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Abstract
Investigating the dynamic behaviour of circular plate resting on elastic foundations are very important in designing of 
structural systems. This study examines the free vibration analysis of circular plate resting on Winkler and Pasternak foun-
dations. The governing nonlinear partial differential equation is transformed to Duffing equation based on von Kármán 
geometric nonlinear principle and the nonlinear to linear frequency ratios are obtained while the linear natural frequen-
cies are determined using Galerkin of weighted residual method. Also, the accuracy and reliability of the approximate 
solutions obtained are demonstrated by comparing the obtained results with available results reported in the literature. 
The analytical solutions obtained are used for examining the effect of elastic foundations on the dynamic behaviour of 
the circular plate. From the results, it is observed that, increasing elastic foundation parameter increases the natural fre-
quency. As the nonlinear foundation increases, the nonlinear vibration frequency ratio decreases. The nonlinear Winkler 
foundation attenuates the amplitude of vibration of the circular plate. It is hoped that, the present study will contribute 
to the existing knowledge of classical theory of vibration.
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List of symbols
r  Radius of the plate
C  Clamped edge plate
E  Young’s modulus
F  Free edge support
S  Simply supported edge
Ω  Natural frequency
d

dr
  Differential operator

f  Dynamic deflection
h  Plate thickness
ρ  Mass density
D  Modulus of elasticity

1 Introduction

Plate is an important part of structural system in civil, 
mechanical, naval, marine and aeronautic engineering. 
However, with wide application of plate in engineering, 
investigating the dynamic behavior of plate is very impor-
tant. Many engineering problems like railway, structural 
foundations and storage tank foundation require informa-
tion on dynamic behavior of plate embedded on founda-
tion before proceeding on the design. The easiest form of 
modelling mechanical behavior of soil foundation interac-
tion is by Winkler foundation. Winkler foundation suffers 
the setback of non-interaction between the lateral spring 
thereby resulting into unreliable results. Two-parameter 
elastic foundations are developed to account for this inter-
action. Adoption of two-parameter elastic foundations 
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provides a true account of soil foundation interaction. 
Incorporating two-parameter foundations results in circu-
lar plates exhibiting huge flexural vibrations of the ‘same 
order with the plate thickness’ [1]. Thereby, resulting into 
a wrong prediction of dynamic behaviour of plate by the 
linear model. To mitigate this, recourse is hereby made to 
the von Kármán equations which comprise of geometri-
cal non-linearities in the local vibration equations also, 
taking into consideration the stretching of the plate mid-
plane. In the study of vibration of plate resting on elastic 
foundations, Dumir [2] obtained an analytical solution for 
the large deflection responses of isotropic thin circular 
plates place on nonlinear Winkler foundations. Based on 
the findings of the study, buckling with the linear natural 
frequency increased with the foundation parameters and 
the edge support rotational stiffness. Also, Wang [3] in 
an effort to obtain the exact axisymmetric post-buckling 
equilibrium, adopted the power series method in ana-
lysing the nonlinear differential equations of thin circu-
lar plates. Eihab et al. [4] incorporated the von Kármán 
thin plate theory to justify for large static deformations 
of axisymmetric annular plates. The natural frequencies 
and mode shapes were obtained numerically consider-
ing series of uniform loads. In another work, Civalek and 
Ersoy [5] investigated large deflection of circular plate on 
elastic foundation using numerical method. In another 
study, Gupta et al. [6] analysed the vibration and buckling 
of circular plate embedded on Winkler foundation. On 
application of semi-analytical method, Ghannadi et al. [7] 
used indirect Trefftz method to analyze free vibration of 
circular plate.

Earlier studies show that, inherent singularity issue 
and non-trivial solution of circular plate are not easy to 
handle. Numerical method is a reliable method of solu-
tion for handling governing equation of related challenges 
but, the convergence studies, volume of iterations and 
stability studies associated with numerical increase the 
computation time and cost. Meanwhile, exact method of 
solution suffers from setback of handling nonlinear prob-
lem coupled with sound knowledge of mathematics that 
is required. Therefore, in an attempt to obtain symbolic 
solution for dynamic behavior of circular plate resting on 
Winkler and Pasternak foundations, Yasser et al. [8] inves-
tigated the deflection of circular plate under load using 
Homotopy perturbation method (HPM). In a later study, 
Yin-shan et al. [9] also, used HPM to analyze the deflec-
tion of large circular plate. In a related study, Yalcin et al. 
[10] adopted differential transform method (DTM) for free 
vibration of circular plate. Also, Zur and Jankowski [11] 
investigated free vibration of porous functional graded 
material using exact method. DTM is equally a very versa-
tile method, good in handling singularity and non-trivial 
differential system of equation but, requires the need to 

