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Abstract
The characteristic of creeping flow past a fluid sphere enclosed in a spherical envelope bearing fluid of different viscosity 
has been studied under the impact of transverse magnetic field. Stream functions related to modified Bessel functions 
are used in order to calculate the solution in closed form. The problem is considered to be parted into two flow regions 
as inner fluid and outer fluid region respectively, which are supposed to be governed using Stokes equations with 
different Hartmann number. At the contact layer of outer and inner fluid sphere, we assume the vanishing of normal 
components of velocity along with continuity of tangential components of velocity and stress respectively as boundary 
conditions. The condition of vanishing of vorticity (Kuwabara model) is considered to be applicable at the outer layer 
of fluid envelope. Expression for drag acting on the inner fluid sphere is presented. In limiting cases, several significant 
results accessible in literature are evaluated.
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1 Introduction

In the present era, there occur various new develop-
ments in the area of fluid mechanics which are con-
cerned with the flow of fluid in other fluid of immisci-
ble behaviour or fluid droplets of arbitrary shapes. As 
it efficiently account an idealization of several natural, 
biological and industrial exercise including formation 
of raindrop, blood flow problems, extraction of liquid 
from liquid, prediction of atmospheric conditions and 
sedimentation processes. In real life, the occurrence of 
immiscible flow of different fluid flow are found in vari-
ous situation like the motion of various oils through the 
bed of rocks, the flow of various industrial fluid in river, 
the release of dissolved gases from crude oils into the 
reservoir rock, etc. A significant and powerful technique 
employed to estimate the impact of particle concentra-
tion on the rate of sedimentation of particle is the well 

known unit cell model. This technique is extensively 
used for solving problems for particles in dense system. 
In this approach, the concept involved is to assume the 
arbitrary cluster of particles to be partitioned into vari-
ous identical cells, in which every cell contains single 
particle (spherical, cylindrical, spheroidal etc). And the 
cell is picked in such a manner that the fractional void 
volume in the cell becomes identical to the fractional 
void volume of the entire assemblage. Examination of 
such problem provides a measure to know information 
on the wall effects [1]. For the purpose of reporting the 
impact of neighbouring particles on the particle at the 
cell, different boundary conditions are proposed at the 
surface of the fictitious cell [2–5]. Study of creeping flow 
past fluid droplets are generally modelled using Stokes 
equation [1]. Slow motion of fluid drop of spherical 
geometry in other immiscible fluid was first investigated 
by Hadamard [6] and Rybczynski [7] by considering the 
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condition of continuity of velocity and tangential stress 
respectively at the fluid phases interface. With the aim 
of studying the flow of fluid droplet, Bart [8] analysed 
the motion of fluid sphere in another viscous fluids by 
using bipolar spherical coordinate system. Low Reynolds 
number flow of a sphere filled with fluid in the neigh-
bourhood of other sphere was studied by Wacholde 
and Weihs [9] and the obtained results agrees with the 
result of Bart. Bhatt and Shirley [10] analysed the motion 
of liquid spheres of different viscosities with free outer 
spherical surface. Flow of non-Newtonian fluid past a 
droplet of Newtonian fluid sphere contained in a cell 
was considered by Saad [11].Years later, the quasisteady 
axisymmetric motion of a fluid sphere contained in a 
non-concentric spherical cavity was examined by Lee 
and Keh [12] with the help of boundary collocation 
method and obtained the wall effect on the fluid drop-
let. Subsequently, Choudhuri and Padmavati [13] worked 
on finding a common method for handling the random 
viscous incompressible Stokes flow either axisymmetric 
or non-axisymmetric, past a sphere covered with a layer 
of fluid with different viscosity. Further, Prasad and Kaur 
[14, 15] analyzed the wall effect on both micropolar flow 
past a viscous fluid spheroid droplet and viscous flow 
past a micropolar fluid spheroidal droplet inside a cell.

In recent years, numbers of researches has been car-
ried out solving various real-life problems of industrial, 
engineering, environmental and also in the biological 
science. While keeping an eye on the scope of hydrody-
namics, various problems related to magnetohydrody-
namic (MHD) flows has been investigated by a number 
of researchers with numerous applications. The motion 
of conducting fluids under magnetic field are found to be 
applicable in several physical, geophysical and industrial 
fields. Therefore, in the recent development, the Hart-
mann flow has important application including power 
generators and pumps, polymer technology, the petro-
leum industry, purification of crude oil, and designing of 
heat exchangers and various other application can also 
be found in the books by Cramer and Pai [16] and David-
son [17]. Earlier, Stewartson [18] dealt with the motion 
of a magneto fluid past a sphere under the influence of a 
strong magnetic forces. Owing to literature study, several 
works related to magnetohydrodynamic flow through 
varying geometry which addresses the consequences 
of applied magnetic field [19–23]. Verma and Dutta [24] 
examined the flow through channel of varying viscosity 
with magnetic force in a direction perpendicular to the 
flow. Unsteady MHD flow of mixed convective immiscible 
viscous liquids past a horizontal channel was tackled by 
Singh et al. [25]. Magnetic effect on the motion of fluid 
past a porous channel having variable permeability was 
investigated by Srivastava and Deo [26]. The problem 

