. The other subset is the remaining unclas-
sified class points. MSA usually keeps only one prototype
with LF for each class. If the training points of one class are
all classified after several generations, no more prototypes
will be generated for that class. However, MSA still contin-
ues to generate prototypes to cover the remaining unclas-
sified training points. If there are P classes, the maximum
number of prototypes can yield for one generation is P.

Take a look at a binary classification problem (class 1,
2) shown in Fig. 2. The training set T is split into subsets T1
and T2 in the first generation (Gen 1). Training set T1 is the
class points containing class 1 points covered by G1 and
class 2 points covered by G2 . The remaining class points
are the training set T2 . In the next generation (Gen 2), T2 is

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6	 Research Article

split to T3 and T4 . Training set T3 is the class points contain-
ing class 1 points covered by G3 and class 2 points covered
by G4 . Training set T4 contains the remaining unclassified
points. Eventually, all class points are classified by proto-
types {G1…Gn}. Note that each generation does not nec-
essarily yield one prototype for each class. For example,
during some generation, all class 1 points have been clas-
sified, the remaining set only contains class 2 points. In
this case, the next generation will only yield one prototype
for class 2. Therefore, MSA tends to classify the total class
points using a disjunction of several prototypes generated
through multiple generations.

In addition, it can be seen from Fig. 2, the proposed par-
allel classification is conducted at thread-level parallelism
(TLP). TLP concentrates on splitting the tasks so that each
subtask is concurrently running on the same data across
different processing unit [46]. MSA classification tasks are
conducted sequentially through a series of classifiers. We
consider an efficient parallel practice is to split this whole
sequential task into several subtasks. In MSA, it generates
a sequence of prototypes {G1…Gn} as classifiers. Each clas-
sifier exhibits good generation with a low VC dimension.
The unknown or new data can be classified by the pro-
totypes {G1…Gn} in parallel for each class independently.
Each classifier can be allocated a thread/process to test
the unknown belongs to that class or not. If the classifier
can classify the unknown correctly, output 1. Otherwise,
output 0. Then the overall classification result is a simple
logic OR of output from each thread. For example, it can
be seen from Fig. 2, we allocate thread 1 to n to prototypes
{G1 …Gn} . For class 1, {G1, G3,…} are the classifiers that use
thread 1, 3,…to test the unknown data can be classified
and recognized as class1 independently. For class 2, {G2,
G4,…} are the classifiers that use thread 2, 4, …to test the
unknown data can be classified and recognized as class2
independently.

4 � Experiments and results

To test the efficiency of the proposed PMSA, our experi-
ment was conducted in two stages. First, we open a pool
of workers for MSA classification applied to image seg-
mentation. Second, threads are used to spawn a number
of threads during runtime and speed up the MSA classi-
fication. Several machine learning benchmark data sets
are chosen for the classification tasks. Our parallel experi-
ments are all conducted on a machine with Intel Xeon
processor E5520, 2.27 GHz. It is equipped with 2-pro-
cessors, and each processor has 4 cores. Each core uses
hyper-threading. Totally we can utilize 16 logic processors
to accelerate the performance of MSA classification in the
testing phase.

4.1 � Image segmentation

MSA is a supervised learning algorithm that was applied
to discriminate the objects in images. The intensity of the
color pixels is chosen as the features for classification. Two
benchmark color images: Airplane and Peppers are used in
the experiment as shown in Fig. 3a and b. The image sizes
of Airplane is 321 × 481 pixels and Peppers is 512 × 512 pix-
els in R, G, B components respectively. The image segmen-
tation tasks are as follows: MSA performs segmentation on
the airplane from its background as shown in Fig. 3c. To
implement it, we consider airplane and background are
two classes. Training sets are constructed by randomly
selecting 20 points from airplane and another 20 points
from the pixels are not airplane. After MSA training, the
generated prototypes are used to perform a binary clas-
sification on the image Airplane. For image Peppers, MSA
remove the red peppers out from the image as shown
in Fig. 3d. To perform MSA classification, red peppers is
one class. Other peppers, including dark green and light
green peppers, is another class. Training sets are 20 ran-
dom points from each class, i.e., total 40 points. Overall, it
can be seen that MSA yields good performance for image
segmentation. We also compare the results with SVM and
ANN.

