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Abstract
Packet classification is a basic process in most network-based packet processing systems. The key operation in this 
process is to match the packet header against the rules defined in a rule-set and, finally, to find the best matching rule. 
One of the well-known algorithms for packet classification is the Kd-tree algorithm. This algorithm produces a binary 
tree using the tuples created by the length of the prefix of the source and destination IP addresses of the rules. The tree 
is intended to classify the packets. The efficiency of the mechanism for producing and searching the binary tree in this 
algorithm is affected by two major disadvantages, namely, redundant nodes and redundant accesses during the search. 
The former increases memory consumption and the latter slows down packet classification. The proposed idea in this 
article is to prune redundant nodes by sorting the rules corresponding to each tuple in the tree nodes. The experimental 
results suggest that the throughput rate of the pruned Kd-tree is 43.64% higher than the Kd-tree. Also, by pruning the 
structure of the Kd-tree, our proposed method could at best reduce 24% of the memory consumed for the storage of 
the data structure of the Kd-tree.
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1  Introduction

The process of dividing network packets into different 
flows in Internet routers and firewalls is called packet 
classification. Packet classification specifies to which flow 
each packet belongs. Classification is based on matching 
one or more fields from the packet header against the 
corresponding values from the rules of the classifier. The 
most important fields of packet headers that are used for 
packet classification include source IP address, destination 
IP address, protocol type, source port number, and desti-
nation port number. When a packet is received, the table 
of rules is searched for a matching rule in accordance with 
the fields of the packet header. In addition to the valid 
values for the header fields, each rule specifies the action 
to be applied to the packet [1, 2]. The action determined 

by the matching rule will be applied to the packet. Since a 
packet may be matched by several rules, the action deter-
mined by the rule with the highest priority will be per-
formed. For example, one priority can be the length of the 
prefix of the source or destination IP addresses or the order 
of the appearance of a rule in a rule set [3–5].

One of the well-known packet classification algorithms 
is the Kd-tree algorithm [6]. This algorithm has a balanced 
binary tree structure. The tree represents the rules. Each 
node in this tree, therefore, contains rules that are partly 
similar to each other. The rules that are mapped onto a 
node in the tree have identical tuples. That is, the pre-
fixes of the source and destination IP address fields of 
the rules mapped onto a tree node will have the same 
length. It should be noted that the Kd-tree algorithm is a 
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combination of tree-based and tuple space methods. In 
other words, a binary search is performed on the tuple 
space.

This study proposes an optimized version of the Kd-tree 
packet classification algorithm by pruning the redundant 
nodes of the tree. The most important criteria for the effi-
ciency of the algorithm are packet classification time and 
the space required to store the structure of the Kd-tree 
algorithm. For this purpose, we first examine the tree 
structure of the Kd-tree algorithm as well as how this algo-
rithm classifies packets. Then, we will show how pruning 
the tree structure created by the rules and changing the 
packet classification model in the pruned tree will reduce 
the time for traversal as well as packet classification. Also, 
we closely examine how to reduce the space needed to 
store the tree structure of the Kd-tree algorithm.

The structure of the article is organized as following. 
First, we shall review related works on the structure of the 
Kd-tree algorithm as used in tuple space search as well 
as the use of markers in this algorithm. In the third sec-
tion, the proposed method for pruning the Kd-tree and 
producing a pruned Kd-tree is examined. Implementation 
and evaluation of the proposed method are explained in 
Sect. 4. The final section of the paper is dedicated to con-
cluding and presenting solutions for further development 
of research in this field.

2 � Related works

2.1 � Decision tree based packet classification 
algorithms

Decision-tree based algorithms [5, 7, 8] are the most pop-
ular algorithms for packet classification. Their success is 
owned by the key idea of recursively cutting the search 
space into smaller sub-spaces, each of which correspond-
ing to a child of node in a decision-tree. Such a recur-
sive terminates when the number of rules in tree nodes 
becomes lower than a predefined threshold.

To classify an incoming packet, information of certain 
fields of its header are extracted and then used to traverse 
the tree. During traversal from root to leaf nodes, the algo-
rithm stores the best matching rule based on its specific 
policy.

There are a few variations of the decision tree that dif-
fer on the method of constructing the tree via cutting the 
search space and the way of traversing the tree for classify-
ing packets. For example, HiCuts [7] constructes the tree 
via multiple evenly-spaced cuttings on a single dimension 
at each iteration. HyperCuts [8] differs from HiCuts only in 
allowing multiple dimensions to be cut concurrently to 
moderate the height of the constructed tree. To resolve 

the memory blow up problem caused by rule replication 
of HyperCuts, HyperSplit [5] uses non-equal cuts for con-
trolling the memory usage. As shown in Fig. 1a, HiCuts 
algorithm cuts the search space into two equal-sized sub-
spaces. The Rule 2 and Rule 3 are replicated in the respec-
tive subspaces. By aligning the cuttings at the edges of 
the rules, the HyperSplit algorithm is able to reduce rule 
replication (Fig. 1b). However, HyperSplit still cannot elimi-
nate all rule replication, especially for complex rule sets.

However, this algorithm is not as fast as HyperCuts. A 
key solution to this problem is to implement the algorithm 
on FPGA [9]. In this hardware implementation of Hyper-
Split, a pipelined architecture accelerates the classifica-
tion process. However, due the limited resources of the 
programmable devices limits the extensibility and cus-
tomizability of the hardware packet classifiers. Also, the 
considerable design costs of hardware classifiers makes 
their performance to cost ratio smaller than that of the cor-
responding software classifiers. For this reasons, software 
packet classifiers are more interested.

The common issue in using software packet classifiers is 
their inability in achieving maximum speed and minimum 
memory usage, simultaneously. Therefore, the memory 
usage of fast tree-based packet classification algorithms 
may grow exponentially as the number of rules increases. 
In this paper we show how using simple but effective 
tricks in pruning redundant tree nodes would reduce the 
memory consumption of the algorithm and increase the 
classification speed.

2.2 � Kd‑tree algorithm based on tuple space search

In spite of the large number of rules in a classifier, often the 
majority of prefixes have the same length. Using this fact, 
the rules of a classifier are divided into separate groups 
based on their prefix length.

Fig. 1   a Unaligned cut point (causing replication of Rule 2); b 
Aligned cut point to the boundary of Rule 1 and Rule 2 (reducing 
replication)
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It is clear that the number of rules that are placed in a 
category with the same prefix length is less than the total 
number of rules. For example, consider a classifier in a tra-
ditional router that sends packets based on the destina-
tion IP address. Such a classifier, regardless of the number 
of rules, can have up to 32 distinct groups. In a two-dimen-
sional classifier in which rules are defined based on the 
source and destination IP addresses, a maximum of 1024 
separate groups can be conceived. However, many of the 
tuples may have no specific rule. In general, if you consider 
a d-dimensional classifier, each rule is mapped onto a vec-
tor with a set of d integers in which the ith integer denotes 
the length of the prefix of the ith field of the rule. A vector 
with d integers is called a tuple. A set of tuples created by 
the classifier is called tuple space. The modest algorithm 
for tuple space search is to check all the tuples.

