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Abstract
Electronic waste pollution is a growing concern due to its hazardous effects on the environment and human health. 
Among many contaminants from e-waste, excessive levels of heavy metals in soil, which are far beyond the permissible 
limit, have led to many research studies at e-waste dumping sites majorly in the developing nations like India and China. 
The present study was conducted to assess the effect of e-waste dumping on the soil profile; therefore, the soil quality 
was analyzed for various physicochemical and heavy metals characteristics. The concentration of heavy metals in the soil 
samples was determined using inductively coupled plasma optical emission spectrometer. Soil samples were found to 
contain a higher amount of different heavy metals like copper, zinc, nickel, lead, manganese, chromium, cadmium, and 
iron. Correlation and principal component analysis were performed to establish a better insight into the degradation 
of soil quality. The contamination factor and pollution load index were evaluated statistically to assess the heavy metal 
pollution. The significant difference among the soil quality parameters inferred the hazardous impact of e-waste on the 
soil profile, and the pollution load index indicated that the sites are highly polluted with heavy metals. The present study 
contributes to a deeper understanding of the heavy metal contamination at e-waste dumping sites.

Keywords E-waste · Heavy metals · Principal component analysis · Contamination factor · Cluster analysis · Pollution 
load index

1 Introduction

With the rapid development in the information technol-
ogy sector and fast-paced innovations in the electrical and 
electronics industry [36, 50], large quantities of electronic 
equipments are being discarded globally [77]. E-waste is 
one of the fastest growing sources of waste and now rep-
resents an emergent environmental concern [45].

Waste electronic equipments constitute over 5% 
of urban waste in developed countries and every year 
approximately 20–50 million tons of e-waste is produced 
globally and it is anticipated to increase 3–5% annually 
[22, 48]. The lethal impacts of recycling and discarding of 
e-waste on soil ecosystems have been reported in many 

countries [29, 71, 72]. The rapid growth of e-waste has led 
to inappropriate management techniques in both devel-
oped and developing countries, resulting in multi-dimen-
sional influences on the environment [52, 71].

Several research studies have revealed the significant 
influences of heavy metal pollution on the environment 
and human health [18, 21, 50]. E-waste is considered more 
hazardous than any other waste as it contains a huge vari-
ety of toxic elements, namely Pb, Cd, Cr, Hg, PVC, BFRs, 
beryllium, antimony, and phthalates. Long-term exposure 
to these materials can harm the sensory systems, kidney, 
bones, reproductive, and endocrine system [25].

Currently, heavy metals contamination has become 
one of the most hazardous environmental challenges due 
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to their tendency for bioaccumulation and toxic effects 
on plants, animals, and human beings [8, 31, 37, 57]. The 
industrial activities, including mining, metallurgy, petro-
leum-producing, machine manufacturing, and metal fin-
ishing, affect the environment directly or indirectly [34]. 
The main concern is the discharge and accumulation of 
heavy metals into the soil, as metals are not degradable 
and largely affect the ecosystem. Most of the heavy metals 
are extremely toxic even at low concentrations. Cd, Cr, Pb, 
Hg, As, Ni, Zn, Cu, and Ag are not only poisonous but are 
even carcinogenic [53].

The principal objective of this study was to determine 
the origin, dispersal, and evaluation of the environmen-
tal risk associated with heavy metals contamination. The 
objective was attained, using various multivariate and 
statistical approaches including the soil physicochemical 
properties, nutrient status, and heavy metals distribution 
at the selected e-waste dumping sites. Despite the fact 
that numerous reports are available on heavy metal con-
taminations, an inclusive study correlating various param-
eters statistically to soil quality in the selected regions is 
largely unassessed.

2  Materials and methods

2.1  Site description

Ahmedabad, the largest industrial hub in Gujarat with 
a phenomenal growth record, has been an important 
base of trades and industries. Ahmedabad lies at 23.03°N 
72.58°E in western parts of India at 53 meters above sea 
level in north-central Gujarat, which covers an area of 
464 km2. The climatic conditions are mostly semi-arid due 
to the closeness with the Arabian Sea. According to the 
Bureau of Indian Standards, the city comes under seismic 
zone 3. Typically, the climate stays dry, except during mon-
soon season. The present research study was carried out at 
three different e-waste dumping sites, which were close to 
Ahmedabad railway station. Five samples were obtained 
from each selected study site and the locations of sam-
pling sites are shown in Fig. 1 with coordination given.