To accelerate the MSA classifications on the image data
sets, we utilized the parallel pool. It opens a set of workers
that uses parallel pool to execute the statements in paral-
lel as shown in Fig. 4. The number of workers corresponds
to the number of processes that can be run simultane-
ously. To test the effectiveness of the parallel workers on
multicore and multiprocessor system, we choose different
size of the data sets. For simplicity, we resize the Airplane
image by factor of 2, 3, 4…10, and perform the image
segmentation tasks. The number of image pixels are the
total of the data points during MSA classification. Each
data has three features, i.e., the intensity value in R, G, B
channels respectively. The execution time of non-parallel,
2, 4, 6 8, 12 and 16 workers are reported in Table 1. Serial
MSA execution time is when we run it on the single pro-
cessor system sequentially without any parallel scheme. It
shows that the execution time is greatly reduced when the
number of workers increases. Specifically, the execution
time for 8 workers is reduced more than 6, 4 and 2 work-
ers. For example, when the image size is 3210 × 4810, the
execution time for segmenting the airplane out from its
background is reduced from 280.002 s for the non-parallel
scenario to 58.724 s for 8 workers, and only 38.419 s for
16 workers.

Next, we investigate the speedup ratio and parallel effi-
ciency obtained by the parallel pool. The speedup ratio R is
the relative performance measurement between a single

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6

processor system and a multiprocessor system. It is calcu-
lated as follows:

where Ts is the execution time on a single processor sys-
tem, Tm is the execution time on a multiprocessor system
with m processors. The parallel efficiency E can be esti-
mated as the ratio of speedup to the number of proces-
sors. It measures the fraction of time for which a processor
is being used on the computation. Efficiency is calculated
as:

(12)R(n) = Ts∕Tm

(13)E =
Ts

mTm

Fig. 3   PMSA for image segmentation. a Image “Airplane”; b Image “Peppers”; c classification results for Image “Airplane”; d classification
results for Image “Peppers”

Fig. 4   PMSA using parallel pool of workers

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6	 Research Article

The speedup ratio is reported in Table 2 and Fig. 5. It
shows that the speedup increases when we increase the
number of workers. The speedup has a higher value for 16
workers than 12, 8, 4 and 2 workers for all image sizes. The
average speedup ratio is 7.06 for 16 workers, and 4.54 for
8 workers, comparing to 1.93 for 2 workers. We also note
that the primary increase of speedup ratio happens before
the image size increases to a certain amount. For exam-
ple, the speedup ratio increases from 3.11 to 4.26 after the
image sizes rise up to 0.4 × 107 image pixels for 6 work-
ers. After that, the speedup ratio increases slowly, only to
4.31 when the number of image pixels reach to 4.6 × 107 .
Similarly for 16 worker case, the speedup ratio rises up
quickly from 5.93 to 7.22 when we enlarge the image size
to 963 × 1443 pixels in its R, G, B channel. After that, there
is only an 0.06 speedup ratio gain after the image resizes
to 3210 × 4810 pixels.

The parallel efficiency E of different workers is presented
in Fig. 6. It is expected that the E reaches to 1 if the parallel
algorithm scales linearly and achieves very good perfor-
mance. When PMSA is tested with 2 workers, E reaches
to 1 when the image contains 1.1 × 107 pixels. However, E
drops to when the number of workers increases. Specifi-
cally, the average value of E falls to 0.81 for 4 workers, 0.68

for 6 workers, 0.56 for 8 workers, 0.49 for 12 workers and
0.44 for 16 workers. This comes from the fact that PMSA
employs a thread-level data parallelism which distributes
the generated prototypes across different workers. It is less
efficient than a task-parallelism.

4.2 � Benchmark datasets

We also implement PMSA classification using Threads. For
multicore and multiprocessor system, each independent
processor owns a specific amount of physical resources.
In order to take full advantage of the thread-level parallel-
ism, a practical way is to set the proper number of threads
equaling to the number of prototypes generated. To test
the PMSA performances, several machine learning bench-
mark datasets from the UCI machine learning repository
are chosen for the experiment [47]. The details of the data-
sets are shown in Table 3 below. There are five datasets:
Pima Indians Diabetes, Wisconsin Breast Cancer, Austral-
ian Credit Approval, Wine and Svmguide2. One-third of
the datasets are randomly chosen for training, and the
remaining data for testing. We repeat the experiments for
ten times and compute the average results.