2.3 � Definitions

A tuple T is a vector of d integers that is defined as 
T .vec[1], T .vec[2], ..., T .vec

[

d
]

 . In this definition, T .vec[i] 
denotes the integer value corresponding to the ith item 
in T  . An f  rule matches a tuple if and only if ∀i, 1 ≤ i ≤ d 
and the length of the ith field of f  is exactly T .vec[i].

The space of tuple T  can be divided into three par-
titions, i.e., LongerTuple, ShorterTuple, and Incompa-
rableTuple. Suppose two tuples T  and Ta and let Ta ≠ T  
( ∃i, 1 ≤ i ≤ d, Ta.vec[i] ≠ T .vec[i] ). Ta is a tuple in the 
LongerTuple partition of T if ∀i, 1 ≤ i ≤ d, Ta.vec[i] ≥ T .vec[i] . 
Also, if ∀i, 1 ≤ i ≤ d, Ta.vec[i] ≤ T .vec[i] , then Ta is a tuple in 
the ShorterTuple partition of T  . Otherwise, Ta is a tuple in the 
IncomparableTuple partition of T .

To perform a binary search in the tuple space, a binary 
tree should be produced using tuples. For this purpose, 
each tuple is mapped onto a unique value called Super-
Key which specifies the position of the tuple on the tree. 
The SuperKey of tuple T  is generated by joining all the 
elements in T .vec in a rotational order. For this purpose, 
a discriminator is used to determine the place where the 
elements should be joined. SKT .dis represents the SuperKey 
of T  and dis index represents the discriminator. Therefore, 
SKT .dis = T .vec

[

dis
]

T .vec
[

dis + 1
]

, ..., T .vec
[

d
]

T .vec[1]T .vec

[2], ..., T .vec
[

dis − 1
]

. For example, SK(3,0).1 = 30 and 
SK(3,0).2 = 03 . Since there are d elements in T .vec , tuple 
T  can have d SuperKeys that may begin at any element 
1, 2, 3,… , d.

As SuperKeys are integers, they can be easily sorted. 
As a result, the tuples can be sorted by their SuperKeys. 
Assuming dis as the discriminator, Ta is smaller than T  if 
SKTa .dis < SKT .dis . Otherwise, Ta would be greater than T  . 
For example, let dis = 1 . Then the tuple (3, 0) is greater 
than the tuple (2, 2) because SK(3,0).1 > SK(2,2).1(30 > 22) . 
If the discriminator of all the tuples equals 2, the tuple 

(3, 0) would be smaller than the tuple (2, 2) because of 
SK(3,0).2 < SK(2,2).2(03 < 22).

2.4 � The structure of the Kd‑tree algorithm

Rules that are mapped onto a tuple can be stored in a 
hash table. Tuples can be considered as points in a mul-
tidimensional space. Over the past three decades, many 
data structures have been developed for organizing multi-
dimensional objects, including Kd-tree [10], KDB-tree [11], 
R-tree [12], R+-tree [13], and R * -tree [14]. Among these 
data structures, Kd-tree provides a simple and convenient 
method. More information on this structure can be found 
in several recent studies [15–18].

In our proposed method, each node of a Kd-tree holds 
a tuple T , and two pointers are connected to the right 
and left sub-trees. According to the explanations given in 
Sect. 2.3, all the tuples of the left-hand sub-tree of a tuple T  
are smaller than T itself whereas all the tuples in the right-
hand sub-tree of T are greater than T. Note that the tuples 
of the left-hand sub-tree of T  belong to the ShorterTuple 
or IncomparableTuple of T  . Also, the right-hand tuples of 
T  belong to the LongerTuple or IncomparableTuple of T .

To simplify the formation of a Kd-tree algorithm, assume 
that only the fields of source and destination IP address of 
the rules are checked. The sample classifier works with the 
ten rules in Table 1. In this table, the first column shows the 
number of rules. The second and third columns represent 
the source and destination IP addresses, respectively. The 
fourth column represents the tuple corresponding to the 
rule. For example, in the case of R0 rule, the number of 
the bits of the source IP address prefix is 4 and that of the 
destination IP address prefix is 3. Therefore, the tuple cor-
responding to this rule is (4, 3).

Table 1   An example of the rules of a classifier

*Symbol in all patterns of source IP address and destination IP 
address denotes a part of the address which is unimportant to the 
classifier engine

Rule Source IP address Destination IP 
address

Tuple

R0 1010* 011* (4, 3)
R1 1010* 0000* (4, 4)
R2 100* 101* (3, 3)
R3 1* 010* (1,3)
R4 10110* 1000* (5, 4)
R5 11* 011* (2, 3)
R6 10111* 01001* (5, 5)
R7 * 0* (0, 1)
R8 101* 01* (3, 2)
R9 11* 1111* (2, 4)
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To select the root node or a sub-tree of the Kd-tree, 
SuperKeys are created to sort the tuples. The tuples are 
first sorted according to their SuperKeys, and then the 
middle tuple in the sorted list is selected as the root node 
or a sub-tree of the Kd-tree. Tuples with SuperKeys smaller 
than that of the selected tuple are assigned to the left-
hand sub-tree of the tuple, and the rest of the tuples are 
assigned to the right-hand sub-tree of the root tuple. This 
process is repeated for the tuples assigned to the left-hand 
and right-hand sub-trees. In other words, to select the root 
of the left-hand and right-hand tree, the existing tuples are 
once again sorted using a new discriminator, and the mid-
dle tuple of the list is selected as the root of the sub-tree. 
The following formula is used to determine the discrimina-
tor field in creating the SuperKey of tuples at the Lth level:

In the above equation, d denotes the number of dimen-
sions of the classifier. In fact, with the help of Eq. (1), fields 
1, 2, 3,… , d are selected in rotation as the discriminator. The 
tree shown in Fig. 2 is based on the source and destina-
tion IP addresses in Table 1. In this tree, the elliptical nodes 
correspond to the tuples in the fourth column of Table 1. 
Also, the rules belonging to each tuple are shown with the 
symbol R[]. For example, tuple (3, 2) has an R8 rule.

In this example, the tuples are initially sorted by the dis-
criminator dis = 1 . Accordingly, the SuperKeys correspond-
ing to the tuples in Table 1 are obtained and sorted in the 
form of (0, 1), (1, 3), (2, 3), (2, 4), (3, 2), (3, 3), (4, 3), (4, 4), (5, 
4), (5, 5). The middle tuple (3, 2) is selected as the root node 
of the Kd-tree. The tuples (0, 1), (1, 3), (2, 3), (2, 4) fall under 
the left-hand sub-tree of the root and the tuples (3, 3), (4, 
3), (4, 4), (5, 4), (5, 5) under the right-hand sub-tree. Then 
the discriminator dis = 2 is selected, and the tuples in the 
left-hand and right-hand sub-trees are sorted again. The 
sorted sequences are (0, 1), (1, 3), (2, 3), (2, 4) and (3, 3), (4, 
3), (4, 4), (5, 4), (5, 5). The middle tuples (1, 3) and (4, 4) are 

(1)dis = (Lmod d) + 1

selected as the root nodes of the left-hand and right-hand 
sub-trees, respectively. By repeating this process, the tree 
of the Kd-tree algorithm is constructed.