2.2  Sampling procedure and analytical 
methodology

Soil samples were collected from the depth of 
(15–30 cm) and immediately transferred to an airtight 
container. The soil samples then transported to the 
laboratory and samples were prepared to analyze the 
physicochemical and heavy metals properties. pH was 
estimated (1:2.5 w/v) by digital pH meter [70]. Electrical 
conductivity was determined (1:2.5 w/v) by conductivity 

meter. Organic carbon and organic matter were esti-
mated as per the method recommended by Osuji and 
Adesiyan [46]. Sulfate was estimated by the turbidimet-
ric method [13], available phosphorus was determined 
according to Kovar et al. [24], and nitrate was assessed 
according to Cataldo et al. [9]. Similarly, soil moisture 
content, water holding capacity, alkalinity, and potas-
sium concentrations were analyzed as per the standard 
methods.

2.3  Heavy metals analysis in e‑waste contaminated 
samples

Soil samples were prepared for heavy metal quantification 
using the method suggested by the State Environmen-
tal Protection Administration [31]. Air-dried and sieved 
samples were digested with HCl–HNO3–HF–HClO4 solu-
tion for the analysis of Pb, Zn, Cd, Cu, Mn, Fe, and Ni [14], 
and for the analysis of Cr, the samples were digested with 
 HNO3–HClO4–HF solution [20, 78]. The obtained solution 
was heated for 4–6 h at 120 °C on hot plate and filtered 
using Whatman filter paper no. 42. The filtrate was then 
diluted with distilled water till the total volume reached 
to 20 ml. The concentrations of Cr, Pb, Cd, Fe, Cu, Ni, Mn, 
and Zn were calculated using Perkin Elmer Optima 7300 
DV ICP-OES. The samples were analyzed in triplicate, and 
the concentration of the metals was reported in mg/kg.

2.4  Multivariate and statistical analysis

The data obtained through the laboratory experiments 
(physicochemical and heavy metals concentration) were 
analyzed, tabulated into tables, and shown in the form of 
Mean ± SD. Principal component and cluster analysis, the 
most suitable multivariate approaches for environmental-
based research studies [38], were performed to analyze the 
acquired data. Principal component analysis (PCA) bi-plot: 
standardized PC1 and PC2 scores were plotted to decrease 
the data and to extract a lesser number of independent 
factors for analyzing relations among experimental vari-
ables [79], starts with the correlation matrix defining the 
distribution of the original variables and extracting the 
eigenvalues and eigenvectors [5]. PCA and Pearson cor-
relation used to determine the relationship among the soil 
characteristics at each sampling point and to explore the 
homology of soil contamination. Correlation and princi-
pal component were executed by Origin software. Clus-
ter analysis was instigated to find out the similarity index 
among all the sampling points of e-waste sites, based 
on their physicochemical and heavy metals properties 
using Bray–Curtis cluster analysis (Single Link) by Biodi-
versity Professional software. Cluster analysis classifies the 



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1506 | https://doi.org/10.1007/s42452-019-1559-0 Research Article

contamination status and possible sources of heavy metal 
pollution in the study area [32, 49, 73, 74]. A Dendrogram 
is commonly used for summarizing classified clustering.

2.5  Contamination factor and degree 
of contamination

The contamination factor is the ratio of the concentration 
of metal (CM) to the background values (CB). Contamination 

Fig. 1  Study area
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degree (Cdeg) is the sum of contamination factors for all the 
elements. Hakanson [17] suggested four classes of con-
tamination factor and contamination degree. CFs < 1 refers 
to low contamination factor; 1 ≤ CFs < 3 means moderate 
contamination factor; 3 ≤ CFs < 6 indicates considerable 
contamination factor and CFs ≥ 6 indicates very high con-
tamination factor; and Cdeg < 8 refers to low contamina-
tion degree; 8 ≤ Cdeg < 16 means moderate contamination 
degree; 16 ≤ Cdeg < 32 indicates considerable contamina-
tion degree; and 32 ≤ Cdeg refers to very high degree of 
contamination.

where CM is the measured concentration in the soil for the 
metal, and CB is the background value for the metal.

2.6  Pollution load index

An integrated pollution load index of metals is calculated 
to assess the soil quality [31, 62]. The PLI determined as the 
nth root of the product of the n CF:

where n is the total number of metals analyzed, the PLI 
values higher than 1 implies metal pollution, otherwise 
(PLI < 1), there is no metal pollution [55].