related to MHD flow of immiscible fluid spheres was 
reported by Jayalakshmamma et al. [27]. In their work, 
they studied the variation in streamlines pattern. How-
ever, they didn’t focused on calculating the hydrody-
namic drag. Verma and Singh [28] handled the problem 
of calculating the impact of magnetic field on the fluid 
flow rate for the motion of circular channel of porous 
media. Ansari and Deo [29] demonstrated the MHD effect 
on the immiscible fluids flow via porous channel.There-
after, Saad [30] worked on finding the effect of magnetic 
forces on the flow past porous particles of spherical and 
cylindrical shapes using Happel and Kuwabara model. 
Further, Prasad and Bucha [31, 32] studied flow problems 
for particles of varying shapes including semipermeable 
sphere and cylindrical shell under magnetohydrodynam-
ics flow and also evaluated the drag force acting on them 
respectively.

Inspired by the above discussion and its applications, 
the present work is investigated. The main objective of 
this analysis is to address the creeping flow of immisci-
ble fluid sphere in cell model under magnetohydrody-
namic flow by using Stokes equation modified by Lor-
entz forces, for studying flow fields. Considered fluids are 
assumed to be Newtonian and electrically conducting in 
nature. Boundary condition at the surface of fluid sphere 
are vanishing of normal velocity component, continuity 
of tangential components of velocity and stress respec-
tively. At the hypothetical cell surface, Kuwabara model 
is used. Drag force together with wall correction factor 
experienced on the sphere filled of fluid are evaluated 
analytically. Further, the impact of various active parame-
ters involved in the system are discussed through graphs 
and tables.

2  Problem formulation

Consider the steady axisymmetric MHD fluid flow past 
a fluid sphere of radius r = b bounded by a spherical 
envelope of radius r = a , which is supposed to be in 
motion having a uniform velocity U, as shown in Fig 1. 
Present flow is parted into external and internal fluid 
regions which are represented as Region I and Region II 
respectively and for simplicity denoted as i, with i = 1, 2 
respectively.

The following assumptions are made:

1. A uniform constant magnetic field is applied in a trans-
verse direction of the flow.

2. Exclusion of any applied external electric field.
3. Neglecting induced magnetic field.
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The equations governing the flow in external and internal 
fluid regions are driving by modified Stokes equation given 
as [1, 30]

where the notation denotes,

1. �(i) as the velocity vector,  i = 1, 2

2. �i as the electric conductivity,  i = 1, 2

3. �(i) as the electromagnetic induction vector,   i = 1, 2

4. p(i) as the pressure ,  i = 1, 2

5. �i as the coefficient of viscosity ,  i = 1, 2

6. �h the magnetic permeability.

Following non-dimensional variables are chosen, to convert 
the governing equations into dimensionless form.

Utilising the above values in Eqs. (1) and (2) and thereafter 
omitting the tildes, we get

(1)∇ ⋅ �(i) = 0, i = 1, 2.

(2)
∇p(i) + �i∇ × ∇ × �(i)

− �2

h
�i
(
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)
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b
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b
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(
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 are the Hartmann 

numbers for outer and inner flow respectively, �2 = �2

�1

 as 

the viscosity ratio. In the work under consideration, dimen-
sionless Hartmann number plays an important role in ana-
lyzing the behaviour of fluids. Hartmann number is 
defined as the ratio of electromagnetic force to the viscous 
force which comes into play while dealing with magneto-
hydrodynamic flows. It shows the influence of applied 
magnetic field on the drag forces.

Consider (r, �,�) as the spherical co-ordinate system. 
The present flow is axially symmetric, leading the physical 
quantities involved in flow to be independent of � . Thus, 
velocity vectors are given by

Expressing velocity components in terms of the stream 
functions � (i) ; i = 1, 2 which satisfy the continuity Eqs. (4) 
and (6) as

By substituting Eq. (9) and thereafter eliminating pressure 
terms from Eqs. (5) and (7), we obtain

and

where E2 = �2

�r2
+

1

r2
�2

��2
−

cot �

r2
�

��
 is the axisymmetric 

Stokesian operator.