Table 1   Execution time of
PMSA for image segmentation
(s)

Image size Serial 2 worker 4 worker 6 worker 8 worker 12 worker 16 worker

321*481 2.912 1.728 1.140 0.936 0.854 0.602 0.491
642*962 11.554 6.300 3.812 3.098 2.730 2.041 1.711
963*1443 25.186 12.832 7.748 5.906 5.352 4.105 3.486
1284*1924 44.974 22.646 13.336 10.548 9.940 7.553 6.384
1605*2405 70.614 35.124 21.090 16.720 14.984 11.496 9.763
1926*2886 100.390 51.092 30.884 23.736 20.848 16.074 13.686
2247*3367 137.626 68.954 40.676 33.210 29.210 22.409 19.031
2568*3848 178.840 90.952 53.082 41.672 37.012 28.560 24.326
2889*4329 226.638 113.626 66.584 52.624 47.900 36.783 31.254
3210*4810 280.002 141.668 81.894 64.938 58.724 45.175 38.419

Table 2   Performance of PMSA
for image segmentation (s)

Image size Speedup 2
worker

Speedup 4
worker

Speedup 6
worker

Speedup 8
worker

Speedup 12
worker

Speedup
16 worker

321 * 481 1.685 2.554 3.111 3.409 4.840 5.930
642 * 962 1.833 3.030 3.729 4.232 5.662 6.752
963 * 1443 1.962 3.250 4.264 4.705 6.136 7.226
1284 * 1924 1.985 3.372 4.263 4.524 5.955 7.045
1605 * 2405 2.010 3.348 4.223 4.712 6.143 7.233
1926 * 2886 1.964 3.250 4.229 4.815 6.245 7.335
2247 * 3367 1.995 3.383 4.144 4.711 6.142 7.232
2568 * 3848 1.966 3.369 4.291 4.831 6.262 7.352
2889 * 4329 1.994 3.403 4.306 4.731 6.161 7.251
3210 * 4810 1.976 3.419 4.311 4.768 6.198 7.288

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6

To validate the classification performance, we com-
pared the PMSA to another two other state-of-the-art
algorithms, SVM and ANN. There are two considerations.
First, both PMSA and SVM are margin-based classifiers.
Their performances are affected by margin, which is the
distance from each example to the decision boundary.
Second, both SVM and ANN are popular supervised clas-
sification algorithms that were applied to test UCI bench-
mark datasets. The default parameters are chosen for MSA.
We set the margin χ of MSA from 0 to 0.5 for classification
results. The SVM default parameters we chose are Radius
basis function (RBF) kernel, with regularization parameter
C = 1. The kernel parameter γ is set as the reciprocal of the
number of features in the datasets. ANN implements a

two-layer feed-forward backpropagation neural network
with 10 neurons in its hidden layers. The classification per-
formance of PMSA is reported in Table 4. It can be seen
that PMSA yields better performance than SVM and ANN
for all datasets.

The execution time and speedup of PMSA are reported
in Table 4. This approach generated the number of threads
that equals to the number of prototypes. Therefore, the
number of threads are dynamically determined after the
training process of MSA. This thread-level parallelism
achieves the best speedup ratio 65.69 for Indian Diabetes
dataset. When a large number of prototypes are gener-
ated, the speedup capacity will be affected. In this case,
the communication overhead increases when splitting
the classification task to a large number of threads. Our
algorithm overall shows good speedup results.

5 � Conclusion

In this work, we proposed a novel parallel implementation
of a supervised learning algorithm, called margin setting
algorithm. It is the first work to design a parallel mecha-
nism to speed up the classification phase of the MSA.
Our proposed parallel mechanism includes using parallel
pool of workers with the specified number of workers to
run MSA classification in parallel. In addition, threads are
implemented to dynamically spawn the number of threads
in runtime, and they spread the classification work among
multi-core and multiprocessor system. Extensive experi-
ments have been conducted to analyze the execution time
and speedup of the PMSA. We applied PMSA on image
data to perform image segmentation, and then classifica-
tion on benchmark data sets from the UCI machine learn-
ing repository. We vary the number of workers during par-
allel implementation on image segmentation. The results
show that speedup ratio tends to be higher when the
image increase to a certain size. To validate the correctness
of the proposed algorithm, the classification performance
is also compared with SVM and ANN for benchmark data.
The experimental results show that the proposed PMSA