manipulate the governing equation before the singularity 
problem is resolved and subsequently, involve transform-
ing the governing equation to algebraic form. The volumes 
of iterations in DTM are very cumbersome compared to 
Galerkin of weighted residual. Meanwhile, HPM also suf-
fers the setback of finding the embedded parameter and 
initial approximation of the governing equation that sat-
isfies the given conditions. Nonetheless, several research 
on free vibration of circular plate using different methods 
have been presented in literature [12–15]. Moreover, the 
reliability and flexibility of Galerkin weighted residual 
[16–19] has made it more effective than any other semi-
numerical methods. The method is much simpler than 
any other approximating method of solutions. Galerkin of 
weighted residual handles circular plate vibration problem 
without any manipulation of governing equation with very 
precise results compared to experimental with few itera-
tions. Other recent publications reported on vibration are 
[20–25].

Previous studies show that, dynamic analysis of circular 
plate on Winkler and Pasternak foundation has not been 
investigated using Galerkin of weighted residual. There-
fore, the present study focuses on application of Galerkin 
of weighted residual for dynamic analysis of circular plate 
resting on Winkler and Pasternak foundations. Part of the 
novelties of the present study also include, resolving the 
singularities problem associated with circular plate with-
out modifying the governing equation. The analytical solu-
tions obtained are used for the parametric study.

2  Problem formulation and mathematical 
analysis

Circular plate of uniform thickness and homogenous 
material resting on Winkler and Pasternak foundation in 
Fig. 1 is considered under various boundary conditions 
simply supported, free and clamped edge conditions. 
The following assumptions are considered in the model 
of governing equation based on von Kármán’s deflection 
theory [1, 26].

Fig. 1  Circular plate resting on two-parameter foundations



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1588 | https://doi.org/10.1007/s42452-019-1588-8 Research Article

1. Normal to the middle plane before bending remain 
straight and normal to the middle plane after bending.

2. Slopes produced by flexure are moderately large, but 
small in comparison with unity.

3. Normal stresses are small compared with other stress 
components and may be neglected in the stress–strain 
relations.

4. Loads and deflections of the plates are symmetrical 
with respect to the z-axis.

5. Assuming there is Perfect bonding between the foun-
dation and the plate.

The von Kármán model for geometrically nonlinear vibra-
tions of thin plates for analysing the solutions for the trans-
verse displacement w(r, t) and the Airy stress function F(r, t) 
[1, 27].

For the linear analysis, the differential governing equation 
of circular plate as shown in Fig. 1 may be written as [28, 29] 

For free vibration equation, the solution be presented in 
this form based on Kantorovich-type approximation

Assumed deflection of the plate:

Presenting the solution in a more general form, 
the following dimensionless parameters are used 

r =
r̄

b
, f =

f̄

h
, 𝛺2 =

𝜌hb4

D
𝜔2, kw =

k̄wb
4

D
, gs =

ḡsb
2

D
,

Applying Eqs. (4) and (5) on Eq. (3), we have

where, f  is the deflection,r is the radius, kw is the Win-
kler parameter, gs is the Pasternak parameters, kp is the 
nonlinear Winkler parameter, �2 is natural frequency 
A = m4 − 4m2 and B = 2m2 + 1 respectively.
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2.1  Boundary conditions

The boundary conditions considered as earlier stated are 
simply support, clamped and free edge conditions. The 
dimensionless form of the boundary conditions may be 
presented in terms of the deflection f (r) as follows [10]

• Clamped
  

• Simply supported
  

• Free edge
  

Bending moment is represented as Mr the radial shear 
force per unit length is represented as Vr while m is an inte-
ger. As generally accepted, a nth-order differential equa-
tion requires n-number of boundary condition. Since the 
dimensionless Eq. (6) is a fourth-order governing equation 
then, four boundary conditions are expected for resolving 
the equation. Two of the conditions may be obtained from 
the external condition of the plate while the rest two are 
obtained from the condition at the center of the plate. The 
regularity conditions at the center are given as,

