
Vol.:(0123456789)

SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z

Research Article

Pruned Kd‑tree: a memory‑efficient algorithm for multi‑field packet
classification

M. Rafiee1  · M. Abbasi1 

Received: 3 September 2019 / Accepted: 29 October 2019 / Published online: 4 November 2019
© Springer Nature Switzerland AG 2019

Abstract
Packet classification is a basic process in most network-based packet processing systems. The key operation in this
process is to match the packet header against the rules defined in a rule-set and, finally, to find the best matching rule.
One of the well-known algorithms for packet classification is the Kd-tree algorithm. This algorithm produces a binary
tree using the tuples created by the length of the prefix of the source and destination IP addresses of the rules. The tree
is intended to classify the packets. The efficiency of the mechanism for producing and searching the binary tree in this
algorithm is affected by two major disadvantages, namely, redundant nodes and redundant accesses during the search.
The former increases memory consumption and the latter slows down packet classification. The proposed idea in this
article is to prune redundant nodes by sorting the rules corresponding to each tuple in the tree nodes. The experimental
results suggest that the throughput rate of the pruned Kd-tree is 43.64% higher than the Kd-tree. Also, by pruning the
structure of the Kd-tree, our proposed method could at best reduce 24% of the memory consumed for the storage of
the data structure of the Kd-tree.

Keywords  Packet classification · Acceleration · IP networks · Kd-tree · Pruning · Memory

1  Introduction

The process of dividing network packets into different
flows in Internet routers and firewalls is called packet
classification. Packet classification specifies to which flow
each packet belongs. Classification is based on matching
one or more fields from the packet header against the
corresponding values from the rules of the classifier. The
most important fields of packet headers that are used for
packet classification include source IP address, destination
IP address, protocol type, source port number, and desti-
nation port number. When a packet is received, the table
of rules is searched for a matching rule in accordance with
the fields of the packet header. In addition to the valid
values for the header fields, each rule specifies the action
to be applied to the packet [1, 2]. The action determined

by the matching rule will be applied to the packet. Since a
packet may be matched by several rules, the action deter-
mined by the rule with the highest priority will be per-
formed. For example, one priority can be the length of the
prefix of the source or destination IP addresses or the order
of the appearance of a rule in a rule set [3–5].

One of the well-known packet classification algorithms
is the Kd-tree algorithm [6]. This algorithm has a balanced
binary tree structure. The tree represents the rules. Each
node in this tree, therefore, contains rules that are partly
similar to each other. The rules that are mapped onto a
node in the tree have identical tuples. That is, the pre-
fixes of the source and destination IP address fields of
the rules mapped onto a tree node will have the same
length. It should be noted that the Kd-tree algorithm is a

 *  M. Abbasi, abbasi@basu.ac.ir; M. Rafiee, m.rafiee@alumni.basu.ac.ir | 1Department of Computer Engineering, Engineering Faculty, Bu-Ali
Sina University, Hamedan, Iran.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1592-z&domain=pdf
http://orcid.org/0000-0002-2199-0184
http://orcid.org/0000-0002-5373-5778

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z

combination of tree-based and tuple space methods. In
other words, a binary search is performed on the tuple
space.

This study proposes an optimized version of the Kd-tree
packet classification algorithm by pruning the redundant
nodes of the tree. The most important criteria for the effi-
ciency of the algorithm are packet classification time and
the space required to store the structure of the Kd-tree
algorithm. For this purpose, we first examine the tree
structure of the Kd-tree algorithm as well as how this algo-
rithm classifies packets. Then, we will show how pruning
the tree structure created by the rules and changing the
packet classification model in the pruned tree will reduce
the time for traversal as well as packet classification. Also,
we closely examine how to reduce the space needed to
store the tree structure of the Kd-tree algorithm.

The structure of the article is organized as following.
First, we shall review related works on the structure of the
Kd-tree algorithm as used in tuple space search as well
as the use of markers in this algorithm. In the third sec-
tion, the proposed method for pruning the Kd-tree and
producing a pruned Kd-tree is examined. Implementation
and evaluation of the proposed method are explained in
Sect. 4. The final section of the paper is dedicated to con-
cluding and presenting solutions for further development
of research in this field.

2 � Related works

2.1 � Decision tree based packet classification
algorithms

Decision-tree based algorithms [5, 7, 8] are the most pop-
ular algorithms for packet classification. Their success is
owned by the key idea of recursively cutting the search
space into smaller sub-spaces, each of which correspond-
ing to a child of node in a decision-tree. Such a recur-
sive terminates when the number of rules in tree nodes
becomes lower than a predefined threshold.

To classify an incoming packet, information of certain
fields of its header are extracted and then used to traverse
the tree. During traversal from root to leaf nodes, the algo-
rithm stores the best matching rule based on its specific
policy.

There are a few variations of the decision tree that dif-
fer on the method of constructing the tree via cutting the
search space and the way of traversing the tree for classify-
ing packets. For example, HiCuts [7] constructes the tree
via multiple evenly-spaced cuttings on a single dimension
at each iteration. HyperCuts [8] differs from HiCuts only in
allowing multiple dimensions to be cut concurrently to
moderate the height of the constructed tree. To resolve

the memory blow up problem caused by rule replication
of HyperCuts, HyperSplit [5] uses non-equal cuts for con-
trolling the memory usage. As shown in Fig. 1a, HiCuts
algorithm cuts the search space into two equal-sized sub-
spaces. The Rule 2 and Rule 3 are replicated in the respec-
tive subspaces. By aligning the cuttings at the edges of
the rules, the HyperSplit algorithm is able to reduce rule
replication (Fig. 1b). However, HyperSplit still cannot elimi-
nate all rule replication, especially for complex rule sets.

However, this algorithm is not as fast as HyperCuts. A
key solution to this problem is to implement the algorithm
on FPGA [9]. In this hardware implementation of Hyper-
Split, a pipelined architecture accelerates the classifica-
tion process. However, due the limited resources of the
programmable devices limits the extensibility and cus-
tomizability of the hardware packet classifiers. Also, the
considerable design costs of hardware classifiers makes
their performance to cost ratio smaller than that of the cor-
responding software classifiers. For this reasons, software
packet classifiers are more interested.

The common issue in using software packet classifiers is
their inability in achieving maximum speed and minimum
memory usage, simultaneously. Therefore, the memory
usage of fast tree-based packet classification algorithms
may grow exponentially as the number of rules increases.
In this paper we show how using simple but effective
tricks in pruning redundant tree nodes would reduce the
memory consumption of the algorithm and increase the
classification speed.

2.2 � Kd‑tree algorithm based on tuple space search

In spite of the large number of rules in a classifier, often the
majority of prefixes have the same length. Using this fact,
the rules of a classifier are divided into separate groups
based on their prefix length.

Fig. 1   a Unaligned cut point (causing replication of Rule 2); b
Aligned cut point to the boundary of Rule 1 and Rule 2 (reducing
replication)

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z	 Research Article

It is clear that the number of rules that are placed in a
category with the same prefix length is less than the total
number of rules. For example, consider a classifier in a tra-
ditional router that sends packets based on the destina-
tion IP address. Such a classifier, regardless of the number
of rules, can have up to 32 distinct groups. In a two-dimen-
sional classifier in which rules are defined based on the
source and destination IP addresses, a maximum of 1024
separate groups can be conceived. However, many of the
tuples may have no specific rule. In general, if you consider
a d-dimensional classifier, each rule is mapped onto a vec-
tor with a set of d integers in which the ith integer denotes
the length of the prefix of the ith field of the rule. A vector
with d integers is called a tuple. A set of tuples created by
the classifier is called tuple space. The modest algorithm
for tuple space search is to check all the tuples.

2.3 � Definitions

A tuple T is a vector of d integers that is defined as
T .vec[1], T .vec[2], ..., T .vec

[

d
]

 . In this definition, T .vec[i]
denotes the integer value corresponding to the ith item
in T  . An f rule matches a tuple if and only if ∀i, 1 ≤ i ≤ d
and the length of the ith field of f is exactly T .vec[i].

The space of tuple T can be divided into three par-
titions, i.e., LongerTuple, ShorterTuple, and Incompa-
rableTuple. Suppose two tuples T and Ta and let Ta ≠ T
( ∃i, 1 ≤ i ≤ d, Ta.vec[i] ≠ T .vec[i] ). Ta is a tuple in the
LongerTuple partition of T if ∀i, 1 ≤ i ≤ d, Ta.vec[i] ≥ T .vec[i] .
Also, if ∀i, 1 ≤ i ≤ d, Ta.vec[i] ≤ T .vec[i] , then Ta is a tuple in
the ShorterTuple partition of T  . Otherwise, Ta is a tuple in the
IncomparableTuple partition of T .

