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Abstract
Rotating machines faults are the most common faults in the industry. Thousands of faults detection techniques are 
widely used to identify the faults in the rotating machines. However, severity classification of the fault is more important 
to prevent the breakdown of the system as well as save the properties even human causality. The aim of this paper is to 
determine the fault signatures to identify the status of the rotating machines. This paper proposed a fault detection and 
criticality classification (FDCC) method for rotating machines based on an adaptive filter, fuzzy logic and computed order 
tracking that not only detects the faults but also classifies the severity of the faults. At first, the adaptive filter is used in 
proposed FDCC method to reduce the noises as well as artificial artifacts from the faulty signal. After that, order tracking 
is used to remove the speed variation of the rotating machine. Then, fault detection is done by envelope analysis. Finally, 
fuzzy logic is used to classify the fault severity. Experimental results indicate that proposed FDCC technique effectively 
detects the faults as well as classifies the severity of faults.
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1 Introduction

A vibration signal of rotating machines contains back-
ground noise. Hence, fault signature of the rotating 
machines can disappear. These problems get severe when 
the fault signature is incipient. As a result, to reduce the 
noise from the faulty vibration is important. Many noise 
reduction techniques have been proposed such as wavelet 
de-noising [1], adaptive filter [2, 3], and Weiner filter. Since 
the vibration signals of rotating machines are not station-
ary due to its speed variation, it is important to remove the 
effect of speed variation. To remove the speed variation 
from faulty vibration signal of the rotating machine, order 
tracking is commonly used [4].

Fault signature is detected by analyzing the spectrum 
of the faulty vibration signal. Square envelope analysis and 

Hilbert transform are well-known methods for spectrum. 
Envelope analysis shows better performance over Hilbert 
transformation because its computational cost is lower 
and bandpass filtering is not required in envelope analysis. 
All magnitude of the fault signature is not dangerous for 
the breakdown of the machine, i.e., machine can sustain 
with some faulty condition. However, this faulty condition 
leads to the breakdown of rotating machines. Therefore, it 
is important to know the time when faults are getting dan-
gerous for the breakdown. But, changes in fault magnitude 
are not linear. At the initial stage, magnitude of the fault 
changes slowly and later, it changes rapidly. Therefore, it is 
also important to know the rate of change of fault magni-
tude to determine the fault severity of rotating machines. 
The aim of this paper is to determine the fault signatures 
to identify the faulty condition of the rotating machines.
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In this paper, fault detection and criticality classifica-
tion (FDCC) method is proposed based on an adaptive 
filter, order tracking and fuzzy logic. The proposed FDCC 
method not only detects the faults of rotating machines 
but also classifies the faults severity. At first, the noises, 
as well as artificial artifacts, are reduced from the faulty 
vibration signal of the rotating machine using the adaptive 
filter. After that, computed order tracking is used to mini-
mize the speed variation of the rotating machine. Then, 
fault signature is detected by envelope analysis. Finally, 
fuzzy logic is to classify the fault severity to determine the 
status of the machines.

2  Proposed fault detection and criticality 
classification method

Figure 1 represents the proposed fault detection and criti-
cality classification (FDCC) method. At first, adaptive filter 
is used to minimize the noise since faulty signals can be 
severely affected by noise. After removing the noises from 
the faulty signal, order tracking is applied to remove the 
speed fluctuation. Then, the fault signature is determined 
by the envelop analysis. Finally, fault criticality classifica-
tion is done by fuzzy logic to identify the status of the 
machine. The details procedures of FDCC are explained 
below:

Step 1: Noise reduction by adaptive filter

As the rotating machine’s fault signals are very weak and 
masked by the strong noise as well as signals from other 
rotating parts, de-noising and extracting the useful feature 
are crucial to fault detection. Therefore, the adaptive filter 
is used in this paper to reduce the noises from a faulty 
vibration signal.