2.7  Geoaccumulation index (Igeo)

The geoaccumulation index (Igeo) commonly evaluates the 
pollution by comparing the obtained heavy metals con-
centration to background concentration. It is calculated 
by the equation

 where Cn is the obtained concentration for the metal 
n, and Bn is the background value for the metal n in the 
soil [66], and the factor 1.5 used due to the possible vari-
ations in the background data. Müller [43] has reported 
six classes of Igeo (Table 1). Class 6 is an open class and 
includes all values of the geoaccumulation index greater 
than class 5.

3  Results and discussion

3.1  Physicochemical characterization 
of contaminated soil

The physicochemical properties of the contaminated soil 
samples were highly diversified in nature (Table 2). The 

Cf =
CM

CB

PLI =
n
√

CF1 × CF2 × CF3 × CF4 ×⋯ × CFn

Igeo = log2
[

Cn/1.5 ∗ Bn

]

significance level among the three different sampling sites 
could be attributed to the composition of e-wastes, struc-
ture of the soil, e-waste disposal methods, and manage-
ment techniques.

The soil samples belong to fine to very fine sandy soil, 
having a distinctive smell with unnatural colors. The vari-
ations in the color might be due to the higher quantity of 
organic matter and metals composition of the soil [68].

The temperature of the dumping sites was observed 
21.64 ± 0.94  °C for site 1, 21.99 ± 1.06  °C for site 2 and 
26 ± 1.21 °C for site 3. The soil temperature is the most 
significant property, which affects the various biological 
activities and regulates the nutrient conversion in the soil 
[61, 76]. The pH of the polluted sites perceived slightly 
basic, which suggested that the dumping sites were mar-
ginally alkaline and predominantly related to the metabo-
lite’s accretion and the availability of nutrients in the soil 
[54]. Electrical conductivity was found highest at site 2 
followed by site 1 and site 3. The electrical conductivity of 
soil influenced by the presence of metallic scraps which 
are the main components of the dumping sites and speci-
fied the quality of the soil and offered a suitable way to 
estimate the whole quantity of ionizable salts in the soil 
[4, 23, 41]. Similar results were reported by Uba et al. [67] 
at waste dumping sites at Zaira, Nigeria.

The soil moisture was found to be higher in site 3 as 
compared to site 1 and site 2. Several physicochemi-
cal properties including pH and nitrogen of the soil are 
mainly reliant on the higher soil moisture [35]. The organic 
carbon ranged from 1.55±0.06%, 1.47±0.8, and 1.32±0.09 
at the three sites, respectively, which specified the burn-
ing of various organic and inorganic compounds found 
in e-waste [2]. The organic matter found more in sites 1 
followed by site 3 and site 2. The organic matter (> 2.0%) 
in soils is favorable for metal chelation [65] and decreases 
the mobility of metals in soil [10, 11, 21]. The quantity of 
organic matter at the selected dumping sites was signifi-
cantly higher due to the variety of disposed waste mate-
rials. Similar results were found by Uba et al. [67] at the 
dumping sites of Zaria Metropolis, Nigeria. The current 
findings also supported by Oyedele et al. [47], described 

Table 1  Classes of the geoaccumulation Index (Igeo)

Class Value Soil quality

0 Igeo ≤ 0 Practically uncontaminated
1 0 < Igeo < 1 Uncontaminated to moderately contaminated
2 1 < Igeo < 2 Moderately contaminated
3 2 < Igeo < 3 Moderately to heavily contaminated
4 3 < Igeo < 4 Heavily contaminated
5 4 < Igeo < 5 Heavily to extremely contaminated
6 5 < Igeo Extremely contaminated
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that dumping sites had significantly higher pH and organic 
matter as compared to the control soil.

The alkalinity was found highest at site 3 as compared 
to other sites and ranged from 68.66 ± 0.60 mg/l at site 
1, 71.15 ± 0.65 mg/l at site 2, and 79.52 ± 1.67 mg/l at 
site 3, respectively. The high alkalinity indicated the age 
of the dumping site, association of higher pH and avail-
ability of nutrients in the soil [1, 4]. The soils of e-waste 
dumping sites have been reported to be alkaline, with 
increased pH [6, 19]. The sulfate content was significantly 
varied and found highest at site 2 followed by site 1 and 
site 3, respectively. The concentration of nitrate did not 
vary significantly and found higher at site 3 as com-
pared to site 1 and site 2. Similarly, the nitrite content 
was found more at site 2 followed by site 3 and site 1, 
respectively. Available phosphorus in the contaminated 
soil sample significantly varied 1.82 ± 0.09 mg/kg at site 
1, 1.51 ± 0.08 mg/kg at site 2, and 1.89 ± 0.05 mg/kg at 
site 3. The blazing of e-waste might affect the presence 

of phosphorus in soil and some quantity of phospho-
rous may have been lost to the air by volatilization [12]. 
Similar trend of phosphorus content was reported by 
Liu et al. [35] at e-waste recycling sites in Guiyu town, 
China. The potassium was found to be higher at site 2 
followed by site 1 and site 3. The availability of potas-
sium was influenced by the favorable soil environment 
and organic matter [44].