To perform a binary search in the tuple space, a binary
tree should be produced using tuples. For this purpose,
each tuple is mapped onto a unique value called Super-
Key which specifies the position of the tuple on the tree.
The SuperKey of tuple T is generated by joining all the
elements in T .vec in a rotational order. For this purpose,
a discriminator is used to determine the place where the
elements should be joined. SKT .dis represents the SuperKey
of T and dis index represents the discriminator. Therefore,
SKT .dis = T .vec

[

dis
]

T .vec
[

dis + 1
]

, ..., T .vec
[

d
]

T .vec[1]T .vec

[2], ..., T .vec
[

dis − 1
]

. For example, SK(3,0).1 = 30 and
SK(3,0).2 = 03 . Since there are d elements in T .vec , tuple
T can have d SuperKeys that may begin at any element
1, 2, 3,… , d.

As SuperKeys are integers, they can be easily sorted.
As a result, the tuples can be sorted by their SuperKeys.
Assuming dis as the discriminator, Ta is smaller than T if
SKTa .dis < SKT .dis . Otherwise, Ta would be greater than T  .
For example, let dis = 1 . Then the tuple (3, 0) is greater
than the tuple (2, 2) because SK(3,0).1 > SK(2,2).1(30 > 22) .
If the discriminator of all the tuples equals 2, the tuple

(3, 0) would be smaller than the tuple (2, 2) because of
SK(3,0).2 < SK(2,2).2(03 < 22).

2.4 � The structure of the Kd‑tree algorithm

Rules that are mapped onto a tuple can be stored in a
hash table. Tuples can be considered as points in a mul-
tidimensional space. Over the past three decades, many
data structures have been developed for organizing multi-
dimensional objects, including Kd-tree [10], KDB-tree [11],
R-tree [12], R+-tree [13], and R * -tree [14]. Among these
data structures, Kd-tree provides a simple and convenient
method. More information on this structure can be found
in several recent studies [15–18].

In our proposed method, each node of a Kd-tree holds
a tuple T , and two pointers are connected to the right
and left sub-trees. According to the explanations given in
Sect. 2.3, all the tuples of the left-hand sub-tree of a tuple T
are smaller than T itself whereas all the tuples in the right-
hand sub-tree of T are greater than T. Note that the tuples
of the left-hand sub-tree of T belong to the ShorterTuple
or IncomparableTuple of T  . Also, the right-hand tuples of
T belong to the LongerTuple or IncomparableTuple of T .

To simplify the formation of a Kd-tree algorithm, assume
that only the fields of source and destination IP address of
the rules are checked. The sample classifier works with the
ten rules in Table 1. In this table, the first column shows the
number of rules. The second and third columns represent
the source and destination IP addresses, respectively. The
fourth column represents the tuple corresponding to the
rule. For example, in the case of R0 rule, the number of
the bits of the source IP address prefix is 4 and that of the
destination IP address prefix is 3. Therefore, the tuple cor-
responding to this rule is (4, 3).

Table 1   An example of the rules of a classifier

*Symbol in all patterns of source IP address and destination IP
address denotes a part of the address which is unimportant to the
classifier engine

Rule Source IP address Destination IP
address

Tuple

R0 1010* 011* (4, 3)
R1 1010* 0000* (4, 4)
R2 100* 101* (3, 3)
R3 1* 010* (1,3)
R4 10110* 1000* (5, 4)
R5 11* 011* (2, 3)
R6 10111* 01001* (5, 5)
R7 * 0* (0, 1)
R8 101* 01* (3, 2)
R9 11* 1111* (2, 4)

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z

To select the root node or a sub-tree of the Kd-tree,
SuperKeys are created to sort the tuples. The tuples are
first sorted according to their SuperKeys, and then the
middle tuple in the sorted list is selected as the root node
or a sub-tree of the Kd-tree. Tuples with SuperKeys smaller
than that of the selected tuple are assigned to the left-
hand sub-tree of the tuple, and the rest of the tuples are
assigned to the right-hand sub-tree of the root tuple. This
process is repeated for the tuples assigned to the left-hand
and right-hand sub-trees. In other words, to select the root
of the left-hand and right-hand tree, the existing tuples are
once again sorted using a new discriminator, and the mid-
dle tuple of the list is selected as the root of the sub-tree.
The following formula is used to determine the discrimina-
tor field in creating the SuperKey of tuples at the Lth level:

In the above equation, d denotes the number of dimen-
sions of the classifier. In fact, with the help of Eq. (1), fields
1, 2, 3,… , d are selected in rotation as the discriminator. The
tree shown in Fig. 2 is based on the source and destina-
tion IP addresses in Table 1. In this tree, the elliptical nodes
correspond to the tuples in the fourth column of Table 1.
Also, the rules belonging to each tuple are shown with the
symbol R[]. For example, tuple (3, 2) has an R8 rule.

In this example, the tuples are initially sorted by the dis-
criminator dis = 1 . Accordingly, the SuperKeys correspond-
ing to the tuples in Table 1 are obtained and sorted in the
form of (0, 1), (1, 3), (2, 3), (2, 4), (3, 2), (3, 3), (4, 3), (4, 4), (5,
4), (5, 5). The middle tuple (3, 2) is selected as the root node
of the Kd-tree. The tuples (0, 1), (1, 3), (2, 3), (2, 4) fall under
the left-hand sub-tree of the root and the tuples (3, 3), (4,
3), (4, 4), (5, 4), (5, 5) under the right-hand sub-tree. Then
the discriminator dis = 2 is selected, and the tuples in the
left-hand and right-hand sub-trees are sorted again. The
sorted sequences are (0, 1), (1, 3), (2, 3), (2, 4) and (3, 3), (4,
3), (4, 4), (5, 4), (5, 5). The middle tuples (1, 3) and (4, 4) are

(1)dis = (Lmod d) + 1

selected as the root nodes of the left-hand and right-hand
sub-trees, respectively. By repeating this process, the tree
of the Kd-tree algorithm is constructed.

2.5 � Search in Kd‑tree algorithm and the misjudged
problem

This section examines an example of searching in the Kd-
tree. Assume a packet with the source IP address (1001
0011 1010 1111 1111 1111 0011 0100) and the destination
IP address (0010 0111 0000 1011 0011 0101 1111 1111).
Given the rules in Table 1 and the corresponding Kd-tree
depicted in Fig. 2, the act of classification for this packet
will be as following. In the search process, BstMatch vari-
able is used. This variable holds the first matching rule until
the search is finished and a leaf node is reached.

First, traversal starts from the root node of the Kd-tree,
which is the tuple (3, 2) in this example. Therefore, this
tuple should be checked. To check (3, 2), if it contains a rule
according to the number of the prefix bits of the source
and destination IP addresses, it will be matched against
the input packet. Therefore, the packet matches the rules
in the form of (100*, 00*). In this example, the input packet
does not conform to any rule because the prefixes of R8
cannot be matched with the prefixes of the packet. Since
this tuple has returned the result of mismatch, the tree is
further traversed on its left-hand child. In the next step
which consists of matching against the tuple (1, 3), the
search algorithm uses 1 bit of the prefix of the source
IP address and 3 bits of the prefix of the destination IP
address for examining the rules in the tuple (1, 3). At this
stage, the algorithm cannot find any matching rule. Due
to the lack of matching rules, therefore, traversal is led
to the left-hand sub-tree of this tuple. Then the rules in
the last tuple, i.e. (0, 1), are checked. In this step, Rule 7 is
returned as the best matching rule because the algorithm
has already reached a leaf node.

Fig. 2   The basic Kd-tree produced from the rules in Table 1

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z	 Research Article

As the above description shows, performing a traversal
for packet classification by the Kd-tree is not flawless. For
example, suppose an input packet for the matching opera-
tion has a source IP address of (1100 0011 1011 0010 0111
0110 1111 1111) and a destination IP address of (1111
1011 0100 1110 1111 1111 0100 0000). At the root of the
tree, the packet has not been matched by any of the rules
of (3, 2) and, as a result, traversal continues at the left-hand
sub-tree. In the next step, the input packet does not match
any of the rules in the tuple (1, 3) and again traversal con-
tinues at the left-hand sub-tree of the tuple (1, 3). The root
tuple of this sub-tree is (0, 1) whose rules do not match
the packet. Finally, the search is over without any result.
In a linear search, however, the packet would easily match
the rule R9. A solution to this problem are markers. The
next section explains how a marker is used in the basic
algorithm.