2.1.1  Symmetric case

2.1.2  Axisymmetric case

3  Linear analysis: principle of Galerkin 
weighted residual

Galerkin method was first proposed by Walther Ritz but 
was credited to Soviet Engineer called Boris Galerkin [16]. 
The method is used for handling differential equations. 
The approximate solutions of the differential equations 
are presumed to be thoroughly approximated by a finite 
sum of test functions. However, the chosen method of 
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weighted residual is used to obtain the coefficients value 
of each resulting test function �i . The corresponding coef-
ficients are made to reduce the error between the linear 
combination of test functions, and actual solution, in a 
chosen standard. The technique is a reliable estimated 
solution capable of solving series of problems that elimi-
nate the search for vibrational formulation. Assuming the 
governing equation to be

Putting Eqs. (12) into (13) gives

The concept requires the determination of a1, a2,… , an 
that satisfy,

where the function wi(r) and n are arbitrary weight-
ing function which are found through either, Galerkin 
of weighted residual, collocation, sub-domain, or least 
square method. For the purpose of this study Galerkin 
approach is adopted.where wi(r) = Ni(r) , meaning it is the 
same trial function as used in T (r)

The weight or shape function is Ni(r) , R is the residual and 
i  represent the node in the domain.

3.1  Application of Galerkin of weighted residual 
to the governing equation

For the sake of brevity, symmetric case regularity condi-
tion and simply supported edge condition is presented 
here while the same approach is used to determine the 
other conditions treated in this study. The choice of the 
polynomial solution is based on the highest order of the 
derivative of the governing equation. This is a fourth-order 

(12)L(T ) = 0 in �,
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aiNi(r),
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) ≠ 0 = R (Residual),

(15)∫
�
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(16)∫
�

Ni(r)Rdr = 0 where i = 1, 2,… , n,

derivative equation so; the chosen polynomial is of the 
order five.

Assume a polynomial solution for order four differential 
equation

Applying the boundary conditions at r = 0 , symmetric 
case in Eq. (17)

• Simply Supported edge
  

  

  

  

where values of flexural rigidity D and Poisson’s � ratio 
given in Table 1. Symmetric case m = 0 . Solving the simul-
taneous equation [Eqs. (20) and (21)] to find the unknowns 
and substitute back to Eq. (17).

Chain function Ni(r) in Eq. (22) are a and c , As reported in 
Eqs. (7–9) the boundary condition range is 0 ⇒ 1,invariably 
the integral limit for this Galerkin method is 0–1.

• Chain function
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(23)Galerkin equation

1

∫
0

Ni(r) × R(r)dr = 0,

(24)N1 =
dR(r)

da
⇒ 1 −

215r4
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+
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,

Table 1  Validation of fundamental natural frequency for symmetric condition

Edge condition/dimensionless natural frequency Simply supported Clamped Free

Yalcin et al. [10] Present Yalcin et al. [10] Present Yalcin et al. [10] Present

Ω 4.93511 4.95717 10.21582 10.28571 9.00312 9.03381



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1588 | https://doi.org/10.1007/s42452-019-1588-8 Research Article

  

Applying Eq.  (20) and obtain simultaneous equation 
based on the chain function;

Validating the analytical solutions require setting the 
controlling parameters as zero. The resulting simultaneous 
equation obtained may be written in this form

The polynomials �11,�12,�21 and �22 are repre-
sented in terms of the natural frequency � . Meanwhile 
�11,�12,�21 and �22 are representing a series expression 
obtained after resolving Eqs. (26) and (27). Therefore, Eq. (28) 
may be written in matrix form as

The following Characteristic determinant is obtained 
applying the non-trivial condition

Solving Eq. (30), one gets the Eigen value
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Putting c = 1 in Eq. (33), then a is calculated as,

Same procedure from (33) is repeated for second mode. 
Therefore, the deflection solution of the governing Eq. (6) 
gives

3.2  Nonlinear analysis: von Kármán model for thin 
plates

The classical Kirchhoff theory for linear plate bending is 
accurate only for small deflection problems (w ≤ 0.2h) 
ignoring the middle surface strains and the correspond-
ing in-plane stresses. As the external force increases, the 
lateral deflection may be relatively large (w ≥ 0.3h).