A two-tailed test of significance level of P < 0.05 was 
used to analyze the correlation coefficient among the 
various physicochemical characteristics of the soil samples 
(Table 3). The EC was positively correlated with sulfate and 
potassium. Organic carbon showed a highly positive corre-
lation with organic matter. Alkalinity and sulfate positively 
correlated with nitrate and potassium, respectively. How-
ever, pH showed marginally optimistic correlation with 
alkalinity and nitrate and sulfate also exhibited a positive 
correlation with organic carbon and organic matter to a 
slight extent.

Table 2  Physicochemical 
characterization of soil from 
different sampling sites

Parameters Site 1
Mean ± SD

Site 2
Mean ± SD

Site 3
Mean ± SD

Color Dark brown Brown Black
Texture Sandy–loamy Sandy–loamy Sandy–loamy
Temperature (°C) 21.64 ± 0.94 21.99 ± 1.06 26.36 ± 1.21
pH 7.22 ± 0.04 7.44 ± 0.26 7.72 ± 0.17
EC (ms/cm) 2.30 ± 0.13 4.16 ± 0.16 0.91 ± 0.11
Soil moisture (%) 3.58 ± 0.51 5.88 ± 0.74 8.04 ± 0.67
Water holding capacity (%) 41.48 ± 2.19 39.99 ± 0.43 37.02 ± 1.03
Organic carbon (%) 1.55 ± 0.06 1.47 ± 0.08 1.32 ± 0.09
Organic matter (%) 2.67 ± 0.10 2.52 ± 0.14 2.27 ± 0.15
Alkalinity (mg/l) 68.66 ± 0.60 71.15 ± 0.65 79.52 ± 1.67
Sulfate (mg/kg) 31.78 ± 0.55 35.17 ± 0.25 19.68 ± 0.32
Nitrate (mg/kg) 24.16 ± 0.25 26.91 ± 1.20 32.71 ± 0.59
Nitrite (mg/kg) 1.29 ± 0.14 1.58 ± 0.09 1.48 ± 0.32
Available phosphorus (mg/kg) 1.82 ± 0.09 1.51 ± 0.08 1.89 ± 0.05
Potassium (mg/kg) 58.65 ± 0.58 79.91 ± 0.52 44.03 ± 0.57

Table 3  Pearson correlation 
coefficient (r) among the 
physicochemical properties of 
soil samples

pH EC OC OM Alkalinity Sulfate Nitrate Nitrite K P

pH 1
EC − 0.401 1
OC − 0.556* 0.450 1
OM − 0.559* 0.445 0.999* 1
Alkalinity 0.733* − 0.655* − 0.765* − 0.765* 1
Sulfate − 0.613* 0.918* 0.682* 0.679* − 0.891* 1
Nitrate 0.727* − 0.585* − 0.735* − 0.735* 0.952* − 0.842* 1
Nitrite 0.503 0.231 − 0.240 − 0.245 0.22 0.024 0.200 1
K − 0.361 0.994* 0.445 0.440 − 0.642* 0.911* − 0.57* 0.249 1
P 0.21 − 0.890* − 0.115 − 0.109 0.416 − 0.708* 0.359 − 0.279 − 0.888* 1
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3.2  Characterization of heavy metals

Heavy metal contents in the study sites were found higher 
than the USEPA and European soil screening standards. 
The predominant toxic contaminants in the soil of dump-
ing sites were zinc, iron, manganese, copper, cadmium, 
chromium lead, and nickel ranging between 110–126 mg/
kg, 11–18 mg/kg, 5–25 mg/kg, 148–158 mg/kg, 12–17 mg/
kg, 109–200  mg/kg, 61–70  mg/kg, and 11–18  mg/kg, 
respectively (Fig. 2). The order of occurrence of heavy met-
als in the contaminated soil was Cr > Cu > Zn > Pb > Fe > M
n > Cd > Ni. The reference values were: 95 mg/kg for Zn, 
0.7 mg/kg for Cd, 36 mg/kg for Cr, 28 mg/kg for Cu, 31 mg/
kg for Ni, and 28 mg/kg for Pb [42].