3  Boundary conditions

Proper boundary conditions are required at the inter-
face to evaluate the velocity components for the flow 
in both the regions. As in the classical case, assuming 
the equilibrium theory [1] of the interfacial tension is to 
be applicable for the considered flow, which indicates 
that the occurrence of interfacial tension generates a 
discontinuity in the normal stresses i.e., � ( 1)rr ≠ �

( 2)
rr  but 

does not have any effect along the tangential stresses. 
The latter indicates the continuity of tangential stresses 
i.e., � ( 1)

r�
= �

( 2)

r�
 at the interface. Therefore, we assume 

(6)∇ ⋅ � (2) = 0,

(7)
∇p (2) + �2∇ × ∇ × �(2)

− �2�2
(

�(2) ×� (2)
)

×�(2) = 0.

(8)� (i) = q(i)
r
(r, �) �� + q

(i)

�
(r, �) �

�
, i = 1, 2

(9)q(i)
r
= −

1

r2 sin �

�� (i)

��
, q

(i)

�
=

1

r sin �

�� (i)

�r
; i = 1, 2

(10)E2(E2 − �2)� (1) = 0

(11)E2(E2 − �2)� (2) = 0

Fig. 1  Visualization of flow past a fluid sphere under magnetic 
effect
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vanishing of normal component of velocity, continuity 
of tangential component of velocity and stress respec-
tively [15]. At the cell surface of the fluid envelope, the 
condition of vanishing of vorticity i.e., Kuwabara model 
is considered along with the continuity of radial com-
ponent of velocity.

Mathematically, at the fluid-fluid interface of the sphere 
r = b , we have

1. Vanishing of normal components of velocity 

2. Continuity of tangential component of velocity 

3. Continuity of tangential component of stresses 

At the cell surface r = a:

1. Continuity of radial component of velocity 

2. Kuwabara model 

In non-dimensional form using stream functions, bound-
ary conditions at the inner fluid surface of sphere r = 1 are

Similarly, boundary conditions at the cell surface r = �−1 
with � = b∕a are

Kuwabara model
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4  Solution part

The expression for the solution for flow in both regions, 
obtained after solving Eqs. (10) and (11) are

where I3∕2(∗) and K3∕2(∗) represents modified Bessel 
functions of order 3/2 which are of first and second kind 
respectively. The arbitrary constants A, B, C, D, E, and F are 
to be determined.

5  Drag exerted on the fluid sphere

The hydrodynamic resisting force exerted on the sphere of 
fluid due to the flow of magneto fluid can be obtained by 
using the formula [1, 30]

By using Eq. (22) into the integral in Eq. (24), we obtain

After applying the results of A, B, C,and,  D in Eq. (25), we 
get the required expression for drag on bounded fluid 
sphere using Kuwabara model as

where the values of �1 and �2 are given in “Appendix”.

5.1  Results

5.1.1  Bounded medium using Kuwabara model

Case I If � → ∞ in Eq. (26), it acts as the solid sphere in 
presence of magnetic forces. Therefore, the drag reduces 
to
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which is identical to the result obtained by Saad [30].

Case II If � = 0, � = 0 in Eq. (27), we have the result for 
drag force exerted on solid sphere without magnetic field 
as

 which is identical to the result given in Saad [33].

5.1.2  Unbounded medium

As a ⟶ ∞ or � = 0 in Eq. (26), the flow in unbounded 
medium.

Case I Under magnetic effect, the drag on fluid sphere 
is given as

Case II In absence of magnetic field i.e., for � = 0 and 
� = 0 in Eq. (29), the drag on the fluid sphere is

which is in agreement with the work of Hadamard [6] and 
Rybczynski [7].

Case III If � → ∞ in Eq. (29), it acts as flow past solid 
sphere under magnetic forces and the drag is

which agrees with the work of Prasad and Bucha [31].

Case IV If � → ∞ in Eq. (30), it behaves as solid sphere 
and the drag is

which agrees with the expression for Stokes drag past a 
rigid impermeable sphere [1].

6  Graphical representation

The characterisation of wall correction factor Wc expe-
rienced by the bounded fluid sphere in presence of 
magnetic forces computed for different values of Hart-
mann numbers �, �  for outer fluid and inner fluid 
region, volume fraction � = �3 ( 0 < 𝛿 < 1 ), viscosity ratio 

(28)FD = 6�� bU

[

5

�(�5 − 5�2 + 9) − 5

]

(29)Finf = −2�� bU

[

�3 �
2 �5 − �4 �6

�5 �
2 − �4 (� + 3)

]

(30)Finf = −2�� bU

[

3�2 + 2

�2 + 1

]

(31)Finf = −2��Ub(�2 + 3� + 3)

(32)Finf = −6�� U b

� are shown graphically in Figs. 2, 3, 4, 5, 6 and 7 and 
Table 1. Wc represents the ratio of drag FD acted on the 
spherical particle in bounded medium to the drag acted 
on the same in an infinite expanse of fluid Finf  denoted 
as Wc =

FD

Finf
 . Hartmann numbers provides a way to ana-

lyse the importance of drag forces emerged from mag-
netic and viscous forces in magnetohydrodynamics.