2.5 � Search in Kd‑tree algorithm and the misjudged 
problem

This section examines an example of searching in the Kd-
tree. Assume a packet with the source IP address (1001 
0011 1010 1111 1111 1111 0011 0100) and the destination 
IP address (0010 0111 0000 1011 0011 0101 1111 1111). 
Given the rules in Table 1 and the corresponding Kd-tree 
depicted in Fig. 2, the act of classification for this packet 
will be as following. In the search process, BstMatch vari-
able is used. This variable holds the first matching rule until 
the search is finished and a leaf node is reached.

First, traversal starts from the root node of the Kd-tree, 
which is the tuple (3, 2) in this example. Therefore, this 
tuple should be checked. To check (3, 2), if it contains a rule 
according to the number of the prefix bits of the source 
and destination IP addresses, it will be matched against 
the input packet. Therefore, the packet matches the rules 
in the form of (100*, 00*). In this example, the input packet 
does not conform to any rule because the prefixes of R8 
cannot be matched with the prefixes of the packet. Since 
this tuple has returned the result of mismatch, the tree is 
further traversed on its left-hand child. In the next step 
which consists of matching against the tuple (1, 3), the 
search algorithm uses 1 bit of the prefix of the source 
IP address and 3 bits of the prefix of the destination IP 
address for examining the rules in the tuple (1, 3). At this 
stage, the algorithm cannot find any matching rule. Due 
to the lack of matching rules, therefore, traversal is led 
to the left-hand sub-tree of this tuple. Then the rules in 
the last tuple, i.e. (0, 1), are checked. In this step, Rule 7 is 
returned as the best matching rule because the algorithm 
has already reached a leaf node.

Fig. 2   The basic Kd-tree produced from the rules in Table 1
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As the above description shows, performing a traversal 
for packet classification by the Kd-tree is not flawless. For 
example, suppose an input packet for the matching opera-
tion has a source IP address of (1100 0011 1011 0010 0111 
0110 1111 1111) and a destination IP address of (1111 
1011 0100 1110 1111 1111 0100 0000). At the root of the 
tree, the packet has not been matched by any of the rules 
of (3, 2) and, as a result, traversal continues at the left-hand 
sub-tree. In the next step, the input packet does not match 
any of the rules in the tuple (1, 3) and again traversal con-
tinues at the left-hand sub-tree of the tuple (1, 3). The root 
tuple of this sub-tree is (0, 1) whose rules do not match 
the packet. Finally, the search is over without any result. 
In a linear search, however, the packet would easily match 
the rule R9. A solution to this problem are markers. The 
next section explains how a marker is used in the basic 
algorithm.

2.6 � Use of markers in the Kd‑tree algorithm

When a search is not successful on a tuple, the search 
algorithm continues the traversal on the left-hand sub-
tree and removes all the tuples of the right-hand sub-
tree from the traversal. To avoid this problem, which is 
called the misjudged problem, every tuple should retain 
information about the rules of its right-hand sub-tree. 
For example, the tuple (1, 3) must have a marker that 
produces R5 rule in the tuple (2, 3). Also, the tuple (1, 3) 
must have a marker of R9 rule related to the tuple (2, 4). 
Figure 3 shows the Kd-tree of the rules in Table 1 along 
with added markers. Markers in the tuples are indicated 
by M […].

In the search for the best matching rule from the pre-
vious example, traversal cannot find any matches in the 
tuple (3, 2) and continues on the left. When matched 
against (1, 3), the search is successful due to the presence 
of the R9 marker. Finally, the search algorithm continues 

to traverse the right-hand sub-tree and reports R9 rule in 
the tuple (2, 4) as the best matching rule.

3 � Pruned Kd‑tree algorithm

In this section, we describe the pruned Kd-tree method 
which significantly improves the Kd-tree algorithm. 
Assume an input packet with fields that can be best 
matched by R6 in Fig. 3 (a source IP address of (1011 
1111 0010 0101 0001 1111 1001 1101) and a destina-
tion IP address of (0100 1101 1010 0001 0110 1111 
1011 1111)). Figure  4 shows the tree traversal path 
to find the best matching rule. The tree nodes to be 
examined are shown in shaded shapes. Traversal starts 
from the root node. To search for the best matching 
rule for this packet by means of the Kd-tree algorithm, 
in each node a certain length of the source and desti-
nation IP address of the packet is compared with the 
corresponding prefixes from the rules mapped onto 
the tuple of the node. For example, in the root node 
which contains the tuple (3, 2), the input packet is 
compared with only 3 bits of the prefix of the source 
IP address and 2 bits of the prefix of the destination 
IP address of the existing rules. Therefore, as the fig-
ure shows, all the rules in a tuple must be checked. 
In this example, traversal starts from the root towards 
the right-hand child of (4, 4). Then the tuple (5, 4) and, 
finally, the tuple (5, 5) are traversed. Finally, as the tra-
versal path reaches a leaf node, the rules of that node 
are also examined and R6 rule is reported as the result. 
In this example, 14 nodes are checked in the traversal 
path. In the following, we will show that the idea of 
pruning a Kd-tree can significantly reduce the number 
of accessed nodes. Thus, the search speed in this algo-
rithm increases significantly.

Fig. 3   The Kd-tree with markers of the rules from Table 1
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3.1 � Suggested techniques for pruning a Kd‑tree

Our examination of Kd-trees created by various rules 
resulted in the following ideas for tree pruning.

Technique 1 Pruning the right-hand leaves
In the Kd-tree data structure, by replacing the markers 

of a node with the rules that correspond to the tuple of 
the right child of the node and matching the entire prefix 
bits against the input packet, we can prune the right child 
if it is a leaf node.

In other words, all the rules in the right child node will 
also exist in the parent as markers. If the right child node 
is a leaf node, it can be pruned by transferring the rules to 
the parent; therefore, instead of matching the marker, it 
is necessary to match the rules against the input packet.

Obviously, pruning some of the tree’s redundant nodes 
will reduce the memory needed to store the tree struc-
ture. On the other hand, sometimes the tree’s depth will 
decrease with the removal of leaf nodes. Another advan-
tage of pruning a tree is to reduce the number of memory 
accesses during the traversal.

Technique 2 Sorting by the priority of rules
If in each node corresponding to a tuple all the exist-

ing rules have been sorted in descending order according 
to the prefix length, memory access will be significantly 
reduced when searching for the best matching rule. The 
rules are sorted based on the length of the sum of the 
source and destination IP address prefixes.

Indeed, sorting the rules by prefix length makes it pos-
sible that, when the input packet is matched with the first 
rule during the traversal, the search could be finished at 
that tuple and continue on the right-hand sub-tree of 
the node, if any, to find matching rules corresponding 
to longer tuples. Because this method does not need to 
necessarily check all the nodes in the tuple, the number 

of memory accesses and the time for packet classification 
is reduced.