2.6 � Use of markers in the Kd‑tree algorithm

When a search is not successful on a tuple, the search
algorithm continues the traversal on the left-hand sub-
tree and removes all the tuples of the right-hand sub-
tree from the traversal. To avoid this problem, which is
called the misjudged problem, every tuple should retain
information about the rules of its right-hand sub-tree.
For example, the tuple (1, 3) must have a marker that
produces R5 rule in the tuple (2, 3). Also, the tuple (1, 3)
must have a marker of R9 rule related to the tuple (2, 4).
Figure 3 shows the Kd-tree of the rules in Table 1 along
with added markers. Markers in the tuples are indicated
by M […].

In the search for the best matching rule from the pre-
vious example, traversal cannot find any matches in the
tuple (3, 2) and continues on the left. When matched
against (1, 3), the search is successful due to the presence
of the R9 marker. Finally, the search algorithm continues

to traverse the right-hand sub-tree and reports R9 rule in
the tuple (2, 4) as the best matching rule.

3 � Pruned Kd‑tree algorithm

In this section, we describe the pruned Kd-tree method
which significantly improves the Kd-tree algorithm.
Assume an input packet with fields that can be best
matched by R6 in Fig. 3 (a source IP address of (1011
1111 0010 0101 0001 1111 1001 1101) and a destina-
tion IP address of (0100 1101 1010 0001 0110 1111
1011 1111)). Figure 4 shows the tree traversal path
to find the best matching rule. The tree nodes to be
examined are shown in shaded shapes. Traversal starts
from the root node. To search for the best matching
rule for this packet by means of the Kd-tree algorithm,
in each node a certain length of the source and desti-
nation IP address of the packet is compared with the
corresponding prefixes from the rules mapped onto
the tuple of the node. For example, in the root node
which contains the tuple (3, 2), the input packet is
compared with only 3 bits of the prefix of the source
IP address and 2 bits of the prefix of the destination
IP address of the existing rules. Therefore, as the fig-
ure shows, all the rules in a tuple must be checked.
In this example, traversal starts from the root towards
the right-hand child of (4, 4). Then the tuple (5, 4) and,
finally, the tuple (5, 5) are traversed. Finally, as the tra-
versal path reaches a leaf node, the rules of that node
are also examined and R6 rule is reported as the result.
In this example, 14 nodes are checked in the traversal
path. In the following, we will show that the idea of
pruning a Kd-tree can significantly reduce the number
of accessed nodes. Thus, the search speed in this algo-
rithm increases significantly.

Fig. 3   The Kd-tree with markers of the rules from Table 1

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z

3.1 � Suggested techniques for pruning a Kd‑tree

Our examination of Kd-trees created by various rules
resulted in the following ideas for tree pruning.

Technique 1 Pruning the right-hand leaves
In the Kd-tree data structure, by replacing the markers

of a node with the rules that correspond to the tuple of
the right child of the node and matching the entire prefix
bits against the input packet, we can prune the right child
if it is a leaf node.

In other words, all the rules in the right child node will
also exist in the parent as markers. If the right child node
is a leaf node, it can be pruned by transferring the rules to
the parent; therefore, instead of matching the marker, it
is necessary to match the rules against the input packet.

Obviously, pruning some of the tree’s redundant nodes
will reduce the memory needed to store the tree struc-
ture. On the other hand, sometimes the tree’s depth will
decrease with the removal of leaf nodes. Another advan-
tage of pruning a tree is to reduce the number of memory
accesses during the traversal.

Technique 2 Sorting by the priority of rules
If in each node corresponding to a tuple all the exist-

ing rules have been sorted in descending order according
to the prefix length, memory access will be significantly
reduced when searching for the best matching rule. The
rules are sorted based on the length of the sum of the
source and destination IP address prefixes.

Indeed, sorting the rules by prefix length makes it pos-
sible that, when the input packet is matched with the first
rule during the traversal, the search could be finished at
that tuple and continue on the right-hand sub-tree of
the node, if any, to find matching rules corresponding
to longer tuples. Because this method does not need to
necessarily check all the nodes in the tuple, the number

of memory accesses and the time for packet classification
is reduced.

3.2 � The Structure of pruned Kd‑tree algorithm

In this section, using the techniques mentioned above, we
prune a Kd-tree. Algorithm 1 describes how to create a
pruned Kd-tree. The input and output of this algorithm are
Kd-tree and pruned Kd-tree. To prune the tree, all nodes
are checked (lines 1 through 7). If the examined node is a
leaf node, it will be pruned as long as it is the right child of
its parent (lines 2 to 6).

After the tree is pruned, it is necessary to sort the rules
in the nodes corresponding to each tuple. For this pur-
pose, all the nodes of the tuples are examined, and their
rules are sorted by the prefix length in descending order
(lines 8 to 10).

Figure 5 represents the Kd-tree corresponding to
Table 1. In this tree, the leaf nodes that are the right child
of their parent are marked in gray. In the next step, these

Fig. 4   Traversal of the Kd-tree

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z	 Research Article

nodes are eliminated, resulting in the removal of 12 nodes
from the tree. Figure 6 shows the structure of the Kd-tree
after pruning.

Figure 7 shows the final version of the tree shown in
Fig. 6. In this trie, all of the markers in each node are added
to the rules set R. Next, these rules are sorted descending

by their prefix length. For example, the root node which
has the markers 1, 4, 6 and the rule R8, is converted to
R [1, 4, 6, 8]. In this node, rule R6 has the longest prefix
as compared to others. R4 is the second of the longest-
prefix rules. The rules are sorted in this way in all of the
tree nodes.

Fig. 5   Nodes to be pruned by Kd-tree algorithm

Fig. 6   The Kd-tree after pruning some nodes

Fig. 7   The tree produced by the implementation of the proposed method of pruned Kd-tree on the rules in Table 1

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z

3.3 � Search in a pruned Kd‑tree

Search in a pruned Kd-tree is done as follows. Traversal
starts from the root and the rules in each tuple node are
checked linearly. The rules are examined in their entirety,
i.e. the full length of the prefix of source and destination
IP addresses, source and destination port numbers, and
protocol. If the packet matches a search rule, the search
in the rules of that tuple is stopped and directed to the
right-hand sub-tree of the tuple.

Algorithm 2 shows how to search and classify packets
based on the data structure of the pruned tree. The input
of this algorithm is the rule set R , the pruned Kd-tree T  ,
the tuples, and the header of input packets. The output is
rulesIndexArray which holds the index of the best match-
ing rule of every incoming packet. Packet classification
starts from the root node (line 2). Initially, BMR variable
that holds the best matching rule for a packet is set to
Null (line 3). The traversal of the tree continues until a
leaf node is reached (lines 4 through 13). On the traversal
path, the different fields of the rules in the tuples are
compared with the input packet. If the packet matches
a rule, the number of that rule will be stored in rIdx (line
6). Then, if the packet matches a rule in the tuple, the
result will be stored in BMR and traversal will be directed
towards the right child; otherwise, the left child will be
traversed (lines 7 to 12). At the end of the traversal, the
result of packet classification is stored in rulesIndexArray
which is an array used for holding the results (line 14).

Table 2 compares the number of memory accesses
required for classifying same packets using basic Kd-tree
and its enhanced version.

Figure 8 illustrates searching this prund Kd-tree for first
packet of Table 2. It is assumed that the packet matches
R6. Multiple nodes and rules that are examined on the
traversal path are shown in red. This search, which would
otherwise need 14 memory accesses in the Kd-tree algo-
rithm, is performed with only four memory accesses in the
proposed method.

Table 2   Number of memory-accesses required for Kd-tree and pruned Kd-tree

Input packet Algorithm BMR

Source IP address Destination IP address Kd-tree Pruned Kd-tree

10111111001001010001111110011101 01001101101000010110111110111111 14 4 R6
10110010000110011001100000000000 10000000000000110101001100111001 9 6 R4
11000011101100100111011011111111 11111011010011101111111101000000 14 7 R9

Fig. 8   Search using the pruned Kd-tree algorithm

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z	 Research Article

In classifying the second packet of Table 2, the Kd-
tree algorithm examines rule 8 in the tuple (3, 2) and for
its inconsistency checks the marker of this tuple. Hence,
the packet is examined against the markers of rule 1 and

rule 4, and due to matching with the marker of rule 4,
the subsequent search is directed to the right subtree.
Then, the packet is compared with rule 1 and marker 4 in
the tuple (4, 4), which finally is matched with rule 4. The
number of memory accesses in classifying this packet
using Kd-tree is nine. But, in pruned Kd-tree, the packet
is first examined against rules 4 and 6 in the tuple (3,
2), and then is compared with rules 4 and 6, with only
six memory accesses. Similarly, the number of required
memory accesses for classifying the third packet of
Table 2 is computed and presented. In these examples,
the number of memory accesses of the proposed algo-
rithm is lower than that of the basic algorithm.