Fig. 5   Speedup ratio of PMSA for image segmentation

Fig. 6   Parallel efficiency of PMSA for image segmentation

Table 3   Benchmark Datasets

Dataset # training # testing # features # classes

Pima Indians diabetes 257 511 8 2
Wisconsin breast

cancer
228 455 10 2

Australian credit
approval

231 459 14 2

Wine 60 118 13 3
Svmguide2 131 260 20 3

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6	 Research Article

yields good classification accuracy and greatly reduces the
computation time during testing phase. In the future, we
will work on parallel mechanism on the training process of
PMSA. Larger scale datasets will be used to test the robust-
ness of the proposed parallel learning algorithm. One limi-
tation of this work is that the thread-level parallelism that
PMSA employs only relies on multicore and multiprocessor
system. We will deploy PMSA on GPU and compare it with
other deep learning algorithms, such as convolutional
neural networks and recurrent neural networks, for data-
intensive applications.

Acknowledgements  This work is partially supported by Defense Intel-
ligence Agency (DIA) under award HHM402-18-FOA-399-A.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Jordan MI, Mitchell TMJS (2015) Machine learning: trends, per-
spectives, and prospects. Science 349(6245):255–260

	 2.	 Gupta P, Sharma A, Jindal RJWIRDM, Discovery K (2016) Scalable
machine-learning algorithms for big data analytics: a compre-
hensive review. Data Min Knowl Discov 6(6):194–214

	 3.	 Sanchez V, Pfeiffer C, Skeie N-O, Networks A (2017) A review of
smart house analysis methods for assisting older people living
alone. J Sens Actuat Netw 6(3):11

	 4.	 Dahmen J, Thomas BL, Cook DJ, Wang XJS (2017) Activity learn-
ing as a foundation for security monitoring in smart homes.
Sensors 17(4):737

	 5.	 Liu Y, Bi J-W, Fan Z-P (2017) Multi-class sentiment classification:
the experimental comparisons of feature selection and machine
learning algorithms. Exp Syst Appl 80:323–339

	 6.	 Arulmurugan R, Sabarmathi K, Anandakumar H (2017) Classifica-
tion of sentence level sentiment analysis using cloud machine
learning techniques. Cluster Comput 22(Suppl 1):1199–1209

	 7.	 Xu H, Gao Y, Yu F, Darrell T (2017) End-to-end learning of driv-
ing models from large-scale video datasets. In: IEEE conference
on computer vision and pattern recognition (CVPR), IEEE, pp
3530–3538

	 8.	 Latif A, Rasheed A, Sajid U, Ahmed J, Ali N, Ratyal NI, Zafar B,
Dar SH, Sajid M, Khalil T (2019) Content-based image retrieval

and feature extraction: a comprehensive review. Math Probl Eng.
https​://doi.org/10.1155/2019/96583​50

	 9.	 Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D (2016) Graphics
processing units in bioinformatics, computational biology and
systems biology. Brief Bioinf 18(5):870–885

	10.	 Cuomo S, De Michele P, Di Nardo E, Marcellino L (2018) Parallel
implementation of a machine learning algorithm on GPU. Int J
Parallel Program 46(5):923–942

	11.	 Tan K, Zhang J, Du Q, Wang X (2015) GPU parallel implemen-
tation of support vector machines for hyperspectral image
classification. IEEE J Select Top Appl Earth Observ Remote Sens
8(10):4647–4656

	12.	 Liu Y, Yang J, Huang Y, Xu L, Li S, Qi M (2015) MapReduce
based parallel neural networks in enabling large scale
machine learning. Comput Intell Neurosci. https​://doi.
org/10.1155/2015/29767​2

	13.	 Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein J
(2010) GraphLab: a new framework for parallel machine learn-
ing. In: Proceedings of the twenty-sixth conference on uncer-
tainty in artificial intelligence, 2010. AUAI Press, pp 340–349

	14.	 Diaz J, Munoz-Caro C, Nino A (2012) A survey of parallel pro-
gramming models and tools in the multi and many-core era.
IEEE Trans Parallel Distrib Syst 23(8):1369–1386

	15.	 Lotrič U, Dobnikar A (2005) Parallel implementations of feed-
forward neural network using MPI and C# on. NET platform. In:
Ribeiro B, Albrecht RF, Dobnikar A, Pearson DW, Steele NC (eds)
Adaptive and natural computing algorithms. Springer, Berlin,
pp 534–537

	16.	 Zhao H-X, Magoules F (2011) Parallel support vector machines
on multi-core and multiprocessor systems. In: 11th international
conference on artificial intelligence and applications (AIA 2011),
IASTED