An adaptive filter iteratively models the relationship 
between the input signals and output signals. Main feature 
of the adaptive filter is that it can adjust the filter coeffi-
cients by itself [3]. Generally adaptive filter is categorized 
into RMS and LMS. In this work, LMS filter is considered. 
The filter output is described as

where LMS algorithm updates the weights in cooperates 
with error function during the nth iteration as follows:

Here, e(n) is an error signal, X(n) denotes filter input 
vector, and δ is the step size of the filter that controls the 
convergence rate. The error signal can be represented as:

X(n) includes the tap inputs x(n), x(n − 1),… , x(n −M + 1) , 
wn is the weight vector wn(0),wn(1),… ,wn(M − 1) , and [*]T 
denotes transpose operation. The filter is a FIR filter of length 
M and the MSE function of the system, J(n) [3],

where Rxx(n) = E
[

X (n)XT(n)
]

 and rdx(n) = E
[

X (n)d(n)
]

.

The optimum filter coefficients, Wnopt
 , can be defined as

Step 2: Order tracking

Since the rotating machine (even constant speed machine) 
has small speed variation, fault frequency has variation. 
To reduce this variation, order tracking is used. Order 
tracking considers order as frequency instead of absolute 
frequencies. Many effective order tracking methods have 
been proposed by researcher [4–6]. However, computed 
order tracking (COT) method is commonly used in rotating 
machine fault detection [5, 6]. COT can be described within 
three basic steps [6]. Both tacho pulses and vibration sig-
nal are sampled at constant increments of time, Δt in the 
first step. In the second step, determine the shaft angle 
corresponding to constant sample and the corresponding 

(1)y(n) = WT
n

(2)Wn+1 = Wn + �e(n)X (n)

(3)e(n) = d(n) − y(n)

(4)J(n) = E
[

d2(n)
]

− 2WT
n
rdx +WT

n
Rxx(n)Wn,

(5)Wnopt
= R−1

xx
(n)rdx(n).

Fig. 1  Block diagram of the proposed FDCC approach
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amplitudes of the faulty vibration signal are calculated in 
the third step. This step is explained as follow:

For three consecutive pulse signals, shaft angles,

If one keyphasor is considered on the shaft, then

Using these value, from Eq. 6,

The b0, b1, and b1 can be determined from above 
equations. Now applying this value in Eq. (6),

Using this resample times, amplitudes of the signal are 
determined in the third step.

Step 3: Envelope analysis

Envelope analysis is the most popular approach to recover 
modulating signal (i.e., fault signals) from modulated 
signal effectively. It has been successfully used for fault 
detection, specially bearing fault detection [7, 8]. Enve-
lope analysis can justify the cyclostationary analysis of roll-
ing element bearing properly. Moreover, it can be used 
to obtain the modulating signals (i.e., fault signals) from 
modulated signal with high accuracy for increasing the 
SNR of results [9].

To perform the envelope analysis, vibration signal of 
faulty machines is filtered using bandpass filter around 
the mechanical resonance, which serves as a carrier for 
the modulated signal. And then, this bandpass filtered 
signal is demodulated to separate the faulty signal from 
the modulated signal. Example of envelope analysis is 
shown in Fig. 2. The red line of Fig. 2 indicates the upper 
envelope (Eupp), and green line is lower envelope (Elow). 
Both modulating signal and carrier signal can be calcu-
lated (when modulation index is less than 1) using the 
following equations:

Modulating signal

And carrier signal

(6)�(t) = bo + b1t + b2t
2.

�
(

t1
)

= 0, �
(

t2
)

= 2� and �
(

t3
)

= 4�.

(7)
0 = bo + b1t1 + b2t

2
1

2� = bo + b1t2 + b2t
2
2

4� = bo + b1t3 + b2t
2
3

.

(8)tj =
−b1 +

√

b2
1
− 4b2

(

�j − b0
)

2b2

(9)m(t) = Eupp − Elow

Envelope analysis shows the better performance over 
Hilbert transformation because its computational cost is 
lower and bandpass filtering is not required in envelope 
analysis. But, square envelope gives more advantages than 
the envelope itself.

Step 4: Fault detection

The spectrum of the faulty vibration signal often contains 
fault signatures. After square envelope analysis, the mag-
nitude of the fault is determined. Initially, fault magnitudes 
are very small. This small magnitude may not dangerous 
for the rotating machines. However, small faults magni-
tude leads to the breakdown of the machines. Therefore, it 
is important to know the rate of change of fault magnitude 
to prevent the breakdown of the machines. In the next 
step, classification of fault is done using fuzzy logic.