Table 3   System specifications

Specification Processor

Name Intel Core i7-740QM
Clock speed 1733 MHz
L1 data cache 4 × 32 KB
L1 inst. cache 4 × 32 KB
L2 cache 4 × 256 KB
L3 cache 6 MB
Main memory 4 GB DDR3
Operation system Windows 7 ultimate, 64-bit

Table 4   The number of memory accesses with the ACL rule set

Packet Access memory Kd-tree algorithm Pruned Kd-tree algorithm

1k 5k 10k 20k 1k 5k 10k 20k

512 Max 544 3142 5699 12,030 426 2319 3980 9381
Min 185 948 1587 2924 77 91 98 350
Sum 130,841 596,352 964,795 1,872,710 122,359 523,232 882,270 1,678,095

1k Max 544 3142 5699 12,030 375 2319 4497 9021
Min 185 948 1576 2924 28 91 98 280
Sum 255,201 1,207,024 1,957,944 3,576,870 239,219 1,048,327 1,738,695 3,224,380

2k Max 544 3142 5699 12,030 426 2319 4497 9465
Min 185 937 1576 2893 14 14 14 70
Sum 517,771 2,246,115 4,057,069 10,246,641 477,216 2,026,514 3,523,529 5,340,693

4k Max 544 3142 5699 12,030 438 2319 4553 9393
Min 185 937 1577 2893 14 14 14 70
Sum 1,047,587 4,689,638 7,985,342 13,772,088 964,999 4,134,084 7,036,544 12,523,765

8k Max 544 3142 5699 12,030 432 2364 4553 9489
Min 185 937 1577 2893 14 14 14 49
Sum 2,063,609 9,196,415 14,508,307 28,847,845 1,935,299 8,192,319 13,869,101 25,545,303

16k Max 544 3142 5699 12,030 438 2364 4553 9423
Min 185 937 1576 2895 14 14 14 49
Sum 4,078,028 17,468,936 30,468,442 55,962,934 3,839,218 16,175,042 17,852,162 50,669,497

32k Max 544 3142 5699 12,030 438 2364 4560 9495
Min 185 937 1576 2924 14 14 14 42
Sum 8,098,792 38,481,691 63,569,548 125,007,952 7,680,932 32,501,442 56,179,615 106,443,702

64k Max 544 3142 5699 12,030 438 2364 4560 9495
Min 185 937 1576 2893 14 14 14 21
Sum 15,646,914 77,127,273 134,153,228 231,739,723 15,517,797 67,965,278 113,712,252 205,476,450

128k Max 544 3142 5699 12,030 438 2364 4560 9495
Min 185 937 1576 2893 14 14 14 21
Sum 33,141,660 148,833,606 262,013,018 433,884,540 30,668,615 132,008,892 222,438,007 402,884,488

256k Max 544 3,142,937 5699 12,030 438 2364 4560 9495
Min 185 937 1576 2893 14 14 14 14
Sum 71,756,336 301,774,440 501,780,227 922,711,260 57,690,021 260,490,897 444,624,839 820,648,686

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z

4 � Implementation and evaluation

To implement the proposed packet classification algo-
rithm, C++ language was used on a system with the
specifications in Table 3.

The rule set and packets needed to evaluate and test
the proposed algorithm was created using ClassBench
tool [19]. Three general rule sets were created by Class-
Bench, including Access Control List (ACL), Firewall (FW),
and IP Chain (IPC). We used rule sets of varying sizes for
our evaluations. Each generated rule set was named
according to its type and size. For example, ACL2_3K
refers to an ACL rule set with 3000 rules.

For our evaluations, we used rule sets of 1k to 20k
and packets of 512 to 256k. In the following, the results

of testing the proposed algorithm and its comparison
with the typical Kd-tree algorithm are presented and
discussed.

4.1 � Number of memory accesses

One of the criteria for evaluating packet classification
algorithms is the number of memory accesses. When a
packet is being classified by our method, after reading the
packet header fields, the nodes of the tree are traversed.
Traversal starts from the root of the tree and proceeds to
the leaf node according to the search mechanism of the
proposed method. If a node has rules, those rules are also
checked linearly. Of course, this part of the search can
be done using a hash table which reduces access time in

Table 5   The number of memory accesses with the FW rule set

Packet Access memory Kd-tree algorithm Pruned Kd-tree algorithm

1k 5k 10k 20k 1k 5k 10k 20k

512 Max 1199 3130 5159 12,454 1033 2581 4965 9991
Min 422 1039 1931 4124 65 65 70 305
Sum 356,443 1,136,854 1,874,853 3,557,947 255,322 853,432 1,457,881 3,221,409

1k Max 1199 3130 6186 12,454 1033 2581 6163 9991
Min 422 1039 1931 4215 20 65 70 150
Sum 668,357 2,023,881 3,210,080 7,090,479 549,917 1,840,454 3,052,962 6,285,888

2k Max 1199 3130 6186 12,503 1086 2581 6181 12,496
Min 422 1039 1910 4124 10 65 70 50
Sum 1,341,260 3,982,774 6,783,093 14,179,408 1,072,978 3,686,741 6,188,172 12,377,521

4k Max 1199 3130 6186 12,503 1086 3057 6179 12,503
Min 422 1039 1910 4124 10 10 10 50
Sum 2,678,963 7,991,672 14,517,075 28,159,817 2,154,155 7,326,447 12,763,918 24,901,899

8k Max 1199 3130 6186 12,503 1084 3064 6176 12,503
Min 422 1006 1910 4124 10 10 10 35
Sum 5,460,157 16,415,274 31,978,990 55,019,262 4,301,367 14,517,171 19,193,383 50,439,626

16k Max 1199 3130 6186 12,503 1086 3055 6180 12,503
Min 422 1006 1910 4124 10 10 10 35
Sum 10,894,541 37,703,706 50,566,605 110,212,121 8,396,090 32,417,792 49,128,771 99,489,160

32k Max 1199 3130 6186 12,503 1086 3064 6180 12,502
Min 422 1006 1910 4124 10 10 10 30
Sum 23,157,719 65,556,229 100,929,684 223,898,085 16,296,924 57,797,109 98,517,382 200,488,788

64k Max 1199 3130 6186 12,503 1086 3064 6186 12,503
Min 422 1006 1910 4124 10 10 10 26
Sum 42,492,153 131,326,833 223,530,631 455,442,469 34,756,397 115,950,625 192,205,381 398,400,842

128k Max 1199 3130 6186 12,503 1086 3064 6186 12,503
Min 422 1006 1910 4124 10 10 10 15
Sum 85,833,341 262,031,623 446,157,629 891,605,570 71,234,413 232,741,927 376,538,129 788,539,632

256k Max 1199 3130 6186 12,503 1086 3064 6186 12,503
Min 422 1006 1910 4124 10 10 10 10
Sum 175,974,550 504,174,306 874,611,717 1,787,756,828 140,608,710 484,286,547 775,062,307 1,603,978,979

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z	 Research Article

examining the rules of a tuple. In this research, we have
used the linear method in searching the rules of each tuple
to illustrate the effect of the pruned Kd-tree. The number
of memory accesses can be defined as the total number of
traversed nodes along with the number of examined rules.
In the following, we will examine the number of memory
accesses in both Kd-tree classification algorithm and the
proposed method with regard to the different rule sets
and different numbers of rules and packets. Table 4 repre-
sents the number of memory accesses related to the ACL
rule set. The table shows the lowest and highest amount
of memory access per packet, and the total number of
memory accesses for all the packets.

In Table 4, it can be seen that the total number of
memory accesses has increased in both algorithms with
the increase in the number of packets. As the number

of rules increases, the number of memory accesses will
increase too. In the worst case of classification, the num-
ber of accesses equals the depth of the tree plus the total
number of rules available in the tuple nodes on the path
from the root to the leaf. For example, with 512 packets
and 1k rules, the Kd-tree algorithm has a maximum num-
ber of 544 memory accesses. In our method, however, the
number of memory accesses decreased to 426.

On the other hand, the minimum number of memory
accesses in the proposed method is less than that of the
Kd-tree algorithm. For example, in classifying 2k packets
according to 5k rules, the proposed method has at least
923 less accesses to system memory than the Kd-tree
algorithm. In this case, the Kd-tree algorithm makes 937
accesses, and the proposed method makes 14 accesses.