	17.	 Caulfield HJ, Karavolos A, Ludman JEJIS (2004) Improving opti-
cal Fourier pattern recognition by accommodating the missing
information. Inf Sci 162(1):35–52

	18.	 Fu J, Caulfield HJ, Wu D, Tadesse W (2010) Hyperspectral image
analysis using artificial color. J Appl Remove Sens 4(1):043514

	19.	 Wang Y, Fu J, Adhami R, Dihn HJTISJ (2016) A novel learning-
based switching median filter for suppression of impulse noise
in highly corrupted colour images. Imaging Sci J 64(1):15–25

	20.	 Wang Y, Adhami R, Fu J (2015) A new machine learning algo-
rithm for removal of salt and pepper noise. In: Seventh inter-
national conference on digital image processing (ICDIP 2015),
2015. International Society for Optics and Photonics, p 96311R

	21.	 Wang Y, Adhmai R, Fu J, Al-Ghaib H (2015) A novel supervised
learning algorithm for salt-and-pepper noise detection. Int J
Mach Learn Cybern 6(4):687–697

	22.	 Wang Y, Amin MM, Fu J, Moussa HBJIA (2017) A novel data ana-
lytical approach for false data injection cyber-physical attack
mitigation in smart grids. IEEE Access 5:26022–26033

Table 4   Performance of PMSA
on benchmark datasets

Datasets Classification accuracy (%) PMSA performance

Margin Execution time (s) Speedup

SVM ANN MSA Serial Parallel

Indians diabetes 76.13 76.32 76.58 0.02 8.54 0.13 65.69
Wisconsin 96.73 97.12 97.80 0.04 4.58 0.08 57.25
Australian 84.78 83.35 84.90 0.02 6.68 0.12 55.67
Wine 93.86 94.57 94.91 0.04 7.23 0.16 45.18
Svmguide2 83.19 83.22 83.23 0.06 9.54 0.15 63.60

https://doi.org/10.1155/2019/9658350
https://doi.org/10.1155/2015/297672
https://doi.org/10.1155/2015/297672

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1647 | https://doi.org/10.1007/s42452-019-1687-6

	23.	 Igwe OM, Wang Y, Giakos GC (2018) Activity learning and recog-
nition using margin setting algorithm in smart homes. In: 2018
IEEE ubiquitous computing, electronics and mobile communica-
tion conference (UEMCON), New York, Nov 8–10, 2018. IEEE, pp
294–299

	24.	 Amado N, Gama J, Silva F (2001) Parallel implementation of
decision tree learning algorithms. In: Portuguese conference
on artificial intelligence. Springer, Berlin, pp 6–13

	25.	 Ben-Haim Y, Tom-Tov E (2010) A streaming parallel decision tree
algorithm. J Mach Learn Res 11:849–872

	26.	 Lukač N, Žalik B (2015) Fast approximate k-nearest neighbours
search using GPGPU. In: Cai Y, See S (eds) GPU computing and
applications. Springer, Berlin, pp 221–234

	27.	 Li S, Amenta N (2015) Brute-force k-nearest neighbors search on
the GPU. In: International conference on similarity search and
applications. Springer, Berlin, pp 259–270

	28.	 Andrade G, Viegas F, Ramos GS, Almeida J, Rocha L, Gonçalves
M, Ferreira R (2013) GPU-NB: a fast CUDA-based implementa-
tion of naive bayes. In: 2013 25th international symposium on
computer architecture and high performance computing. IEEE,
pp 168–175

	29.	 Zhou L, Yu Z, Lin J, Zhu S, Shi W, Zhou H, Song K, Zeng X (2014)
Acceleration of Naive–Bayes algorithm on multicore processor
for massive text classification. In: 14th international symposium
on integrated circuits (ISIC). IEEE, pp 344-347

	30.	 Ali N, Bajwa KB, Sablatnig R, Chatzichristofis SA, Iqbal Z, Rashid
M, Habib HA (2016) A novel image retrieval based on visual
words integration of SIFT and SURF. PLoS ONE 11(6):e0157428

	31.	 Bagchi P, Bhattacharjee D, Nasipuri MJMT (2016) A robust analy-
sis, detection and recognition of facial features in 2.5 D images.
Multimed Tools Appl 75(18):11059–11096