Step 5: Criticality classification using fuzzy logic

All magnitude is not dangerous for the breakdown of 
the machine, i.e., machine can sustain at some degree of 
faults with certain magnitude. Therefore, it is important 
to know the time when faults are getting dangerous for 
the breakdown. But, changes in fault magnitude are not 
linear. Therefore, it is also important to know the rate of 
change of fault magnitude to determine the fault severity 
of rotating machines.

Fuzzy logic is used to determine the fault severity of 
rotating machines. Nowadays the fuzzy expert system is 
widely used for decision making in many applications [11, 

(10)C(t) = Eupp + Elow,
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Fig. 2  Example of envelope analysis [10]
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12]. The fuzzy logic controller has four significant parts: 
fuzzification (crisp value to fuzzy), rule base (input–output 
relationship), inference engine (Mamdani or TS method) 
and defuzzification (fuzzy to crisp value). To design input 
and output membership function, Gaussian membership 
functions are applied in this method. A Gaussian member-
ship function can be defined as follows:

Here c represents the center and σ indicates the width 
of the membership function. The Mamdani method is used 
as the inference system in the proposed method. For the 
defuzzification process, the centroid method is used.

To determine the severity of faults, two inputs and one 
output are considered in the fuzzy system. One input 
named “magnitude” represents the amplitude of fault, 
and another input named “change” indicates the rate of 
change of fault amplitude. The input magnitude has four 
membership functions: very low (VL), low (L), medium (M), 
and high (H), while input change also has four member-
ships function: very small (VS), small (S), medium (M), large 
(L). Figures 3 and 4 represent the input variables of magni-
tude and change, respectively. The output named “sever-
ity” provides information about the status of faults, i.e., 
breakdown information. Like the input variables, output 
variables severity consists of four membership functions: 
(NR), slightly flawed (SF), medium flawed (MF), seriously 
flawed (SEF) which are shown in Fig. 5.

The severity of the faults not only depends on the fault 
magnitude but also the rate of change of faults magni-
tude. To determine the fault severity, the relationship 
between input and output is given in Table 1.

To determine the fault severity precisely, 16 rules are 
designed for the fuzzy system. The rules are given below:

 1. If (Magnitude is VL) and (Change is VS), then (Severity 
is NR) (1)

(11)gaussian(x;c, �) = e
1

2

(

x−c

�

)2

 2. If (Magnitude is VL) and (Change is S), then (Severity 
is NR) (1)

 3. If (Magnitude is VL) and (Change is M), then (Severity 
is SF) (1)

 4. If (Magnitude is L) and (Change is L), then (Severity is 
MF) (1)

 5. If (Magnitude is L) and (Change is VS), then (Severity 
is NR) (1)

 6. If (Magnitude is L) and (Change is S), then (Severity is 
SF) (1)

 7. If (Magnitude is L) and (Change is M), then (Severity 
is MF) (1)

Fig. 3  Membership functions of input ‘Magnitude’ Fig. 4  Membership functions of input ‘Change’

Fig. 5  Membership functions of input ‘Severity’

Table 1  Relationship between fuzzy inputs and output

Fault amplitude/change of 
fault amplitude

VL L M H

VS NR NR SF SF
S NR SF MF MF
M SF MF MF SEF
L MF MF SEF SEF
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 8. If (Magnitude is L) and (Change is L), then (Severity is 
MF) (1)

 9. If (Magnitude is M) and (Change is VS), then (Severity 
is SF) (1)

 10. If (Magnitude is M) and (Change is S), then (Severity 
is MF) (1)

 11. If (Magnitude is M) and (Change is M), then (Severity 
is MF) (1)

 12. If (Magnitude is M) and (Change is L), then (Severity 
is SEF) (1)

 13. If (Magnitude is H) and (Change is VS), then (Severity 
is SF) (1)

 14. If (Magnitude is H) and (Change is S), then (Severity 
is MF) (1)

 15. If (Magnitude is H) and (Change is M), then (Severity 
is SEF) (1)

 16. If (Magnitude is H) and (Change is L), then (Severity 
is SEF) (1)

Fig. 6  Faulty signal of bearing

Fig. 7  Frequency spectrum of 
faulty signal
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3  Performance analysis of proposed FDCC

3.1  Simulation model

To evaluate proposed FDCC method, faulty rolling element 
bearing signals are considered in this paper. In the bear-
ing, when a single point defect occurs, intense vibrations 
are generated accordingly. The fundamental frequency 
of these vibrations of the rotating machine is equivalent 
to the rate at which components move over the defect. 
As a result, unique frequency components will generate 
for bearing faults of the inner/outer raceway or rolling 

elements. These unique frequencies can be described as 
follows [1]:

Ball pass frequency of inner race (BPFI)

Ball pass frequency of outer race (BPFO)

Ball spin frequency (BSF)

(12)BPFI =
Nb

2

(

Ns

60

)(

1 +
Db cos �

Dp

)

(13)BPFO =
Nb

2

(

Ns

60

)(

1 −
Db cos �

Dp

)

Fig. 8  Envelope analysis of 
faulty signal

Fig. 9  Envelope analysis 
of faulty signal (Magni-
tude = 1.375)



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1632 | https://doi.org/10.1007/s42452-019-1680-0 Research Article

where Nb is the total number of rolling elements, Ns is the 
rpm of the shaft, θ is the contact angle of the balls on the 
races, and Db and Dp are the ball diameter and the pitch 
diameter, respectively. Computer simulation is performed 
to validate the proposed methodology. In this paper, the 
fault signature is BPFO and bearing modulation model is 
considered as follow: [7] 

(14)BSF =
Nb

2

(

Ns

60

)

(

1 −

(

Db cos �

Dp

)2
)

where f1 is the frequency of faulty signal (modulating sig-
nal) and fn is the natural frequency (Carrier frequency), 
respectively.

3.2  Fault detection

Figure 6 indicates the faulty signal for the rolling element 
bearing. Faults signature is not visible in this figure. The 
frequency spectrum of the faulty signal is presented in 

(15)

s(t) = A

(

1 +

k
∑

1

r1 sin
(

2�f1t + �1
)

)

sin
(

2�fnt + �
)

+ n(t),

Fig. 10  Envelope analysis 
of faulty signal (Magni-
tude = 1.638)

Fig. 11  Envelope analysis 
of faulty signal (Magni-
tude = 1.814)
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Fig. 7. This spectrum also does not provide the fault signa-
ture. After applying the proposed FDCC method, the fault 
signature is visible (circle) in Fig. 8. In this figure, bearing 
outer race fault signature is visible at 20 Hz and the mag-
nitude of the fault signature is 1.2. This fault signature is 
not constant, and it will change with operating time that 
would lead to the breakdown of the machines.

Figures 9, 10, 11 and 12 show the fault signatures with 
different fault magnitude 1.375, 1.638, 1.841 and 1.923, 
respectively. All of these fault signatures are not danger-
ous for the machines. To find the severity of the faults, 
fuzzy logic is used to classify the fault severity.

3.3  Severity classification

From the previous section, it is seen that fault magnitude 
is changed with operating time. Up to a certain value of 
fault magnitude and rate of change of fault magnitude, 

the machine can operate safely. Therefore, it is necessary 
to find the fault severity in order to prevent breakdown. 
Since this relation is not linear, fuzzy logic is used to deter-
mine the severity of the fault. Figure 13 represents the 
input–output relation of the proposed fuzzy logic. Fault 
severity based on fault magnitude and rate of change of 
fault magnitude can be found very easily from Fig. 14. 
According to fault severity, the operator easily can operate 
the machine without any breakdown. These could save not 
only reduce the production cost but also save the working 
time as well as human causality.

4  Conclusion

To detect faults and classify the severity of the faults, the 
fuzzy-based FDCC approach is proposed in this paper. 
In this method, after reducing the noise from the faulty 
vibration signal using adaptive filter, envelope analysis 
is used to detect the faults. Order tracking is also used 
to remove the speed variation of the rotating machine. 
Classification of the fault severity is done by fuzzy logic. 
Based on the fault severity, the fault elements can be 
replaced using this FDCC method before breakdown. 
Therefore, proposed FDCC methods save rotating 
machinery from the breakdown. These could help not 
only reduce the industrial production cost but also save 
the working time as well as human causality. The effec-
tiveness of the proposed FDCC method is measured by 
the simulation model. In this method, the fixed step size 
of the adaptive filter is used. The performance of the 
adaptive filter should be investigated by using real data 
with variable step size.

Fig. 12  Envelope analysis 
of faulty signal (Magni-
tude = 1.923)

Fig. 13  Input and output relationship
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Fig. 14  Rule view of proposed fuzzy logic classifier
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