3.2 � The Structure of pruned Kd‑tree algorithm

In this section, using the techniques mentioned above, we 
prune a Kd-tree. Algorithm 1 describes how to create a 
pruned Kd-tree. The input and output of this algorithm are 
Kd-tree and pruned Kd-tree. To prune the tree, all nodes 
are checked (lines 1 through 7). If the examined node is a 
leaf node, it will be pruned as long as it is the right child of 
its parent (lines 2 to 6).

After the tree is pruned, it is necessary to sort the rules 
in the nodes corresponding to each tuple. For this pur-
pose, all the nodes of the tuples are examined, and their 
rules are sorted by the prefix length in descending order 
(lines 8 to 10).

Figure  5 represents the Kd-tree corresponding to 
Table 1. In this tree, the leaf nodes that are the right child 
of their parent are marked in gray. In the next step, these 

Fig. 4   Traversal of the Kd-tree
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nodes are eliminated, resulting in the removal of 12 nodes 
from the tree. Figure 6 shows the structure of the Kd-tree 
after pruning.

Figure 7 shows the final version of the tree shown in 
Fig. 6. In this trie, all of the markers in each node are added 
to the rules set R. Next, these rules are sorted descending 

by their prefix length. For example, the root node which 
has the markers 1, 4, 6 and the rule R8, is converted to 
R [1, 4, 6, 8]. In this node, rule R6 has the longest prefix 
as compared to others. R4 is the second of the longest-
prefix rules. The rules are sorted in this way in all of the 
tree nodes.

Fig. 5   Nodes to be pruned by Kd-tree algorithm

Fig. 6   The Kd-tree after pruning some nodes

Fig. 7   The tree produced by the implementation of the proposed method of pruned Kd-tree on the rules in Table 1
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3.3 � Search in a pruned Kd‑tree

Search in a pruned Kd-tree is done as follows. Traversal 
starts from the root and the rules in each tuple node are 
checked linearly. The rules are examined in their entirety, 
i.e. the full length of the prefix of source and destination 
IP addresses, source and destination port numbers, and 
protocol. If the packet matches a search rule, the search 
in the rules of that tuple is stopped and directed to the 
right-hand sub-tree of the tuple.

Algorithm 2 shows how to search and classify packets 
based on the data structure of the pruned tree. The input 
of this algorithm is the rule set R , the pruned Kd-tree T  , 
the tuples, and the header of input packets. The output is 
rulesIndexArray which holds the index of the best match-
ing rule of every incoming packet. Packet classification 
starts from the root node (line 2). Initially, BMR variable 
that holds the best matching rule for a packet is set to 
Null (line 3). The traversal of the tree continues until a 
leaf node is reached (lines 4 through 13). On the traversal 
path, the different fields of the rules in the tuples are 
compared with the input packet. If the packet matches 
a rule, the number of that rule will be stored in rIdx (line 
6). Then, if the packet matches a rule in the tuple, the 
result will be stored in BMR and traversal will be directed 
towards the right child; otherwise, the left child will be 
traversed (lines 7 to 12). At the end of the traversal, the 
result of packet classification is stored in rulesIndexArray 
which is an array used for holding the results (line 14).

Table  2 compares the number of memory accesses 
required for classifying same packets using basic Kd-tree 
and its enhanced version.

Figure 8 illustrates searching this prund Kd-tree for first 
packet of Table 2. It is assumed that the packet matches 
R6. Multiple nodes and rules that are examined on the 
traversal path are shown in red. This search, which would 
otherwise need 14 memory accesses in the Kd-tree algo-
rithm, is performed with only four memory accesses in the 
proposed method.

Table 2   Number of memory-accesses required for Kd-tree and pruned Kd-tree

Input packet Algorithm BMR

Source IP address Destination IP address Kd-tree Pruned Kd-tree

10111111001001010001111110011101 01001101101000010110111110111111 14 4 R6
10110010000110011001100000000000 10000000000000110101001100111001 9 6 R4
11000011101100100111011011111111 11111011010011101111111101000000 14 7 R9

Fig. 8   Search using the pruned Kd-tree algorithm
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In classifying the second packet of Table 2, the Kd-
tree algorithm examines rule 8 in the tuple (3, 2) and for 
its inconsistency checks the marker of this tuple. Hence, 
the packet is examined against the markers of rule 1 and 

rule 4, and due to matching with the marker of rule 4, 
the subsequent search is directed to the right subtree. 
Then, the packet is compared with rule 1 and marker 4 in 
the tuple (4, 4), which finally is matched with rule 4. The 
number of memory accesses in classifying this packet 
using Kd-tree is nine. But, in pruned Kd-tree, the packet 
is first examined against rules 4 and 6 in the tuple (3, 
2), and then is compared with rules 4 and 6, with only 
six memory accesses. Similarly, the number of required 
memory accesses for classifying the third packet of 
Table 2 is computed and presented. In these examples, 
the number of memory accesses of the proposed algo-
rithm is lower than that of the basic algorithm.

Table 3   System specifications

Specification Processor

Name Intel Core i7-740QM
Clock speed 1733 MHz
L1 data cache 4 × 32 KB
L1 inst. cache 4 × 32 KB
L2 cache 4 × 256 KB
L3 cache 6 MB
Main memory 4 GB DDR3
Operation system Windows 7 ultimate, 64-bit

Table 4   The number of memory accesses with the ACL rule set

Packet Access memory Kd-tree algorithm Pruned Kd-tree algorithm

1k 5k 10k 20k 1k 5k 10k 20k

512 Max 544 3142 5699 12,030 426 2319 3980 9381
Min 185 948 1587 2924 77 91 98 350
Sum 130,841 596,352 964,795 1,872,710 122,359 523,232 882,270 1,678,095

1k Max 544 3142 5699 12,030 375 2319 4497 9021
Min 185 948 1576 2924 28 91 98 280
Sum 255,201 1,207,024 1,957,944 3,576,870 239,219 1,048,327 1,738,695 3,224,380

2k Max 544 3142 5699 12,030 426 2319 4497 9465
Min 185 937 1576 2893 14 14 14 70
Sum 517,771 2,246,115 4,057,069 10,246,641 477,216 2,026,514 3,523,529 5,340,693

4k Max 544 3142 5699 12,030 438 2319 4553 9393
Min 185 937 1577 2893 14 14 14 70
Sum 1,047,587 4,689,638 7,985,342 13,772,088 964,999 4,134,084 7,036,544 12,523,765

8k Max 544 3142 5699 12,030 432 2364 4553 9489
Min 185 937 1577 2893 14 14 14 49
Sum 2,063,609 9,196,415 14,508,307 28,847,845 1,935,299 8,192,319 13,869,101 25,545,303

16k Max 544 3142 5699 12,030 438 2364 4553 9423
Min 185 937 1576 2895 14 14 14 49
Sum 4,078,028 17,468,936 30,468,442 55,962,934 3,839,218 16,175,042 17,852,162 50,669,497