The findings revealed that electronic waste dumping 
sites were extremely polluted from the high concentration 
of copper, cadmium, zinc, lead, and chromium, whereas 
iron, manganese, and nickel were relatively detected with 
moderate concentrations. The variations among the heavy 
metal concentrations probably showed the metal’s vertical 
transference capabilities, as heavy metals mainly preferred 
to transfer from surface soils to subsoils [51]. Different 
recycling activities including plastic melting, recovery of 
copper from the wires, burning of circuits, and using acidic 
substances to recover gold and other metals may cause 
the metal pollution at the e-waste sites [30]. Heavy metal 
pollution at e-waste dumping sites generally found due 
to the use of many metals in the production of electronic 
products, e.g., lead and cadmium in circuit boards, copper 
in electrical wiring, cadmium in computer batteries [21, 
58, 60, 75, 80, 81].

The elevated concentration of Cd was recorded 
at selected dumping sites due to the disposal of 
NiCd or NiCad rechargeable batteries, which are gener-
ally manufactured by nickel oxide hydroxide and metallic 

cadmium. The high fraction of Mn was found because of 
the indefinite leaching of hydrous oxides of manganese 
at the selected sites [59]. Lead was detected exceptionally 
high concentration due to the discarding of lead–acid bat-
teries as lead is mainly used in the manufacturing of bat-
teries and assembling of other electronic equipments [15]. 
An earlier research on heavy metal pollution has identified 
copper, lead, chromium, and manganese as the major con-
taminants at three e-waste dumping sites in Nigeria [3]. 
Tang et al. [64] also reported that chromium, zinc, and lead 
are the most abundant heavy metals in e-waste recycling 
city in China. Ha et al. [16] performed a study in Banga-
lore city and recorded very high concentration of differ-
ent heavy metals at e-waste recycling unit at slum area 
(Cr 73 mg/kg, Cu 592 mg/kg, Zn 326 mg/kg, Cd 2.33 mg/
kg, Hg 1.8 mg/kg, Pb 29 mg/kg), and concentration in city 
recycling unit (Cr 57 mg/kg, Cu 22.8 mg/kg, Zn 41 mg/kg, 
Cd 0.165 mg/kg, Hg 0.05 mg/kg, Pb 22.8 mg/kg).

Brigden et al. [7] have reported high concentrations 
of heavy metals in the soil of e-waste handling areas in 
Delhi, India [56]. Brandl et al. [6] also performed a research 
study at e-waste contaminated site for heavy metals and 
recorded very high concentration of these metals, (Al 
237 g/kg, Cu 80 g/kg, Pb 20 g/kg, Ni 15 g/kg, Sn 23 g/kg, 
Zn 26 g/kg). Singh et al. [56] also supported the current 
findings, as they recorded a high concentration of different 
heavy metals (As, Ba, Cd, Cr, Fe, Cu, Mn, Ni, Co) at e-waste 
recycling sites of Chandigarh and Ludhiana, Punjab, India.

Luo et al. [39] have reported a study at Guangdong 
province of South China and recorded very high contami-
nation level of various heavy metals (Cd 17.1 mg/kg, Cr 
68.9 mg/kg, Cu 11,140 mg/kg, Ni 60.1 mg/kg, Pb 4500 mg/
kg, and Zn 3690 mg/kg). The comparison of current find-
ings with earlier research studies is presented in Table 4. 
The severity of contamination not only depends on the 

Fig. 2  Concentration (mg  kg-1) of heavy metals at different sampling points
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total concentration of metal, but also on the fraction of 
their movable and bioavailable forms, which generally 
controlled by the pH, organic matter, and other soil prop-
erties [63].

Similarly, a two-tailed test of significance level of 
P < 0.05 was used to analyze the correlation coefficient 
among the various heavy metals. A significant positive 
correlation was found between some pairs of heavy met-
als (Table 5). The correlation analysis revealed that copper 
showed a positive correlation with chromium and nickel, 
and chromium also positively correlated with nickel. A pos-
itive correlation was also observed between iron and lead. 
The correlation analysis clearly specified that the origina-
tion of different heavy metals is possibly electronic waste.

3.3  Principal component analysis (PCA)

Multivariate techniques such as principal component 
analysis can provide an easy mode of discussing the cor-
related data sets [73] and clarifying the relations between 
the specific variables and various controlling features by 
classifying associations among the particular parameters 
[33, 69]. PCA used an orthogonal transformation to change 
a set of observations of possibly correlated multiple vari-
ables (different sites and parameters of contaminated soil) 
into a set of values of linearly uncorrelated variables called 
principal components.