Table 6   The number of memory accesses with the IPC rule set

Packet Access Kd-tree algorithm Pruned Kd-tree algorithm

Memory 1k 5k 10k 20k 1k 5k 10k 20k

512 Max 1177 4505 8902 18,300 1035 4197 8387 16,768
Min 518 2272 4571 9258 24 52 56 244
Sum 345,996 1,386,816 2,760,527 5,594,128 255,068 1,166,789 2,373,728 4,426,525

1k Max 1177 4505 8902 18,300 1035 4201 8393 16,736
Min 518 2272 4571 9258 16 52 56 120
Sum 672,580 2,933,798 5,664,583 11,160,473 496,039 2,251,819 4,478,732 9,294,388

2k Max 1177 4505 8902 18,300 1035 4197 8397 16,768
Min 518 2272 4571 9258 8 8 8 40
Sum 1,499,426 5,612,115 10,982,065 22,795,948 1,131,262 4,640,361 9,054,679 19,039,423

4k Max 1177 4505 8902 18,300 1035 4206 8394 16,768
Min 518 2272 4571 9258 8 8 8 40
Sum 2,831,981 10,907,906 21,219,865 46,511,349 1,903,639 9,228,581 18,675,042 36,361,780

8k Max 1177 4505 8902 18,300 1035 4209 8399 16,768
Min 518 2272 4571 9258 8 8 8 28
Sum 5,518,273 23,191,884 43,251,250 89,222,546 4,368,599 18,740,797 36,891,300 73,558,586

16k Max 1177 4505 8902 18,300 1035 4209 8399 16,754
Min 518 2272 4571 9258 8 8 8 24
Sum 11,186,350 46,906,430 90,059,127 179,097,795 7,937,502 63,000,357 72,764,365 148,563,167

32k Max 1177 4505 8902 18,300 1035 4209 8399 16,769
Min 518 2272 4571 9258 8 8 8 24
Sum 23,033,832 89,320,318 179,833,731 370,009,708 16,239,111 65,876,786 145,825,021 291,522,203

64k Max 1177 4505 8902 18,300 1035 4210 8399 16,769
Min 518 2272 4571 9258 8 8 8 12
Sum 46,402,561 179,393,966 358,063,296 719,578,148 32,402,640 146,457,305 291,276,079 585,812,370

128k Max 1177 4505 8902 18,300 1035 4210 8399 16,769
Min 518 2272 4571 9258 8 8 8 12
Sum 85,383,655 359,159,114 715,062,556 1,554,271,563 61,234,320 291,887,858 577,484,603 1,302,536,756

256k Max 1177 4505 8902 18,300 1035 4210 8399 16,769
Min 518 2272 4571 9258 8 8 8 8
Sum 177,781,262 762,191,145 1,444,735,988 2,984,245,224 130,884,008 579,482,047 1,164,547,320 2,275,663,443

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z

Table 5 shows the number of memory accesses for clas-
sifying the packets corresponding to the FW rule set in the
two algorithms. In our evaluations, the number of required
accesses to system memory for packet classification was
examined. Similar to the results in Table 4, for this rule set
the pruned Kd-tree method makes fewer accesses to the
system memory than the Kd-tree algorithm. It should be
noted that memory access has a direct relationship with
the time of classification. In other words, increased mem-
ory access would increase the time of classification and
decreased access would decrease it.

Similarly, Table 6 lists the number of memory accesses
in packet classification with IPC rule set. According to the
results, with an increased number of packets and rules,
the number of memory accesses has also increased. The
reason why an increased number of rules augmented
memory access is the enlargement of the tree of rules. As
the rules increase in number, the number of tuples and,
accordingly, the number of rules in each tuple will also
increase. According to Table 6, for example, for 16k pack-
ets and 1k rules in the Kd-tree algorithm, the number of
memory accesses is 10894541, but it reaches 50566605
with increasing the number of rules to 10k.

From the results in Tables 4, 5 and 6 it can be concluded
that, in the classification of different numbers of input
packets with rules of varying type and size, memory access
in the pruned Kd-tree algorithm is less than in the typical
Kd-tree algorithm. These results are indicative of the bet-
ter performance of the proposed method. For example,
given an IPC rule set of 20k rules and 256k packets, the
total number of memory accesses for the Kd-tree algo-
rithm is 2984245224. In this case, the number of memory
accesses by the proposed method is 2275663443. There-
fore, our method reduces memory access by 23.74%. The
main reason for this reduction is the fact that right-hand
leaves are pruned and the rules in every tuple are sorted.

4.2 � Packet classification time

The time interval from the moment the packets arrive at
the classifier until they are classified by the algorithm is
called packet classification time. In this section, the packet
classification time for different rule sets is examined.
Packet classification time in this experiment was measured
in milliseconds

Table 7 shows the classification time with the ACL
rule set. According to this table, with an increase in the

Table 7   Classification time with the ACL rule set

Packets Rules

1k 5k 10k 20k

Kd-tree
 512 52.9 200.1 426.2 713
 1k 101.4 405.1 889.5 1442.4
 2k 201.2 760.8 1823.2 3596.2
 4k 396.5 1534.5 3614.5 5242
 8k 803.3 3127.1 6540 10,324.8
 16k 1580.5 5726.7 13,749.6 20,172.1
 32k 3157.2 12,477.5 28,455.6 44,922.5
 64k 6436.6 25,275.4 59,320.5 84,939.4
 128k 11,682.5 48,804.5 115,642 165,533
 256k 24,690.8 135,354 218,268 352,803

Pruned Kd-tree
 512 46 174.9 396.3 644.1
 1k 93.4 350.9 784.1 1113.5
 2k 177.5 669.2 1579.9 2078
 4k 373.1 1399.5 3168 4609.1
 8k 720 2698.2 6222.8 9177.8
 16k 1532.7 5332.9 12,485.9 18,873.7
 32k 2957.4 10,803.6 25,162.8 39,105.3
 64k 5804.4 22,255.2 50,568.6 73,975.3
 128k 11,023.2 47,713 99,622.1 158,810
 256k 19,848.4 118,386 196,271 318,850

Table 8   Classification time with the FW rule set

Packets Rules

1k 5k 10k 20k

Kd-tree
 512 132.5 420.9 703.8 1540.9
 1k 248.6 780.2 1206.8 3068.1
 2k 515.3 1716.8 2532.9 5897.3
 4k 1003.1 3369.3 5423.6 11,591.8
 8k 2188.8 6424.8 12,028.9 20,572.5
 16k 4201.4 14,302.9 19,089.8 37,940.3
 32k 8975 25,120.4 39,453.4 71,972.3
 64k 16,773.1 47,973.5 86,182.2 144,052
 128k 33,901.9 95,255.8 178,078 355,075
 256k 70,610.1 190,010 322,950 792,204

Pruned Kd-tree
 512 95.3 325.9 549.9 1472
 1k 203.9 703.5 1148.7 2603.7
 2k 408.7 1526.8 2344.4 5067.9
 4k 865.2 2874.6 4776.4 10,498.2
 8k 1694 5603.6 9161.1 17,849.7
 16k 3248.1 12,302.7 18,752.2 35,544.4
 32k 6385.6 21,266.7 38,853.2 65,392.3
 64k 14,620.1 42,197.7 74,233.1 137,763
 128k 27,829 86,457.6 144,751 317,864
 256k 54,544.8 181,531 274,718 720,966

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z	 Research Article

number of packets, packet classification time in both the
basic and pruned algorithms would increase. With any
number of packets, the proposed method has a shorter
classification time than the Kd-tree algorithm. For exam-
ple, the classification time for 32k packets is 3157.2 ms
in the Kd-tree algorithm and 2957.4 ms in the proposed
method. Therefore, our method reduces the time by
199.8 ms.

Also, with all the different rule sets, the proposed algo-
rithm has consumed less time than the Kd-tree algorithm.
With 10k rules, for example, the speed of the proposed
algorithm for classifying 64k packets is 14.75% higher
than the Kd-tree algorithm. With 20k rules, the proposed
algorithm has classified 2k packets in 2078 ms whereas
the typical Kd-tree algorithm has classified this number of
packets in 2596.2 ms. In other words, the Kd-tree algorithm
is 24.94% slower than the proposed algorithm.

In the next experiment, packet classification time with
FW and IPC rule sets was measured. Tables 8 and 9 repre-
sent the results for 1k, 5k, 10k, and 20k rules. In this rule
set, too, the packet classification time of the proposed
method in all cases is much less than that of the Kd-tree
algorithm. For example, with an IPC rule set of 1k rules,
256k packets are classified in 66,588.8 ms by the Kd-tree

algorithm and in 51,236.3 ms by our proposed algorithm.
Therefore, the proposed method functions 15,352.5 ms
faster. This difference is also seen in other results.