	32.	 Ratyal NI, Taj IA, Sajid M, Ali N, Mahmood A, Razzaq S (2019)
Three-dimensional face recognition using variance-based reg-
istration and subject-specific descriptors. Int J Adv Robot Syst
16(3):1729881419851716

	33.	 Ali N, Zafar B, Iqbal MK, Sajid M, Younis MY, Dar SH, Mahmood
MT, Lee IH (2019) Modeling global geometric spatial information
for rotation invariant classification of satellite images. PLoS ONE
14(7):e0219833

	34.	 Lin T-K, Chien S-Y Support vector machines on gpu with sparse
matrix format. In: Ninth international conference on machine
learning and applications (ICMLA), 2010. IEEE, pp 313–318

	35.	 Chang EY (2011) Psvm: Parallelizing support vector machines
on distributed computers. In: Chang EY (ed) Foundations of
large-scale multimedia information management and retrieval.
Springer, Berlin, pp 213–230

	36.	 You Y, Song SL, Fu H, Marquez A, Dehnavi MM, Barker K, Cam-
eron KW, Randles AP, Yang G Mic-svm: Designing a highly

efficient support vector machine for advanced modern multi-
core and many-core architectures. In: 28th International parallel
and distributed processing symposium. IEEE, pp 809–818

	37.	 Li W, Fu H, You Y, Yu L, Fang J (2017) Parallel multiclass support
vector machine for remote sensing data classification on multi-
core and many-core architectures. IEEE J Select Top Appl Earth
Observ Remote Sens 10(10):4387–4398

	38.	 Dahl G, McAvinney A, Newhall T Parallelizing neural network
training for cluster systems. In: Proceedings of the IASTED inter-
national conference on parallel and distributed computing and
networks, 2008. ACTA Press, Calgary, pp 220–225

	39.	 Huqqani AA, Schikuta E, Ye S, Chen P (2013) Multicore and gpu
parallelization of neural networks for face recognition. Procedia
Comput Sci 18:349–358

	40.	 Ratyal N, Taj IA, Sajid M, Mahmood A, Razzaq S, Dar SH, Ali N,
Usman M, Baig MJA, Mussadiq U (2019) Deeply learned pose
invariant image analysis with applications in 3D face recogni-
tion. Math Probl Eng. https​://doi.org/10.1155/2019/35474​16

	41.	 Sajid M, Ali N, Dar SH, Iqbal Ratyal N, Butt AR, Zafar B, Shafique
T, Baig MJA, Riaz I, Baig S (2018) Data augmentation-assisted
makeup-invariant face recognition. Math Probl Eng. https​://doi.
org/10.1155/2018/28506​32

	42.	 Sajid M, Iqbal Ratyal N, Ali N, Zafar B, Dar SH, Mahmood MT, Joo
YB (2019) The impact of asymmetric left and asymmetric right
face images on accurate age estimation

	43.	 Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro
B, Shelhamer E (2014) cudnn: efficient primitives for deep learn-
ing. arXiv preprint arXiv​:1410.0759

	44.	 Ma X, Dai Z, He Z, Ma J, Wang Y, Wang YJS (2017) Learning traffic
as images: a deep convolutional neural network for large-scale
transportation network speed prediction. Sensors 17(4):818

	45.	 Freund Y, Iyer R, Schapire RE, Singer Y (2003) An efficient boost-
ing algorithm for combining preferences. J Mach Learn Res
4:933–969

	46.	 Cheng Z, Schmidt T, Liu G, Doomer R (2017) Thread-and data-
level parallel simulation in SystemC, a Bitcoin miner case study.
In: IEEE international high level design validation and test work-
shop (HLDVT), IEEE, pp 74–81

	47.	 Frank A, Asuncion A (2010) UCI machine learning repository.
University of California, Irvine, CA, School of information and
computer science. http://archi​ve.ics.uci.edu/ml. Accessed June
2018

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1155/2019/3547416
https://doi.org/10.1155/2018/2850632
https://doi.org/10.1155/2018/2850632
http://arxiv.org/abs/1410.0759
http://archive.ics.uci.edu/ml

	A novel parallel learning algorithm for pattern classification
	Abstract
	1 Introduction
	2 Related work
	3 Parallel margin setting algorithm
	3.1 Background
	3.2 Training
	3.3 Parallel MSA

	4 Experiments and results
	4.1 Image segmentation
	4.2 Benchmark datasets

	5 Conclusion
	Acknowledgements
	References