32k Max 544 3142 5699 12,030 438 2364 4560 9495
Min 185 937 1576 2924 14 14 14 42
Sum 8,098,792 38,481,691 63,569,548 125,007,952 7,680,932 32,501,442 56,179,615 106,443,702

64k Max 544 3142 5699 12,030 438 2364 4560 9495
Min 185 937 1576 2893 14 14 14 21
Sum 15,646,914 77,127,273 134,153,228 231,739,723 15,517,797 67,965,278 113,712,252 205,476,450

128k Max 544 3142 5699 12,030 438 2364 4560 9495
Min 185 937 1576 2893 14 14 14 21
Sum 33,141,660 148,833,606 262,013,018 433,884,540 30,668,615 132,008,892 222,438,007 402,884,488

256k Max 544 3,142,937 5699 12,030 438 2364 4560 9495
Min 185 937 1576 2893 14 14 14 14
Sum 71,756,336 301,774,440 501,780,227 922,711,260 57,690,021 260,490,897 444,624,839 820,648,686
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4 � Implementation and evaluation

To implement the proposed packet classification algo-
rithm, C++ language was used on a system with the 
specifications in Table 3.

The rule set and packets needed to evaluate and test 
the proposed algorithm was created using ClassBench 
tool [19]. Three general rule sets were created by Class-
Bench, including Access Control List (ACL), Firewall (FW), 
and IP Chain (IPC). We used rule sets of varying sizes for 
our evaluations. Each generated rule set was named 
according to its type and size. For example, ACL2_3K 
refers to an ACL rule set with 3000 rules.

For our evaluations, we used rule sets of 1k to 20k 
and packets of 512 to 256k. In the following, the results 

of testing the proposed algorithm and its comparison 
with the typical Kd-tree algorithm are presented and 
discussed.

4.1 � Number of memory accesses

One of the criteria for evaluating packet classification 
algorithms is the number of memory accesses. When a 
packet is being classified by our method, after reading the 
packet header fields, the nodes of the tree are traversed. 
Traversal starts from the root of the tree and proceeds to 
the leaf node according to the search mechanism of the 
proposed method. If a node has rules, those rules are also 
checked linearly. Of course, this part of the search can 
be done using a hash table which reduces access time in 

Table 5   The number of memory accesses with the FW rule set

Packet Access memory Kd-tree algorithm Pruned Kd-tree algorithm

1k 5k 10k 20k 1k 5k 10k 20k

512 Max 1199 3130 5159 12,454 1033 2581 4965 9991
Min 422 1039 1931 4124 65 65 70 305
Sum 356,443 1,136,854 1,874,853 3,557,947 255,322 853,432 1,457,881 3,221,409

1k Max 1199 3130 6186 12,454 1033 2581 6163 9991
Min 422 1039 1931 4215 20 65 70 150
Sum 668,357 2,023,881 3,210,080 7,090,479 549,917 1,840,454 3,052,962 6,285,888

2k Max 1199 3130 6186 12,503 1086 2581 6181 12,496
Min 422 1039 1910 4124 10 65 70 50
Sum 1,341,260 3,982,774 6,783,093 14,179,408 1,072,978 3,686,741 6,188,172 12,377,521

4k Max 1199 3130 6186 12,503 1086 3057 6179 12,503
Min 422 1039 1910 4124 10 10 10 50
Sum 2,678,963 7,991,672 14,517,075 28,159,817 2,154,155 7,326,447 12,763,918 24,901,899

8k Max 1199 3130 6186 12,503 1084 3064 6176 12,503
Min 422 1006 1910 4124 10 10 10 35
Sum 5,460,157 16,415,274 31,978,990 55,019,262 4,301,367 14,517,171 19,193,383 50,439,626

16k Max 1199 3130 6186 12,503 1086 3055 6180 12,503
Min 422 1006 1910 4124 10 10 10 35
Sum 10,894,541 37,703,706 50,566,605 110,212,121 8,396,090 32,417,792 49,128,771 99,489,160

32k Max 1199 3130 6186 12,503 1086 3064 6180 12,502
Min 422 1006 1910 4124 10 10 10 30
Sum 23,157,719 65,556,229 100,929,684 223,898,085 16,296,924 57,797,109 98,517,382 200,488,788

64k Max 1199 3130 6186 12,503 1086 3064 6186 12,503
Min 422 1006 1910 4124 10 10 10 26
Sum 42,492,153 131,326,833 223,530,631 455,442,469 34,756,397 115,950,625 192,205,381 398,400,842

128k Max 1199 3130 6186 12,503 1086 3064 6186 12,503
Min 422 1006 1910 4124 10 10 10 15
Sum 85,833,341 262,031,623 446,157,629 891,605,570 71,234,413 232,741,927 376,538,129 788,539,632

256k Max 1199 3130 6186 12,503 1086 3064 6186 12,503
Min 422 1006 1910 4124 10 10 10 10
Sum 175,974,550 504,174,306 874,611,717 1,787,756,828 140,608,710 484,286,547 775,062,307 1,603,978,979
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examining the rules of a tuple. In this research, we have 
used the linear method in searching the rules of each tuple 
to illustrate the effect of the pruned Kd-tree. The number 
of memory accesses can be defined as the total number of 
traversed nodes along with the number of examined rules. 
In the following, we will examine the number of memory 
accesses in both Kd-tree classification algorithm and the 
proposed method with regard to the different rule sets 
and different numbers of rules and packets. Table 4 repre-
sents the number of memory accesses related to the ACL 
rule set. The table shows the lowest and highest amount 
of memory access per packet, and the total number of 
memory accesses for all the packets.

In Table  4, it can be seen that the total number of 
memory accesses has increased in both algorithms with 
the increase in the number of packets. As the number 

of rules increases, the number of memory accesses will 
increase too. In the worst case of classification, the num-
ber of accesses equals the depth of the tree plus the total 
number of rules available in the tuple nodes on the path 
from the root to the leaf. For example, with 512 packets 
and 1k rules, the Kd-tree algorithm has a maximum num-
ber of 544 memory accesses. In our method, however, the 
number of memory accesses decreased to 426.

On the other hand, the minimum number of memory 
accesses in the proposed method is less than that of the 
Kd-tree algorithm. For example, in classifying 2k packets 
according to 5k rules, the proposed method has at least 
923 less accesses to system memory than the Kd-tree 
algorithm. In this case, the Kd-tree algorithm makes 937 
accesses, and the proposed method makes 14 accesses.