Overall, the proposed method provided us with a
shorter classification time with all rule sets (i.e., ACL, FW,
and IPC) in comparison with the typical Kd-tree algorithm.
The results obtained in this section are consistent with
the results of examining the number of memory accesses,
which is indicative of the superiority of the proposed
method.

4.3 � Throughput

Throughput refers to the number of packets that are clas-
sified in the unit of time. Increased throughput means that
more packets have been classified in a second.

Figure 9a–d depict the throughput of algorithms on the
ACL rule set with 1k, 5k, 10k, and 20k rules, respectively. As
the created tree enlarges with an increase in the number
of rules, the packet classification time will also increase. As
a result, the number of packets classified in a second will
be reduced. Our results show that throughput with smaller
rule sets is higher than throughput with larger rule sets.
For example, the throughput of the Kd-tree algorithm in
the classification of 32k packets is 10,135 packets per sec-
ond with 1k rules and 1124 packets per second with 10k
rules. With ACL rule set, our method had a higher through-
put than the Kd-tree algorithm in all classification scenar-
ios. In Fig. 9a, the throughput of classifying 8k packets is
9958.92 packets per second for the Kd-tree algorithm and
11,111.11 packets per second for the proposed method.

Figure 10a–d show the results of the throughput of the
algorithms for classification of packets based on FW rule
set with 1k, 5k, 10k, and 20k rules, respectively. In this rule
set, too, the proposed method has a higher throughput
than the Kd-tree algorithm. With all the numbers of pack-
ets and rules, the proposed method classifies more pack-
ets than the Kd-tree algorithm in one second. For example,
Fig. 10a shows that the Kd-tree algorithm has resulted in
a throughput of 3864.15 packets per second in classify-
ing 512k packets with 1k rules. However, our proposed
method has achieved a rate of 5372.51 packets per second
in the same scenario. In other words, our method classifies
39.03% more packets in the same time interval.

The maximum throughput obtained by our method
with FW rule set was 5372.51 packets per second with 1k
rules, 1571.03 packets per second with 5k rules, 931.86
packets per second with 10k rules, and 489.35 packets
per second with 20k rules. As discussed above, decreased
throughput is due to the increased complexity of the Kd-
tree or its corresponding pruned tree which increases
traversal time. The throughput obtained by the Kd-tree
algorithm in classifying 4k packets was 3987.64 packets

Table 9   Classification time with the IPC rule set

Packets Rules

1k 5k 10k 20k

Kd-tree
 512 148.8 459.9 1236 2122
 1k 284.4 972.7 2540.5 4719.8
 2k 589.5 1798.5 4890.7 9237.7
 4k 1091.9 3507.2 9352.5 18,086.1
 8k 2134.1 8296.3 19,648.5 35,600.5
 16k 4409.8 14,584.2 33,420.1 72,090.5
 32k 9116.4 28,521.4 64,648.1 143,146
 64k 17,619 61,756.7 148,144 260,777
 128k 34,130 123,424 274,478 532,779
 256k 66,588.8 341,769 548,962 1,080,750

Pruned Kd-tree
 512 112.5 379.2 1073.6 1787.3
 1k 197.4 718 2015.5 3812.2
 2k 449.9 1506.5 4101.3 7638.7
 4k 744.7 3000.8 8376.3 14,331.5
 8k 1643.4 6022 16,213.2 29,138.5
 16k 3110.6 11,856.4 26,599.6 57,428
 32k 6324.8 21,253.3 59,890.8 113,045
 64k 12,109.5 52,257.6 118,218 223,633
 128k 23,178.5 112,349 211,450 443,647
 256k 51,236.3 261,962 464,276 992,319

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z

per second with 1k rules, 1187.19 packets per second with
5k rules, 737.52 packets per second with 10k rules, and
345.07 packets per second with 20k rules.

The proposed method and the Kd-tree algorithm
were implemented on IPC rule set. The results of this
experiment on 1k, 5k, 10k, and 20k rules are shown in
Fig. 11a–d, respectively. With this rule set, too, the pro-
posed method obtained a higher throughput rate than
the Kd-tree algorithm. According to Fig. 11a, with 64k
packets, our method classified 5285.11 packets per
second while the Kd-tree algorithm classified 3632.44
packets per second. In other words, our method classi-
fied 1652.67 more packets per second. Here again, the
number of rules increased due to the enlarged and more
complicated tree, thereby reducing the throughput rate.

Overall, the maximum throughput value obtained by
the proposed method with ACL, FW, and IPC rule sets
was 12897.77, 5372.51, and 5522.36 packets per second.
However, the maximum throughput obtained by the
basic algorithm with the same rule sets was 10,956.56,
4022.53, and 3844.49, respectively. Moreover, in all sce-
narios, the number of packets classified by the proposed

method was much more than those classified by the Kd-
tree algorithm at the same time.

4.4 � Memory usage for the tree structure

One of the important criteria in comparing the efficiency
of the proposed method and the basic algorithm is the
amount of memory needed to store the tree structure
created by the rules. The data structure used to hold the
tree is composed of the following parts:

•	 Nodes that hold the tuples.
•	 Nodes that hold the number of member tuples and

the number of markers assigned to the tuple.

Figure 12 shows the memory consumption in bytes
of the Kd-tree algorithm and the proposed method
with ACL, FW, and IPC rule sets. In the graphs of Fig. 12,
the memory needed to hold tuple nodes and rules
separately, together with the sum of the two, is shown
for both algorithms. Graphs (a) through (d) show the

(a) ACL - 1k rules (b) ACL - 5k rules

(c) ACL - 10k rules (d) ACL - 20k rules

9.
68 9.
86

9.
94

10
.0

9

9.
96

10
.1

2

10
.1

4

9.
94 10

.9
6

10
.3

7

11
.1

3

10
.7

1

11
.2

7

10
.7

2

11
.1

1

10
.4

4

10
.8

2

11
.0

3

11
.6

1

12
.9

0

0.00

5.00

10.00

15.00

512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Th
ro

ug
hp

ut
(K

PP
S)

Number of Packets
kd-tree Pruned kd-tree

2.
56

2.
47 2.
63

2.
61

2.
56 2.

79

2.
56

2.
53 2.
62

1.
89

2.
93

2.
85 2.
99

2.
86 2.
96

3.
00

2.
96

2.
88

2.
68

2.
16

0.00

1.00

2.00

3.00

4.00

512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Th
ro

ug
hp

ut
(K

PP
S)

Number of Packets
kd-tree Pruned kd-tree

1.
20

1.
12

1.
10

1.
11 1.

22

1.
16

1.
12

1.
08 1.
11 1.

17

1.
29

1.
28

1.
27

1.
26

1.
29

1.
28

1.
27

1.
27

1.
28

1.
30

0.00

0.50

1.00

1.50

512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Th
ro

ug
hp

ut
(K

PP
S)

Number of Packets
kd-tree Pruned kd-tree

0.
72

0.
69 0.

77

0.
76

0.
77 0.
79

0.
71 0.
75 0.
77

0.
730.

79 0.
90 0.

96

0.
87

0.
87

0.
85

0.
82 0.
87

0.
81

0.
80

0.00

0.20

0.40

0.60

0.80

1.00

1.20

512 1k 2k 4k 8k 16k 32k 64k 128k 256k
Th

ro
ug

hp
ut

(K
PP

S)

Number of Packets
kd-tree Pruned kd-tree

Fig. 9   Throughput of the kd-tree algorithm and the proposed method with different rule sets in ACL rules

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z	 Research Article

amount of memory needed to store the data structure
corresponding to 1k, 5k, 10k, and 20k rules, respectively.

According to the results of this test, the proposed
method requires less memory in all scenarios. For exam-
ple, with an ACL rule set of 1k rules, the memory needed
to store the Kd-tree is 23,815.9 bytes while it is 19,120.4
bytes in the proposed method. Therefore, the proposed
method was able to reduce memory usage by 4695.5
bytes through pruning the tree nodes. With an FW rule
set of 10k rules, the Kd-tree algorithm needs 0.74 KB
for storing nodes that contain tuples and 156.09 KB for
storing nodes that contain rules. By pruning the redun-
dant nodes, however, the proposed method needs only
0.54 KB for tuple nodes and 127.21 KB for nodes that
contain rules. With IPC rule set, too, our method used
less memory than the Kd-tree algorithm. This confirms
the success of the method in pruning the Kd-tree data
structure and making better use of memory.

Overall, our method consumed less memory than the
Kd-tree algorithm with all rule sets and all numbers of
rules. In other words, our method for pruning the Kd-tree

was efficient and could have a positive effect on reducing
the size of the tree.

Table 10 shows the comparison of the proposed
method with other packet classification algorithms. The
algorithms in the first column are compared according to
three evaluation criteria including lookup time, memory
usage, and dimension scalability.