Dimensionless form of Eqs. (1) and (2) according to [1, 
17] are
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Solving the quadratic Eq. (31) gives the natural frequency;

Substitute the positive root obtained in Eq. (32) into 
Eq. (29) gives,
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3.2.1  Boundary condition

Simply supported and Clamped case are considered for 
the isotropic circular plate.

• Simply supported
  

• Clamped edge support
  

For the Airy stress conditions, stress free edge and 
constrained immovable conditions are considered.

The following are considered at r = R:

Approximate solution of the plate deflection w(r, t) is 
expressed as

where �(t) represents the maximum deflection at the 
center of the circular plate, a function of time t  alone, while 
c1 and c2 in each case are defined by the boundary condi-
tions Eqs. (42) and (43) and given as:

• Edges are free from stresses
  

• Constrained immovable
  

Assuming, F = f × �2(t) , then substitute Eq. (44) into 
Airy stress function Eq. (38), integrating the resulting 
equation making use of the boundary condition Eqs. (42) 
and (43), we have

where c3 is a constant obtained by substituting Eq. (47) 
into Eqs. (42) and (43). One obtains

1. 
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2. 

The Substitution of the expressions for w and F given by 
Eqs. (44) and (47) respectively into Eq. (37) and the appli-
cation of the Galerkin procedure Eq. (50) in the nonlinear 
time differential equation obtained in the form.

We have

where

3.3  Determination of non‑natural frequencies

To determine the nonlinear natural frequency of the cir-
cular plate, the dynamic response is analysis is carried out 
following the assumption that [30] 

Applying Eq. (55) on Eq. (51), we have
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Which gives
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Thus, zero-order nonlinear natural frequency becomes

Therefore, ratio of zero-order nonlinear natural fre-
quency, �0 to the linear frequency �b

Following the same procedural approach, the first-order 
nonlinear natural frequency is

The ratio of the first-order nonlinear frequency,�1 to the 
linear frequency �b gives,

4  Results and discussion

The analytical solution of governing equation of motion of 
the circular plate under various boundary conditions with 
Galerkin method of weighted residual is hereby presented. 
The material properties for the thin uniform thickness, 
homogenous circular plate used are E = 207GPa material 
density � = 7850 kg/m

3 thickness of the plate h = 0.03m 
and Poisson’s ratio � = 0.3 respectively.

To validate the analytical solution of free vibration of cir-
cular plate resting on Winkler and Pasternak foundations 
using Galerkin method of weighted residual, application 
is made to the numeric data stated above given by [31]. 
Galerkin method of weighted residual determined the 
natural frequency in dimensionless form. However, the 
accuracy of the analytical solutions obtained are compared 
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with results as reported in literature [28] and confirm in 
good agreement along the entire values under different 
boundary conditions and presented in Tables 1 and 2. Since 
dimensionless value of the natural frequency � is obtained 
in the analysis, the results are valid for all thickness to radius 
ratio. Also the parametric studies of the controlling factors 
are presented in both tabular and graphical form.

The iteration of the Galerkin method of weighted residual 
is a determinant of order of the assumed polynomial chosen. 
In this study, fifth order polynomial is chosen for fourth order 
governing differential equation. The analytical solutions 
obtained though are limited to first two natural frequencies 
but, its good enough to predict the behaviour of the plate 
and the results are observed similar to results reported in 
literature [28]. Moreso, when the same analytical solutions 
are compared to results reported in literature [10] which are 

obtained using another semi-analytical method DTM, for the 
fundamental natural frequency DTM requires ten iterations 
while for fifth order assumed polynomial chosen here, first 
two natural frequencies already obtained and converged. It 
is also observed that, to obtain higher node of natural fre-
quencies there is need to increase the order of the assumed 
polynomial choosen at the beginning of the analysis. Results 
shown in Tables 1 and 2 illustrate the fundamental natural 
frequencies obtained which give a reasonable prediction of 
the circular plate behaviour with minimal iterations.

Tables 1 and 2 also show comparison of results for sym-
metric and axisymmetric case of the present study with 
reported work in literature review. There is good agreement 
between the present study and the results reported [28], 
Hence, it can be concluded that the present procedure is 
very effective. Maximum Percentage variation of 0.4%.