Table 6   The number of memory accesses with the IPC rule set

Packet Access Kd-tree algorithm Pruned Kd-tree algorithm

Memory 1k 5k 10k 20k 1k 5k 10k 20k

512 Max 1177 4505 8902 18,300 1035 4197 8387 16,768
Min 518 2272 4571 9258 24 52 56 244
Sum 345,996 1,386,816 2,760,527 5,594,128 255,068 1,166,789 2,373,728 4,426,525

1k Max 1177 4505 8902 18,300 1035 4201 8393 16,736
Min 518 2272 4571 9258 16 52 56 120
Sum 672,580 2,933,798 5,664,583 11,160,473 496,039 2,251,819 4,478,732 9,294,388

2k Max 1177 4505 8902 18,300 1035 4197 8397 16,768
Min 518 2272 4571 9258 8 8 8 40
Sum 1,499,426 5,612,115 10,982,065 22,795,948 1,131,262 4,640,361 9,054,679 19,039,423

4k Max 1177 4505 8902 18,300 1035 4206 8394 16,768
Min 518 2272 4571 9258 8 8 8 40
Sum 2,831,981 10,907,906 21,219,865 46,511,349 1,903,639 9,228,581 18,675,042 36,361,780

8k Max 1177 4505 8902 18,300 1035 4209 8399 16,768
Min 518 2272 4571 9258 8 8 8 28
Sum 5,518,273 23,191,884 43,251,250 89,222,546 4,368,599 18,740,797 36,891,300 73,558,586

16k Max 1177 4505 8902 18,300 1035 4209 8399 16,754
Min 518 2272 4571 9258 8 8 8 24
Sum 11,186,350 46,906,430 90,059,127 179,097,795 7,937,502 63,000,357 72,764,365 148,563,167

32k Max 1177 4505 8902 18,300 1035 4209 8399 16,769
Min 518 2272 4571 9258 8 8 8 24
Sum 23,033,832 89,320,318 179,833,731 370,009,708 16,239,111 65,876,786 145,825,021 291,522,203

64k Max 1177 4505 8902 18,300 1035 4210 8399 16,769
Min 518 2272 4571 9258 8 8 8 12
Sum 46,402,561 179,393,966 358,063,296 719,578,148 32,402,640 146,457,305 291,276,079 585,812,370

128k Max 1177 4505 8902 18,300 1035 4210 8399 16,769
Min 518 2272 4571 9258 8 8 8 12
Sum 85,383,655 359,159,114 715,062,556 1,554,271,563 61,234,320 291,887,858 577,484,603 1,302,536,756

256k Max 1177 4505 8902 18,300 1035 4210 8399 16,769
Min 518 2272 4571 9258 8 8 8 8
Sum 177,781,262 762,191,145 1,444,735,988 2,984,245,224 130,884,008 579,482,047 1,164,547,320 2,275,663,443
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Table 5 shows the number of memory accesses for clas-
sifying the packets corresponding to the FW rule set in the 
two algorithms. In our evaluations, the number of required 
accesses to system memory for packet classification was 
examined. Similar to the results in Table 4, for this rule set 
the pruned Kd-tree method makes fewer accesses to the 
system memory than the Kd-tree algorithm. It should be 
noted that memory access has a direct relationship with 
the time of classification. In other words, increased mem-
ory access would increase the time of classification and 
decreased access would decrease it.

Similarly, Table 6 lists the number of memory accesses 
in packet classification with IPC rule set. According to the 
results, with an increased number of packets and rules, 
the number of memory accesses has also increased. The 
reason why an increased number of rules augmented 
memory access is the enlargement of the tree of rules. As 
the rules increase in number, the number of tuples and, 
accordingly, the number of rules in each tuple will also 
increase. According to Table 6, for example, for 16k pack-
ets and 1k rules in the Kd-tree algorithm, the number of 
memory accesses is 10894541, but it reaches 50566605 
with increasing the number of rules to 10k.

From the results in Tables 4, 5 and 6 it can be concluded 
that, in the classification of different numbers of input 
packets with rules of varying type and size, memory access 
in the pruned Kd-tree algorithm is less than in the typical 
Kd-tree algorithm. These results are indicative of the bet-
ter performance of the proposed method. For example, 
given an IPC rule set of 20k rules and 256k packets, the 
total number of memory accesses for the Kd-tree algo-
rithm is 2984245224. In this case, the number of memory 
accesses by the proposed method is 2275663443. There-
fore, our method reduces memory access by 23.74%. The 
main reason for this reduction is the fact that right-hand 
leaves are pruned and the rules in every tuple are sorted.

4.2 � Packet classification time

The time interval from the moment the packets arrive at 
the classifier until they are classified by the algorithm is 
called packet classification time. In this section, the packet 
classification time for different rule sets is examined. 
Packet classification time in this experiment was measured 
in milliseconds

Table 7 shows the classification time with the ACL 
rule set. According to this table, with an increase in the 

Table 7   Classification time with the ACL rule set

Packets Rules

1k 5k 10k 20k

Kd-tree
 512 52.9 200.1 426.2 713
 1k 101.4 405.1 889.5 1442.4
 2k 201.2 760.8 1823.2 3596.2
 4k 396.5 1534.5 3614.5 5242
 8k 803.3 3127.1 6540 10,324.8
 16k 1580.5 5726.7 13,749.6 20,172.1
 32k 3157.2 12,477.5 28,455.6 44,922.5
 64k 6436.6 25,275.4 59,320.5 84,939.4
 128k 11,682.5 48,804.5 115,642 165,533
 256k 24,690.8 135,354 218,268 352,803

Pruned Kd-tree
 512 46 174.9 396.3 644.1
 1k 93.4 350.9 784.1 1113.5
 2k 177.5 669.2 1579.9 2078
 4k 373.1 1399.5 3168 4609.1
 8k 720 2698.2 6222.8 9177.8
 16k 1532.7 5332.9 12,485.9 18,873.7
 32k 2957.4 10,803.6 25,162.8 39,105.3
 64k 5804.4 22,255.2 50,568.6 73,975.3
 128k 11,023.2 47,713 99,622.1 158,810
 256k 19,848.4 118,386 196,271 318,850

Table 8   Classification time with the FW rule set

Packets Rules

1k 5k 10k 20k

Kd-tree
 512 132.5 420.9 703.8 1540.9
 1k 248.6 780.2 1206.8 3068.1
 2k 515.3 1716.8 2532.9 5897.3
 4k 1003.1 3369.3 5423.6 11,591.8
 8k 2188.8 6424.8 12,028.9 20,572.5
 16k 4201.4 14,302.9 19,089.8 37,940.3
 32k 8975 25,120.4 39,453.4 71,972.3
 64k 16,773.1 47,973.5 86,182.2 144,052
 128k 33,901.9 95,255.8 178,078 355,075
 256k 70,610.1 190,010 322,950 792,204

Pruned Kd-tree
 512 95.3 325.9 549.9 1472
 1k 203.9 703.5 1148.7 2603.7
 2k 408.7 1526.8 2344.4 5067.9
 4k 865.2 2874.6 4776.4 10,498.2
 8k 1694 5603.6 9161.1 17,849.7
 16k 3248.1 12,302.7 18,752.2 35,544.4
 32k 6385.6 21,266.7 38,853.2 65,392.3
 64k 14,620.1 42,197.7 74,233.1 137,763
 128k 27,829 86,457.6 144,751 317,864
 256k 54,544.8 181,531 274,718 720,966
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number of packets, packet classification time in both the 
basic and pruned algorithms would increase. With any 
number of packets, the proposed method has a shorter 
classification time than the Kd-tree algorithm. For exam-
ple, the classification time for 32k packets is 3157.2 ms 
in the Kd-tree algorithm and 2957.4 ms in the proposed 
method. Therefore, our method reduces the time by 
199.8 ms.