First, the lookup time is examined. Most of the existing
designs have a time complexity of either O(W) or O(logN) .
Four algorithms provide better search efficiency. The time
complexity of RFC [20] and HiCuts [21] are constant. The
binary search scheme [22] has a time complexity of
O
(

log2W
)

 . RFC and HiCuts have lower time complexity but
at the high cost of considerable memory requirement, i.e.
O
(

Nd
)

 . Excluding RFC and HiCuts, our design has the low-
est time complexity O

(

d log
(

W

�

))

 with controlled storage

space requirement O
(

N log
(

W

�

))

. Here, 1 ≪ 𝛼 ≪ W rep-

resents the minimum ratio of the reduction in any of the
distinct traversal patches from the root to any leaf node of
the tree.

FW - 1k rules FW - 5k rules

FW - 10k rules FW - 1k rules

3.
86 4.
02

3.
88 3.
99

3.
65 3.
81

3.
57 3.
82

3.
78

3.
63

5.
37

4.
90

4.
89

4.
62 4.
72

4.
93

5.
01

4.
38 4.
60 4.
69

0.00

1.00

2.00

3.00

4.00

5.00

6.00

512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Th
ro

ug
hp

ut
(K

PP
S)

Number of Packets
kd-tree Pruned kd-tree

1.
22 1.
28

1.
16 1.
19 1.
25

1.
12 1.

27 1.
33

1.
34

1.
351.

57

1.
42

1.
31 1.
39 1.
43

1.
30 1.

50

1.
52

1.
48

1.
41

0.00

0.50

1.00

1.50

2.00

512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Th
ro

ug
hp

ut
(K

PP
S)

Number of Packets
kd-tree Pruned kd-tree

0.
73 0.

83

0.
79

0.
74

0.
67

0.
84

0.
81

0.
74

0.
72 0.

79

0.
93

0.
87

0.
85

0.
84

0.
87

0.
85

0.
82

0.
86

0.
88

0.
93

0.00

0.20

0.40

0.60

0.80

1.00

512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Th
ro

ug
hp

ut
(K

PP
S)

Number of Packets
kd-tree Pruned kd-tree

0.
33

0.
33 0.
34

0.
35 0.

39 0.
42 0.
44

0.
44

0.
36

0.
320.

35 0.
38 0.
39

0.
38 0.

45

0.
45 0.

49

0.
46

0.
40

0.
36

0.00

0.10

0.20

0.30

0.40

0.50

0.60

512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Th
ro

ug
hp

ut
(K

PP
S)

Number of Packets
kd-tree Pruned kd-tree

(a) (b)

(c) (d)

Fig. 10   Throughput of the kd-tree algorithm and the proposed method with different rule sets in FW rules

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z

Second, we compare the proposed design with Rectan-
gle Search and Binary Search, which are both based on
tuple space search. The two schemes can only be applied
to two-dimensional classifiers, that is d = 2. Rectangle
Search requires O(W) hashes and Binary Search needs
O
(

(log2 W)2
)

 hashes. The proposed design only requires
O(2 logW) hashes. From the storage perspective, Rectan-
gle Search requires a storage space of O(NW) and Binary
Search requires a space of O

(

N ∗ log2W
)

 . In contrast, our
design only needs O

(

N log
(

W

�

))

 of memory.

5 � Conclusion

Packet classification plays a crucial role in the efficiency of
many Internet-based processing devices such as routers
and firewalls. Different software and hardware algorithms
perform packet classification. One of the well-known algo-
rithms for packet classification is the Kd-tree algorithm.
By dividing the rules based on the length of the prefix of
source and destination IP addresses, this algorithm places
them in tuples. Then it sorts tuples with a special tech-
nique and creates a binary tree using the sorted tuples.

The input packets of the classifier can be classified using
a search algorithm on this tree. The Kd-tree algorithm has
several disadvantages including:

•	 Lack of order in the rules of the tuples and the necessity
to examine all the rules of a tuple during classification.

•	 Existence of redundant nodes in the tree.
•	 Repetitive checking of rules during packet classifica-

tion.

Given the defects in the Kd-tree algorithm, we
attempted to develop an optimized version of the algo-
rithm by close analysis of its structure as well as how
it traverses the tree structure. The proposed method
improves the Kd-tree algorithm in terms of both time
and memory consumption. The key idea behind the
optimized version is to prune redundant nodes that do
not affect the process of classification. This can reduce
memory access as well as the memory required for stor-
ing the tree structure. Also, in the proposed algorithm,
sorting the rules in a tuple according to their priority
has led to a further reduction in the classification time.

Both the proposed method and the Kd-tree algorithm
were implemented on three rule sets, i.e., ACL, FW, and

IPC - 1k rules IPC - 5k rules

IPC - 10k rules IPC - 20k rules

3.
44 3.
52

3.
39 3.

66 3.
75

3.
63

3.
51 3.
63 3.
75 3.
844.

55 5.
07

4.
45 5.

37

4.
87

5.
14

5.
06

5.
29

5.
52

5.
00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Th
ro

ug
hp

ut
(K

PP
S)

Number of Packets
kd-tree Pruned kd-tree

1.
11

1.
03 1.

11 1.
14

0.
96 1.

10 1.
12

1.
04

1.
04

0.
75

1.
35 1.
39

1.
33

1.
33

1.
33

1.
35 1.

51

1.
22

1.
14

0.
98

0.00

0.50

1.00

1.50

2.00

512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Th
ro

ug
hp

ut
(K

PP
S)

Number of Packets
kd-tree Pruned kd-tree

0.
41

0.
39 0.
41 0.
43

0.
41 0.

48 0.
49

0.
43 0.

47

0.
470.
48 0.
50

0.
49

0.
48 0.
49

0.
60

0.
53

0.
54 0.

61

0.
55

0.00

0.20

0.40

0.60

0.80

512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Th
ro

ug
hp

ut
(K

PP
S)

Number of Packets
kd-tree Pruned kd-tree

0.
24

0.
21 0.
22 0.
22

0.
22

0.
22

0.
22 0.

25

0.
24

0.
240.

29

0.
26

0.
26 0.

28

0.
27

0.
28

0.
28

0.
29

0.
29

0.
26

0.00

0.10

0.20

0.30

0.40

512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Th
ro

ug
hp

ut
(K

PP
S)

Number of Packets
kd-tree Pruned kd-tree

(a) (b)

(c) (d)

Fig. 11   Throughput of the kd-tree algorithm and the proposed method with different rule sets in IPC rules

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z	 Research Article

(a) 1k Rules (b) 5k Rules

(c) 10k Rules (d) 20k Rules

36
6.

12
5

17
98

4

18
35

0.
1

26
5.

12
5

15
20

8

15
47

3.
1

66
9.

12
5

20
48

8

21
15

7.
1

44
1.

87
5

17
52

8

17
96

9.
9

26
63

.8
8

21
15

2

23
81

5.
9

17
04

.3
8

17
41

6

19
12

0.
4

0

5000

10000

15000

20000

25000

30000

Tuple-Nodes Rule-Nodes Tree

M
em

or
y

Sp
ac

e(
By

te
)

37
8.

75

80
80

8

81
18

6.
8

27
7.

75

68
64

0

68
91

7.
8

73
2.

25

81
75

2

82
48

4.
3

53
0.

25

66
75

2

67
28

2.
3

36
86

.5

11
15

92

11
52

79

24
11

.3
8

89
83

2

92
24

3.
4

0

20000

40000

60000

80000

100000

120000

140000

Tuple-Nodes Rule-Nodes Tree

M
em

or
y

Sp
ac

e(
By

te
)

37
8.

75

16
22

80

16
26

59

27
7.

75

13
71

04

13
73

82

75
7.

5

15
98

40

16
05

98

55
5.

5

13
02

64

13
08

20

40
02

.1
3

22
97

52

23
37

54

24
11

.3
8

17
73

84

17
97

95

0

50000

100000

150000

200000

250000

Tuple-Nodes Rule-Nodes Tree

M
em

or
y

Sp
ac

e(
By

te
)

37
8.

75

32
51

52

32
55

31

27
7.

75

27
49

12

27
51

90

77
0.

12
5

31
67

84

31
75

54

56
8.