Principal component analysis of contaminated sites 
showed a total variability of 59.58% (Eigenvalue 11.91) for 
PC 1 and 28.58% (Eigenvalue 5.70) for PC 2, respectively 
(Fig. 3). Site 1 showed a negative relation at PC1 and PC 2, 
whereas sites 2 showed positive relation at PC 2 and nega-
tive relation at PC 1. Site 3 showed a negative relation at 
PC 2 and positive relation at PC 1. Bi-plot factors analysis 
of different parameters of selected contaminated sites was 
varied from 0.05 to 0.27 coefficients variances at PC1.

PC score values for pH, soil moisture, alkalinity, nitrate, 
nitrite, copper, cadmium, chromium, and nickel revealed 
a positive relation at PC1 and PC2 (Fig. 3). However, PC 
score values for water holding capacity, organic carbon, 
organic matter, manganese, and lead were perceived as 
highly negative at PC1 and PC2. The score values for elec-
trical conductivity, sulfate, zinc, and potassium were found 
positive at PC2 and negative at PC1. The loading value of 
phosphorus and iron was observed positive for PC1 and 
negative for PC2. A strong relationship was observed 
among chromium, copper, nickel, and nitrate for PC1 and 
PC2. Scores for most of the heavy metals (Cu, Ni, Fe, and 
Cr) indicated, more loading at site 3, due to uninhibited 
dumping of e-waste, whereas the PC score values for Mn 
and Pb indicated additional loading at Site 1. The PC load-
ing values for Zn and Cd showed deposition toward site 
2. Hence, very less heavy metal contents were observed at 
site 2, thus a separate group was formed by site 2.

Table 4  Comparison of present results with earlier reports

Sites Heavy metals concentrations (mg/kg)

Zn Fe Mn Cu Cd Cr Pb Ni Sources

e-waste dismantling Sites 110–126 11–18 5–25 148–158 12–17 109–200 61–70 11–18 Current study
Site of e-waste dismantling 258 – – 496 1.7 28.6 104 155 [28]
Dust inside PCB processing 4420 – – 8360 – – 110,000 1500 [27]
Open-burning site 2922 – – 7814 24.2 307 3947 403.6 [71]
Qingyuan soil, site of e-waste 

dismantling
1016.7 – – 4850.6 10.3 63.3 1714.5 100.3 [40]

Site of e-waste dismantling 343.2 – – 180.7 3.0 101.3 187.3 49 [64]
Site of e-waste dismantling 4737.74 – – 14,534.4 8.34 287.19 1615.8 130.24 [56]

Table 5  Pearson correlation 
coefficient (r) among the heavy 
metals

Zn Fe Mn Cu Cd Cr Pb Ni

Zn 1
Fe − 0.801* 1
Mn 0.578* 0.007 1
Cu − 0.745* 0.212 − 0.970* 1
Cd 0.363 − 0.812* − 0.518* 0.313 1
Cr − 0.661* 0.102 − 0.993* 0.987* 0.431 1
Pb − 0.422 0.857* 0.482 − 0.275 − 0.973* − 0.388 1
Ni − 0.608* 0.035 − 0.989* 0.967* 0.487 0.986* − 0.43 1
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3.4  Cluster analysis

Cluster analysis, a prevalent approach for determining 
the multiple-parameter problems [26, 63, 73], was used 
to determine the spatial similarity matrix among sampling 
points based on the physicochemical and heavy met-
als characterization of selected sites. The single linkage 
method for distance measures was carried out to obtain 
the clusters, providing much useful information to study 
the soil contamination. Dendrogram described 14 clusters 
among the sampling points (Fig. 4).

Sampling point S1A formed four clusters with S1B, S1C, 
S1D, and S1E with 99.46%, 99.33%, 99.34%, and 99.55% 
of similarity, respectively. Similarly, point S2A also created 
four clusters with S2B, S2C, S2D, and S2E with 99.56%, 
99.67%, 99.49%, and 99.36% of similarity, respectively. 
Sampling point S3B established two clusters with S2D and 
S3A with 89.63% and 99.30% similarity, respectively. One 
cluster was formed between S1B and S2E with 93.16% sim-
ilarity. Another cluster showed 99.27% similarity between 
S2C and S2E. Sampling point S3D created a cluster with 
S3C with 99.35% similarity and S3A and S3C formed a clus-
ter with 99.36% similarity (Table 6).