Also, with all the different rule sets, the proposed algo-
rithm has consumed less time than the Kd-tree algorithm. 
With 10k rules, for example, the speed of the proposed 
algorithm for classifying 64k packets is 14.75% higher 
than the Kd-tree algorithm. With 20k rules, the proposed 
algorithm has classified 2k packets in 2078 ms whereas 
the typical Kd-tree algorithm has classified this number of 
packets in 2596.2 ms. In other words, the Kd-tree algorithm 
is 24.94% slower than the proposed algorithm.

In the next experiment, packet classification time with 
FW and IPC rule sets was measured. Tables 8 and 9 repre-
sent the results for 1k, 5k, 10k, and 20k rules. In this rule 
set, too, the packet classification time of the proposed 
method in all cases is much less than that of the Kd-tree 
algorithm. For example, with an IPC rule set of 1k rules, 
256k packets are classified in 66,588.8 ms by the Kd-tree 

algorithm and in 51,236.3 ms by our proposed algorithm. 
Therefore, the proposed method functions 15,352.5 ms 
faster. This difference is also seen in other results.

Overall, the proposed method provided us with a 
shorter classification time with all rule sets (i.e., ACL, FW, 
and IPC) in comparison with the typical Kd-tree algorithm. 
The results obtained in this section are consistent with 
the results of examining the number of memory accesses, 
which is indicative of the superiority of the proposed 
method.

4.3 � Throughput

Throughput refers to the number of packets that are clas-
sified in the unit of time. Increased throughput means that 
more packets have been classified in a second.

Figure 9a–d depict the throughput of algorithms on the 
ACL rule set with 1k, 5k, 10k, and 20k rules, respectively. As 
the created tree enlarges with an increase in the number 
of rules, the packet classification time will also increase. As 
a result, the number of packets classified in a second will 
be reduced. Our results show that throughput with smaller 
rule sets is higher than throughput with larger rule sets. 
For example, the throughput of the Kd-tree algorithm in 
the classification of 32k packets is 10,135 packets per sec-
ond with 1k rules and 1124 packets per second with 10k 
rules. With ACL rule set, our method had a higher through-
put than the Kd-tree algorithm in all classification scenar-
ios. In Fig. 9a, the throughput of classifying 8k packets is 
9958.92 packets per second for the Kd-tree algorithm and 
11,111.11 packets per second for the proposed method.

Figure 10a–d show the results of the throughput of the 
algorithms for classification of packets based on FW rule 
set with 1k, 5k, 10k, and 20k rules, respectively. In this rule 
set, too, the proposed method has a higher throughput 
than the Kd-tree algorithm. With all the numbers of pack-
ets and rules, the proposed method classifies more pack-
ets than the Kd-tree algorithm in one second. For example, 
Fig. 10a shows that the Kd-tree algorithm has resulted in 
a throughput of 3864.15 packets per second in classify-
ing 512k packets with 1k rules. However, our proposed 
method has achieved a rate of 5372.51 packets per second 
in the same scenario. In other words, our method classifies 
39.03% more packets in the same time interval.

The maximum throughput obtained by our method 
with FW rule set was 5372.51 packets per second with 1k 
rules, 1571.03 packets per second with 5k rules, 931.86 
packets per second with 10k rules, and 489.35 packets 
per second with 20k rules. As discussed above, decreased 
throughput is due to the increased complexity of the Kd-
tree or its corresponding pruned tree which increases 
traversal time. The throughput obtained by the Kd-tree 
algorithm in classifying 4k packets was 3987.64 packets 

Table 9   Classification time with the IPC rule set

Packets Rules

1k 5k 10k 20k

Kd-tree
 512 148.8 459.9 1236 2122
 1k 284.4 972.7 2540.5 4719.8
 2k 589.5 1798.5 4890.7 9237.7
 4k 1091.9 3507.2 9352.5 18,086.1
 8k 2134.1 8296.3 19,648.5 35,600.5
 16k 4409.8 14,584.2 33,420.1 72,090.5
 32k 9116.4 28,521.4 64,648.1 143,146
 64k 17,619 61,756.7 148,144 260,777
 128k 34,130 123,424 274,478 532,779
 256k 66,588.8 341,769 548,962 1,080,750

Pruned Kd-tree
 512 112.5 379.2 1073.6 1787.3
 1k 197.4 718 2015.5 3812.2
 2k 449.9 1506.5 4101.3 7638.7
 4k 744.7 3000.8 8376.3 14,331.5
 8k 1643.4 6022 16,213.2 29,138.5
 16k 3110.6 11,856.4 26,599.6 57,428
 32k 6324.8 21,253.3 59,890.8 113,045
 64k 12,109.5 52,257.6 118,218 223,633
 128k 23,178.5 112,349 211,450 443,647
 256k 51,236.3 261,962 464,276 992,319
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per second with 1k rules, 1187.19 packets per second with 
5k rules, 737.52 packets per second with 10k rules, and 
345.07 packets per second with 20k rules.

The proposed method and the Kd-tree algorithm 
were implemented on IPC rule set. The results of this 
experiment on 1k, 5k, 10k, and 20k rules are shown in 
Fig. 11a–d, respectively. With this rule set, too, the pro-
posed method obtained a higher throughput rate than 
the Kd-tree algorithm. According to Fig. 11a, with 64k 
packets, our method classified 5285.11 packets per 
second while the Kd-tree algorithm classified 3632.44 
packets per second. In other words, our method classi-
fied 1652.67 more packets per second. Here again, the 
number of rules increased due to the enlarged and more 
complicated tree, thereby reducing the throughput rate.

Overall, the maximum throughput value obtained by 
the proposed method with ACL, FW, and IPC rule sets 
was 12897.77, 5372.51, and 5522.36 packets per second. 
However, the maximum throughput obtained by the 
basic algorithm with the same rule sets was 10,956.56, 
4022.53, and 3844.49, respectively. Moreover, in all sce-
narios, the number of packets classified by the proposed 

method was much more than those classified by the Kd-
tree algorithm at the same time.

4.4 � Memory usage for the tree structure

One of the important criteria in comparing the efficiency 
of the proposed method and the basic algorithm is the 
amount of memory needed to store the tree structure 
created by the rules. The data structure used to hold the 
tree is composed of the following parts:

•	 Nodes that hold the tuples.
•	 Nodes that hold the number of member tuples and 

the number of markers assigned to the tuple.

Figure 12 shows the memory consumption in bytes 
of the Kd-tree algorithm and the proposed method 
with ACL, FW, and IPC rule sets. In the graphs of Fig. 12, 
the memory needed to hold tuple nodes and rules 
separately, together with the sum of the two, is shown 
for both algorithms. Graphs (a) through (d) show the 

(a) ACL - 1k rules (b) ACL - 5k rules

(c) ACL - 10k rules (d) ACL - 20k rules
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Fig. 9   Throughput of the kd-tree algorithm and the proposed method with different rule sets in ACL rules
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amount of memory needed to store the data structure 
corresponding to 1k, 5k, 10k, and 20k rules, respectively.