Variation of wall factor acting on viscous liquid 
sphere with � corresponding to increasing value of � is 
pictured in Fig. 2. It is depicted that Wc decreases with 
an enhance value of � . The nature of increasing Hart-
mann number �  as shown in Fig. 3 indicates a slight 
increase in the value of Wc . Moreover, both the figure 
expresses the wall factor to be expanding with the rise 
in volume fraction. The alteration in values of wall fac-
tor is plotted for numerous values of � in Fig. 4 for both 
absence  ( � → 0, � → 0 ) and presence (� = 2, � = 5 ) of 
magnetic fields in the flow. The curves for � = 2, � = 5 

Fig. 2  Representing W
c
 versus volume fraction � for different � with 

� = 10 , � = 3.5

Fig. 3  Representing W
c
 versus volume fraction � for different � with 

� = 1.5 , � = 3.5
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is situated below the curves for � → 0, � → 0 which 
exhibits the decrease in wall correction factor under the 
action of magnetic fields. Interestingly, magnetic forces 
has a dominating effect which decreases the overall Wc 
acting on the fluid sphere. Demonstration of wall cor-
rection Wc against �  for varying � is seen in Fig. 5. It 
is observed that for fixed value of volume fraction � , 
Wc factor decreases with increasing � . It is also found 
to be increasing with increasing �. Figure 6 indicates a 
slight increase in the value of Wc with increasing � . It 
is illustrated from Fig. 7 that keeping the rest param-
eters fixed, Wc is found to be decreasing under magnetic 
influence. Therefore, applying magnetic forces on the 
flow of fluid decreases the Wc acting on the fluid sphere.

Table 1  Wall correction factor W
c
 against volume fraction � for vary-

ing viscosity ratio � in presence and absence of magnetic field

� W
c

� = 0 � = 1 � → ∞

Presence of M.H.D. � = 2 , �
2
= 5

0.01 1.00000 1.00000 1.00000
0.1 1.00007 1.00010 1.00012
0.5 1.00887 1.01227 1.01528
0.7 1.02473 1.03441 1.04306
0.9 1.05404 1.07601 1.09605
Absence of M.H.D. � → 0 , �

2
→ 0

0.01 1.00068 1.00085 1.00102
0.1 1.03516 1.04440 1.05384
0.5 1.24178 1.31832 1.40522
0.7 1.37967 1.51103 1.67061
0.9 1.55183 1.75998 2.03368

Fig. 4  Representing W
c
 versus volume fraction � for different � in 

both absence and presence of magnetic effect

Fig. 5  Representing W
c
 versus viscosity ratio � for varying � with 

� = 5 , � = 0.5

Fig. 6  Representing W
c
 versus viscosity ratio � for varying � with 

� = 1.5 , � = 0.5

Fig. 7  Representing W
c
 versus viscosity ratio � for different � in both 

absence and presence of magnetic effect
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Numerical values of wall correction factor for varying 
� and � for the case of with and without magnetic forces 
are illustrated in Table 1. The results for � = 0 indicates 
the case for gaseous bubble whereas � → ∞ shows the 
case of solid sphere. Also � = 1 is the case where the 
viscosity of both the fluids are equal. From the observed 
values, it is concluded that Wc decreases with the appli-
cation of magnetic forces. Moreover, magnitude of wall 
correction factor are shown to be increasing for increas-
ing volume fraction and viscosity ratio.

7  Conclusions

The major goal pursued in this article is to analyse 
the Stokes flow of conducting fluid through a fluid 
sphere surrounded by a spherical envelope, under 
the magnetic influence. Expression for the drag force 
on bounded fluid sphere is evaluated in an analytical 
approach, along with the several useful results in reduc-
tion cases. Numerical computation of wall effect and 
its dependence on various parameters are visualised 
by graphs. Based on the present work, the dependence 
of wall effect on magnetic parameters are found to be 
significant. We also observed a vast change in wall cor-
rection factor for varying viscosity ratio and volume 
fraction on applying magnetic field. It is shown that as 
the value of Hartmann number � for outer fluid region 
increase, a remarkable decrease in the wall correction 
factor is noticed. A slight increase in wall correction fac-
tor is seen by increasing Hartmann number � for the 
inner fluid region. Overall, applying magnetic field in 
both the regions shows a decrease in wall correction 
factor as compared to the case in absence of mag-
netic effect. Moreover, the wall effect is found to be an 
increasing with increasing viscosity ratio � and volume 
fraction �. As a future aspect of the present work, study 
of MHD effect on flow of Newtonian and non-Newto-
nian immiscible fluid with varying geometrical shapes 
can be considered, via which significant influence on 
flow may be obtained.
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