These clusters indicated that contaminants seem to be 
associated with the other variables, showing a very high 

degree of contamination, which suggested that the heavy 
metals (Cu, Pb, Ni, Zn, Cd, Cr, Mn, and Fe) might have a 
common source of pollution and influenced by the indis-
criminate dumping of e-waste.

3.5  Assessment of heavy metal contamination

The heavy metal pollution of the selected dumping sites 
was assessed by contamination factor (Cf ), degree of con-
tamination (Cdeg), pollution load index (PLI) (Table 7), and 
geoaccumulation index (Igeo) (Table 8).

3.5.1  Contamination factor

The spatial distribution of CFs for heavy metals (Zn, Cu, 
Cd, Cr, and Pb) in selected e-waste dumping sites is dem-
onstrated in Table 7. The CFs gradient of selected metals 
established a similar pattern along all the sampling sites. 
The selected sites (sites 1, sites 2, and sites 3) were highly 
contaminated (Cf ≥ 6) with cadmium and moderately con-
taminated (1 ≤ Cf < 3) with Zinc and Lead. In the case of 
chromium and copper, the sites were considered contami-
nated as the CFs were found (3 ≤ Cf < 6).

The findings again confirmed that soils of e-waste 
dumping sites act as a sink for heavy metals and showed 

Fig. 3  Principle component analysis (PCA) correlation bi-plot of 
different physicochemical characteristics of contaminated soil and 
selected sites. Symbol represents the standardized scores on PC1 

(x-axis) and PC2 (y-axis) for the soil parameters. Vector coordinates 
represent the correlations between standardized variables and 
principle components (PCs)
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high contamination from these toxic elements. The 
sources of contamination at selected dumping sites are 
(1) haphazard dumping of e-waste, and (2) uncontrolled 
recycling activities of e-waste in the selected study area.

The degree of contamination for Zn, Cu, Cd, Cr, and Pb at 
each sampling point listed in Table 7, which clearly showed 
that the selected sites were highly contaminated from these 
metals. At site 2 and site 3, all the elements contributed 
to the high degree of contamination (32 ≤ Cdeg), whereas 

a considerable degree of contamination was observed at 
site 1 (16 ≤ Cdeg < 32). Therefore, the findings suggested that 
all the sampling points at site 2 and 3 showed a high degree 
of contamination as compared to site 1.

3.5.2  Pollution load index (PLI)

The pollution load index was calculated for every sam-
pling point using the five elements (Zn, Cu, Cd, Cr, and 

Fig. 4  Dendrogram showing similarity index among all sampling points

Table 6  Similarity matrix among the sampling points

S1 A S1 B S1 C S1 D S1 E S2 A S2 B S2 C S2 D S2 E S3 A S3 B S3 C S3 D S3 E

S1 A * 99.46 99.33 99.34 99.55 92.71 92.71 92.71 92.68 93.00 87.37 87.67 87.32 86.93 87.33
S1 B * * 99.05 99.26 99.40 92.87 92.89 92.83 92.82 93.16 87.74 88.07 87.69 87.28 87.72
S1 C * * * 98.88 99.24 92.75 92.62 92.74 92.64 92.94 87.40 87.74 87.35 86.94 87.45
S1 D * * * * 99.23 92.55 92.56 92.55 92.51 92.83 87.41 87.70 87.38 87.00 87.35
S1 E * * * * * 92.65 92.66 92.64 92.62 92.94 87.41 87.73 87.37 86.95 87.39
S2 A * * * * * * 99.56 99.67 99.49 99.36 89.19 89.44 89.07 88.85 89.37
S2 B * * * * * * * 99.53 99.33 99.29 89.26 89.51 89.14 88.92 89.44
S2 C * * * * * * * * 99.43 99.27 89.21 89.47 89.09 88.87 89.39
S2 D * * * * * * * * * 99.28 89.38 89.63 89.27 89.04 89.58
S2 E * * * * * * * * * * 89.02 89.32 88.93 88.71 89.27
S3 A * * * * * * * * * * * 99.30 99.36 99.33 99.22
S3 B * * * * * * * * * * * * 99.21 99.08 99.18
S3 C * * * * * * * * * * * * * 99.35 99.19
S3 D * * * * * * * * * * * * * * 99.27
S3 E * * * * * * * * * * * * * * *
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Pb) and presented in Table 7. The average pollution load 
indices indicated that the sites are highly polluted with 
heavy metals (PLI > 1). The pattern for highly to least pol-
luted sites was Site3 > Site2 > Site1. The results revealed 
that all the selected sites suffered from the degradation 
of soil quality due to heavy metal pollution.