According to the results of this test, the proposed 
method requires less memory in all scenarios. For exam-
ple, with an ACL rule set of 1k rules, the memory needed 
to store the Kd-tree is 23,815.9 bytes while it is 19,120.4 
bytes in the proposed method. Therefore, the proposed 
method was able to reduce memory usage by 4695.5 
bytes through pruning the tree nodes. With an FW rule 
set of 10k rules, the Kd-tree algorithm needs 0.74 KB 
for storing nodes that contain tuples and 156.09 KB for 
storing nodes that contain rules. By pruning the redun-
dant nodes, however, the proposed method needs only 
0.54 KB for tuple nodes and 127.21 KB for nodes that 
contain rules. With IPC rule set, too, our method used 
less memory than the Kd-tree algorithm. This confirms 
the success of the method in pruning the Kd-tree data 
structure and making better use of memory.

Overall, our method consumed less memory than the 
Kd-tree algorithm with all rule sets and all numbers of 
rules. In other words, our method for pruning the Kd-tree 

was efficient and could have a positive effect on reducing 
the size of the tree.

Table  10 shows the comparison of the proposed 
method with other packet classification algorithms. The 
algorithms in the first column are compared according to 
three evaluation criteria including lookup time, memory 
usage, and dimension scalability.

First, the lookup time is examined. Most of the existing 
designs have a time complexity of either O(W) or O(logN) . 
Four algorithms provide better search efficiency. The time 
complexity of RFC [20] and HiCuts [21] are constant. The 
binary search scheme [22] has a time complexity of 
O
(

log2W
)

 . RFC and HiCuts have lower time complexity but 
at the high cost of considerable memory requirement, i.e. 
O
(

Nd
)

 . Excluding RFC and HiCuts, our design has the low-
est time complexity O

(

d log
(

W

�

))

 with controlled storage 

space requirement O
(

N log
(

W

�

))

. Here, 1 ≪ 𝛼 ≪ W  rep-

resents the minimum ratio of the reduction in any of the 
distinct traversal patches from the root to any leaf node of 
the tree.
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Fig. 10   Throughput of the kd-tree algorithm and the proposed method with different rule sets in FW rules
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Second, we compare the proposed design with Rectan-
gle Search and Binary Search, which are both based on 
tuple space search. The two schemes can only be applied 
to two-dimensional classifiers, that is d = 2. Rectangle 
Search requires O(W) hashes and Binary Search needs 
O
(

(log2 W)2
)

 hashes. The proposed design only requires 
O(2 logW) hashes. From the storage perspective, Rectan-
gle Search requires a storage space of O(NW) and Binary 
Search requires a space of O

(

N ∗ log2W
)

 . In contrast, our 
design only needs O

(

N log
(

W

�

))

 of memory.

5 � Conclusion

Packet classification plays a crucial role in the efficiency of 
many Internet-based processing devices such as routers 
and firewalls. Different software and hardware algorithms 
perform packet classification. One of the well-known algo-
rithms for packet classification is the Kd-tree algorithm. 
By dividing the rules based on the length of the prefix of 
source and destination IP addresses, this algorithm places 
them in tuples. Then it sorts tuples with a special tech-
nique and creates a binary tree using the sorted tuples. 

The input packets of the classifier can be classified using 
a search algorithm on this tree. The Kd-tree algorithm has 
several disadvantages including:

•	 Lack of order in the rules of the tuples and the necessity 
to examine all the rules of a tuple during classification.

•	 Existence of redundant nodes in the tree.
•	 Repetitive checking of rules during packet classifica-

tion.

Given the defects in the Kd-tree algorithm, we 
attempted to develop an optimized version of the algo-
rithm by close analysis of its structure as well as how 
it traverses the tree structure. The proposed method 
improves the Kd-tree algorithm in terms of both time 
and memory consumption. The key idea behind the 
optimized version is to prune redundant nodes that do 
not affect the process of classification. This can reduce 
memory access as well as the memory required for stor-
ing the tree structure. Also, in the proposed algorithm, 
sorting the rules in a tuple according to their priority 
has led to a further reduction in the classification time.

Both the proposed method and the Kd-tree algorithm 
were implemented on three rule sets, i.e., ACL, FW, and 
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Fig. 11   Throughput of the kd-tree algorithm and the proposed method with different rule sets in IPC rules
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(a) 1k Rules (b) 5k Rules

(c) 10k Rules (d) 20k Rules
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Table 10   The complexity of 
different algorithms

Evaluation algorithms Lookup time Memory usage

Linear search on filter rules O(N) O(N)

Grid-of-tries [23] O(W) O(NW)

Cross-producting [24] O(dW) O
(

Nd
)

Bit-parallelism [25] O(W logN) O(NW)

Area-based QuadTree [26] O(W) O(NW)

Fat-Inverted segment tree [27] O((L + 1)W) O
(

LN(1+1∕L)
)

Segment tree with fractional cascading [28] O(logN) O(N ∗ logN)

Recursive flow classification [20] O(d) O
(

Nd
)

HiCuts [21] O(d) O
(

Nd
)

Linear search on tuple [29] O
(

Wd
)

O(N)

Rectangle search [30] O(W) O(NW)

Binary search [22] O
(

log2W
)

O
(

Nlog2W
)

Extended Grid-of-Trie [31] O(W) O(NW)

Kd-tree [6] O(d logW) O(Nd logW)

Proposed method O
(

d log
(

W

�

))

O
(

N log
(

W

�

))
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IPC. The rule sets were created using Classbench tool. 
This tool is used to generate experimental rules and 
packets for testing classification systems. The evaluation 
criteria we used include the number of tuples created by 
the rules, the number of memory accesses, packet clas-
sification time, throughput, memory consumption of the 
tree data structure, and the depth of the tree.

According to the results, the proposed method has 
been more efficient than the Kd-tree algorithm in every 
aspect. According to the results of the classification of 
128k headers with IPC 1k rule set, our proposed algo-
rithm could boost the classification speed of the basic 
Kd-tree algorithm by a ratio 1.47. Furthermore, our 
method needs less memory space than the Kd-tree algo-
rithm for storing the tree data structure. The depth of the 
pruned tree is less than that of the Kd-tree algorithm.

One suggestion to continue the present research with 
the aim of reducing the classification time is to develop a 
method for searching the rules in a tuple. Currently, the 
rules of a tuple are checked linearly. In the worst case, 
this may require the input packet to be matched against 
all the rules. The time complexity of this search operation 
is in the worst case O(n) , where n denotes the number of 
rules in the tuple. Therefore, if the time for checking the 
rules can be reduced, the classification time will also be 
reduced. For this purpose, like other methods derived 
from the basic algorithm, we can use hashing methods. 
Thus, the number of memory accesses to find the best 
matching rule in each tuple would decrease significantly.
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