4.1  Effect of foundation parameter on natural 
frequency

To further investigate the effect of elastic foundation on 
free vibration of circular plate, the natural frequencies � of 
the solutions obtained are plotted against the foundation 

Table 2  Validation of fundamental natural frequency for axisymmetric condition

Edge condition/dimensionless natural frequency Simply supported Clamped Free

Wu et al. [28] Present Wu et al. [28] Present Wu et al. [28] Present

Ω 13.898 13.900 21.26 21.26 20.475 20.556
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parameters variation. The results are obtained by setting 
m = 1 and m = 0 respectively as shown in Figs. 2, 3 and 4. 
Tables 3, 4 and 5 present the dimensionless symmetric nat-
ural frequency � = �a2

√

�h∕D for different values of the 
elastic foundation parameters. The numeric value of natural 
frequencies obtained are given as �1 and �2 in the tables. In 
this study, Consideration is given to

E l a s t i c  W i n k l e r  t y p e  f o u n d a t i o n 
( gs = 0, kw = 0, 30, 120, 200)
S h e a r  e l a s t i c  Pa s te r n a k  t y p e  fo u n d a t i o n 
( kw = 0, gs = 10, 50, 100)

Figures 2, 3 and 4 show that as the elastic foundation 
parameter (shear stiffness) of the elastic medium increase, 
the natural frequency of vibration of the uniform thick-
ness, homogenous circular plate increase. As a result of 
increased value of the elastic medium stiffness, the shear 
stiffness make the uniform circular plate stronger/stiffer 

Fig. 2  Influence of Winkler foundation variations on simply sup-
ported edge condition symmetric case

Fig. 3  Influence of Pasternak foundation variation on clamped 
edge condition symmetric case

Fig. 4  Influence of Winkler and Pasternak foundation variation on 
free edge condition symmetric case

Table 3  Variation of elastic foundation on natural frequency sym-
metric case m = 0

Edge condition Natural 
fre-
quency

Elastic foundation support  (gs = 0, 
m = 0)

Mode kw = 0 kw = 30 kw = 120 kw = 200

Simply sup-
ported

Ω1 4.9351 7.3726 12.0148 14.9785
Ω2 29.1583 29.6682 31.1481 32.4069

Clamped sup-
port

Ω1 10.2158 11.5916 14.9788 17.4460
Ω2 39.7712 38.4885 39.6405 40.6370

Free support Ω1 9.0032 10.5380 10.9545 14.1421
Ω2 38.4392 38.5319 39.6202 58.6285

Table 4  Shear Pasternak variation effect on natural frequency

Edge condition Natural 
fre-
quency

(kw = 0, m = 0)

Mode gs = 0 gs = 30 gs = 50 gs = 100

Simply sup-
ported

Ω1 4.9351 14.0756 17.7150 24.3631
Ω2 29.1583 42.0054 48.7269 63.2426

Clamped sup-
port

Ω1 10.2158 17.4993 20.9098 27.6136
Ω2 39.7712 49.8775 56.3333 69.9064

Free support Ω1 9.0032 15.3254 18.2966 24.1586
Ω2 38.4392 52.0896 59.7417 75.9017
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and vibrate at higher natural frequency. Although, it a 
known character of plate to be affected by characteristic 
of elastic foundation, Moreover, it is also observed that, 
effect of the difference in natural frequencies are more sig-
nificant for higher mode of the circular plate. By compar-
ing the results in Tables 3 and 4 with Tables 1 and 2, one 
observed that, analytical solutions obtained with Galerkin 
method of weighted residual increase with increasing the 
elastic foundation parameters. Furthermore, the effect 
of foundation is lesser in lower modes. Same effect are 
observed under Pasternak foundation and when the plate 
is resting on combined Winkler and Pasternak foundations.

4.2  Mode shapes

The mode shape for the dimensionless natural frequen-
cies are shown in Figs. 5, 6, 7, 8, 9 and 10 respectively. It is 
important to note that, the mode shape obey the classical 
theory of vibration.

4.3  Nonlinear natural frequency

To further investigate the influence of nonlinear founda-
tion. The model is converted into Duffing equation using 
Galerkin method. The ratio of linear to nonlinear natural 
frequency on the amplitude is obtained. The frequency 
ratio is obtained taking into consideration the constant 
parameter of linear Winkler and shear Pasternak founda-
tion while the nonlinear foundation stiffness is varied from 
( kp = 2, 10, 20 ). However, the effect of nonlinear founda-
tion is studied. Figures 11, 12 and 13 illustrate the relation-
ship between ratio of natural frequency to the amplitude. 
It is observed that, nonlinear frequency is a function of 
amplitude. The more the amplitude the more the signifi-
cance in variation between the nonlinear to linear natural 
frequency.