3.5.3  Geoaccumulation index (Igeo)

According to the classification suggested by Muller [43], 
the geoaccumulation index (Igeo) was used to measure 
the soil quality of selected e-waste dumping sites at 
Ahmedabad. Based on Igeo analysis, the selected sites were 

practically uncontaminated by Zinc, as the Igeo values were 
found negative. Further, the sites were found uncontami-
nated to moderately polluted by Pb as the Igeo values for 
lead were found between 0 and 1.

The sampling points at site 1 and site 3 were heav-
ily contaminated by Cd, as the Igeo values were found 
between 3 and 4, whereas site 2 was heavily to extremely 
contaminated by Cd, as the Igeo values were observed 
more than 4. Copper and chromium showed moderately 
contamination at all the sampling points, as the obtained 
values for Igeo were found between 1 and 2 for Cu and Cr. 
The results indicated that these metals are the major com-
ponents of e-waste.

Table 7  Contamination factor 
and pollution load index value

Sampling sites CFs
Zn

CFs
Cu

CFs
Cd

CFs
Cr

CFs
Pb

Contamination 
degree (Cdeg)

Pollution 
load index

Site 1 S1A 1.26 5.31 17.37 3.05 2.52 29.51 3.89
S2B 1.25 5.32 18.47 3.05 2.51 30.6 3.93
S3C 1.26 5.32 15.84 3.05 2.54 28.01 3.82
S4D 1.26 5.31 18.59 3.06 2.48 30.7 3.93
S5E 1.26 5.29 17.84 3.07 2.56 30.02 3.92

Site 2 S2A 1.33 5.40 25 4.03 2.2 37.96 4.36
S2B 1.34 5.40 25.21 4.06 2.19 38.2 4.38
S2C 1.33 5.39 24.30 4.05 2.17 37.24 4.33
S2D 1.33 5.43 24.27 4.04 2.17 37.24 4.33
S2E 1.33 5.43 24.29 4.02 2.21 37.28 4.35

Site 3 S3A 1.16 5.65 20.71 5.55 2.34 35.41 4.45
S3B 1.16 5.64 21.51 5.52 2.37 36.2 4.49
S3C 1.15 5.67 20.97 5.54 2.38 35.71 4.47
S3D 1.16 5.66 21.39 5.56 2.34 36.11 4.49
S3E 1.17 5.63 22.70 5.52 2.32 37.34 4.53

Table 8  Geoaccumulation 
index (Igeo)

Sampling sites Igeo
Zn

Igeo
Cu

Igeo
Cd

Igeo
Cr

Igeo
Pb

Site 1 S1A − 0.25 1.822 3.533 1.022 0.748
S2B − 0.26 1.825 3.622 1.021 0.741
S3C − 0.24 1.83 3.40 1.025 0.758
S4D − 0.25 1.824 3.631 1.026 0.723
S5E − 0.25 1.816 3.572 1.031 0.771

Site 2 S2A − 0.171 1.847 4.058 1.427 0.527
S2B − 0.166 1.846 4.071 1.435 0.544
S2C − 0.170 1.845 4.017 1.434 0.531
S2D − 0.173 1.855 4.016 1.428 0.533
S2E − 0.178 1.855 4.017 1.423 0.558

Site 3 S3A − 0.366 1.912 3.787 1.886 0.643
S3B − 0.364 1.911 3.842 1.879 0.659
S3C − 0.378 1.917 3.805 1.885 0.664
S3D − 0.373 1.914 3.833 1.889 0.640
S3E − 0.359 1.908 3.919 1.88 0.632
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4  Conclusion

The findings of the current research work revealed high 
concentrations of Pb, Zn, Cd, Ni, Cr, Cu, and Fe in the soil 
at the e-waste dumping sites, which points to e-waste as a 
source of heavy metals pollution. The analysis of CFs, PLIs, 
and Igeo identified these metals as the main pollutants in 
the soil of the study area. However, further assessment 
is required to validate the pollutant relation. The current 
research work highlighted the unregulated dumping 
of e-waste, which leads to a significant increase in con-
centrations of heavy metals. The pollution assessment 
approaches and cluster analysis empowered us to deter-
mine the significant contents of heavy metals at an alarm-
ing rate at e-waste dumping sites. The levels of heavy met-
als found in the study area can largely affect human health 
since the groundwater from the region of e-waste dump-
ing sites is used for human consumption mostly without 
purification. An extensive assessment needs to be carried 
out, in the selected region which can establish the e-waste 
dumping impact on the environment and human health.
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