12
5

26
13

04

26
18

72

42
04

.1
3

45
28

80

45
70

84

24
11

.3
8

34
65

60

34
89

71

0

100000

200000

300000

400000

500000

Tuple-Nodes Rule-Nodes Tree

M
em

or
y

Sp
ac

e(
By

te
)

Fig. 12   Memory required for tree structure

Table 10   The complexity of
different algorithms

Evaluation algorithms Lookup time Memory usage

Linear search on filter rules O(N) O(N)

Grid-of-tries [23] O(W) O(NW)

Cross-producting [24] O(dW) O
(

Nd
)

Bit-parallelism [25] O(W logN) O(NW)

Area-based QuadTree [26] O(W) O(NW)

Fat-Inverted segment tree [27] O((L + 1)W) O
(

LN(1+1∕L)
)

Segment tree with fractional cascading [28] O(logN) O(N ∗ logN)

Recursive flow classification [20] O(d) O
(

Nd
)

HiCuts [21] O(d) O
(

Nd
)

Linear search on tuple [29] O
(

Wd
)

O(N)

Rectangle search [30] O(W) O(NW)

Binary search [22] O
(

log2W
)

O
(

Nlog2W
)

Extended Grid-of-Trie [31] O(W) O(NW)

Kd-tree [6] O(d logW) O(Nd logW)

Proposed method O
(

d log
(

W

�

))

O
(

N log
(

W

�

))

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z

IPC. The rule sets were created using Classbench tool.
This tool is used to generate experimental rules and
packets for testing classification systems. The evaluation
criteria we used include the number of tuples created by
the rules, the number of memory accesses, packet clas-
sification time, throughput, memory consumption of the
tree data structure, and the depth of the tree.

According to the results, the proposed method has
been more efficient than the Kd-tree algorithm in every
aspect. According to the results of the classification of
128k headers with IPC 1k rule set, our proposed algo-
rithm could boost the classification speed of the basic
Kd-tree algorithm by a ratio 1.47. Furthermore, our
method needs less memory space than the Kd-tree algo-
rithm for storing the tree data structure. The depth of the
pruned tree is less than that of the Kd-tree algorithm.

One suggestion to continue the present research with
the aim of reducing the classification time is to develop a
method for searching the rules in a tuple. Currently, the
rules of a tuple are checked linearly. In the worst case,
this may require the input packet to be matched against
all the rules. The time complexity of this search operation
is in the worst case O(n) , where n denotes the number of
rules in the tuple. Therefore, if the time for checking the
rules can be reduced, the classification time will also be
reduced. For this purpose, like other methods derived
from the basic algorithm, we can use hashing methods.
Thus, the number of memory accesses to find the best
matching rule in each tuple would decrease significantly.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Hager S, John P, Dietzel S, Scheuermann B (2018) RuleBender:
Tree-based policy transformations for practical packet classifica-
tion systems. Comput Netw 135:253–265

	 2.	 Inoue T, Mano T, Mizutani K, Minato S-I, Akashi O (2018) Fast
packet classification algorithm for network-wide forwarding
behaviors. Comput Commun 116:101–117

	 3.	 Cheng Y-C, Wang P-C (2015) Packet classification using dynami-
cally generated decision trees. IEEE Trans Comput 64:582–586

	 4.	 Sun P, Lan J, Wang P, Ma T (2017) RFC: range feature code for
TCAM-based packet classification. Comput Netw 118:54–61

	 5.	 Qi Y, Xu L, Yang B, Xue Y, Li J (2009) Packet classification algo-
rithms: from theory to practice. IEEE INFOCOM 2009:648–656

	 6.	 Shieh S, Lee F-Y, Lin Y-W (2004) Accelerating network secu-
rity services with fast packet classification. Comput Commun
27:1637–1646

	 7.	 Gupta P, McKeown N (1999) Packet classification using hierar-
chical intelligent cuttings. In: Hot interconnects VII

	 8.	 Singh S, Baboescu F, Varghese G, Wang J (2003) Packet classifi-
cation using multidimensional cutting. In: Proceedings of the
2003 conference on applications, technologies, architectures,
and protocols for computer communications, pp 213–224

	 9.	 Qi Y, Fong J, Jiang W, Xu B, Li J, Prasanna V (2010) Multi-dimen-
sional packet classification on FPGA: 100 Gbps and beyond. In:
International conference on field-programmable technology,
pp 241–248

	10.	 Bentley JL (1975) Multidimensional binary search trees used
for associative searching. Commun ACM 18:509–517

	11.	 Robinson JT (1981) The KDB-tree: a search structure for large
multidimensional dynamic indexes. In: Proceedings of the
1981 ACM SIGMOD international conference on management
of data, pp 10–18

	12.	 Guttman A (1984) R-trees: a dynamic index structure for spa-
tial searching, vol 14. ACM, New York

	13.	 Sellis T, Roussopoulos N, Faloutsos C (1987) The R+-tree: a
dynamic index for multi-dimensional objects

	14.	 Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The
R*-tree: an efficient and robust access method for points and
rectangles. In: ACM sigmod record, pp 322–331

	15.	 Ahn HK, Mamoulis N, Wong HM (2001) A survey on multi-
dimensional access methods. Technical report, Institute of
Infomation and ComputingSciences, Utrecht University, The
Netherlands

	16.	 Böhm C, Berchtold S, Keim DA (2001) Searching in high-
dimensional spaces: index structures for improving the per-
formance of multimedia databases. ACM Comput Surv (CSUR)
33:322–373

	17.	 Brown L, Gruenwald L (1998) Tree-based indexes for image data.
J Vis Commun Image Represent 9:300–313

	18.	 Gaede V, Günther O (1998) Multidimensional access methods.
ACM Comput Surv (CSUR) 30:170–231

	19.	 Taylor DE, Turner JS (2007) Classbench: a packet classification
benchmark. IEEE/ACM Trans Netw 15:499–511

	20.	 Li X, Shao Y (2018) Memory compression for recursive flow
classification algorithm in network packet processing devices.
In: IEEE 3rd advanced information technology, electronic and
automation control conference (IAEAC), pp 1502–1505

	21.	 Chang Y-K, Chen H-C (2018) Fast packet classification using
recursive endpoint-cutting and bucket compression on FPGA.
Comput J 62:198–214

	22.	 Baboescu F, Warkhede P, Suri S, Varghese G (2006) Fast packet
classification for two-dimensional conflict-free filters. Comput
Netw 50:1831–1842

	23.	 Nottingham A, Irwin B (2009) GPU packet classification using
OpenCL: a consideration of viable classification methods. In:
Proceedings of the 2009 annual research conference of the
South African Institute of Computer Scientists and Information
Technologists, pp 160–169

	24.	 Pao D, Lu Z (2014) A multi-pipeline architecture for high-speed
packet classification. Comput Commun 54:84–96

	25.	 Lakshman T, Stiliadis D (1998) High-speed policy-based packet
forwarding using efficient multi-dimensional range match-
ing. In: ACM SIGCOMM computer communication review, pp
203–214

	26.	 Lee J, Byun H, Mun JH, Lim H (2017) Utilizing 2-D leaf-pushing
for packet classification. Comput Commun 103:116–129

	27.	 Feldman A, Muthukrishnan S (2000) Tradeoffs for packet clas-
sification. In: Proceedings IEEE INFOCOM 2000. Conference on
computer communications. Nineteenth annual joint conference
of the IEEE computer and communications societies (Cat. No.
00CH37064), pp 1193–1202

	28.	 Su C-F (2000) High-speed packet classification using segment
tree. In: Globecom’00-IEEE. Global telecommunications confer-
ence. Conference record (Cat. No. 00CH37137), pp 582–586

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1537 | https://doi.org/10.1007/s42452-019-1592-z	 Research Article

	29.	 Daly J, Bruschi V, Linguaglossa L, Pontarelli S, Rossi D, Tollet J et al
(2019) TupleMerge: fast software packet processing for online
packet classification. In: IEEE/ACM transactions on networking

	30.	 Srinivasan V, Suri S, Varghese G (1999) Packet classification using
tuple space search. In: ACM SIGCOMM computer communica-
tion review, pp 135–146

	31.	 Erdem O (2016) Pipelined hierarchical architecture for high per-
formance packet classification. Comput Netw 103:143–164

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Pruned Kd-tree: a memory-efficient algorithm for multi-field packet classification
	Abstract
	1 Introduction
	2 Related works
	2.1 Decision tree based packet classification algorithms
	2.2 Kd-tree algorithm based on tuple space search
	2.3 Definitions
	2.4 The structure of the Kd-tree algorithm
	2.5 Search in Kd-tree algorithm and the misjudged problem
	2.6 Use of markers in the Kd-tree algorithm

	3 Pruned Kd-tree algorithm
	3.1 Suggested techniques for pruning a Kd-tree
	3.2 The Structure of pruned Kd-tree algorithm
	3.3 Search in a pruned Kd-tree

	4 Implementation and evaluation
	4.1 Number of memory accesses
	4.2 Packet classification time
	4.3 Throughput
	4.4 Memory usage for the tree structure

	5 Conclusion
	References