Figure 11 shows the influence of nonlinear foundation 
on the nonlinear frequency ratio-amplitude response 
curves of circular plate. It is observed that, as the nonlinear 
foundation increases, the nonlinear vibration frequency 
ratio decreases. This is a case of softening nonlinearity. 

Table 5  Winkler and Pasternak 
variation effect on natural 
frequency symmetric case

Edge condition Natural 
frequency

(m = 0)

Mode gs = 0,  kw = 0 gs = 10,  kw = 10 gs = 50,  kw = 50 gs = 100,  kw = 100

Simply supported Ω1 4.9351 9.6084 19.0728 26.5006
Ω2 29.1583 34.1285 49.2331 63.2009

Clamped support Ω1 10.2158 13.5206 22.0730 29.3686
Ω2 39.7712 42.5273 56.7754 70.6180

Free support Ω1 9.0032 11.9750 19.6184 26.1934
Ω2 38.4392 43.3451 60.1735 80.0472

Fig. 5  Mode shape for simply supported edge condition symmetric 
case

Fig. 6  Mode shape for simply supported edge condition asymmet-
ric case
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Figure  12 illustrates the influence of shear Pasternak 
foundation on nonlinear amplitude-frequency response 
curve. It is observed that, as shear Pasternak founda-
tion increases, the nonlinear vibration foundation ratio 
increases. This is a case of softening nonlinearity. Figure 13 
reveals that Winkler and Pasternak foundations have signif-
icant effect on nonlinearity of the circular plates therefore, 
the paramount is important in controlling the nonlinearity 
of circular plates. The increase of nonlinear Winkler foun-
dation only attenuates the amplitude of vibration while 

Fig. 7  Mode shape for clamped edge condition symmetric case

Fig. 8  Mode shape for clamped edge condition asymmetric case

Fig. 9  Mode shape for free edge condition symmetric case

Fig. 10  Mode shape for free edge condition asymmetric case

Fig. 11  Influence of nonlinear Winkler foundation on nonlinear 
natural frequency
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increase elastic linear foundations increases the amplitude 
of vibration (Table 6).

5  Conclusion

In this study, free vibration of circular plate resting on 
Winkler and Pasternak foundations using Galerkin of 
weighted residual method is investigated. From the 
parametric studies, it was established that

1. The natural frequency of circular plate increases with 
increase in elastic Winkler foundation Parameter.

2. The natural frequency of circular plate increases with 
increase in elastic Pasternak foundation Parameter.

3. As the nonlinear foundation increases, the nonlinear 
vibration frequency ratio decreases.

The present study emphasis the effect of elastic foun-
dation and fluid on dynamic behaviour of thin circular 
plate. Also, singularities issue of circular plate is han-
dle with ease using Galerkin of weighted residual. It is 
expected that the present study will contribute to the 
understanding of the study of dynamic behaviour of cir-
cular plate under various parameters.
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Table 6  Results of different deflection values

Transverse 
displacement

Simply supported Clamped Free
Ω1

f[0] 1 1 1
f[0.05] 0.996835405 0.9942955 0.998752
f[0.10] 0.987367147 0.9773164 0.9950309
f[0.15] 0.971670086 0.9494541 0.988903
f[0.20] 0.949865341 0.9113361 0.9804725
f[0.25] 0.922117162 0.8638041 0.9698766
f[0.30] 0.888629805 0.807893 0.9572803
f[0.35] 0.849644405 0.7448088 0.9428713
f[0.40] 0.80543585 0.675908 0.9268544
f[0.45] 0.756309651 0.6026753 0.9094469
f[0.50] 0.702598819 0.5267024 0.8908733
f[0.55] 0.644660738 0.4496667 0.8713599
f[0.60] 0.582874034 0.3733098 0.8511297
f[0.65] 0.517635456 0.2994156 0.8303975
f[0.70] 0.449356741 0.2297894 0.8093644
f[0.75] 0.378461494 0.1662361 0.7882127
f[0.80] 0.305382056 0.1105385 0.767101
f[0.85] 0.230556382 0.0644365 0.7461588
f[0.90] 0.15442491 0.0296049 0.7254813
f[0.95] 0.07742744 0.0076324 0.7051244
f[1.00] 2.70E−10 − 1.2E−09 − 0.6850993
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