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Abstract
The effect of a uniform vertical magnetic field on the stability of pressure-driven flow of an electrically conducting non-
Newtonian fluid in an isothermal channel is numerically investigated using the Chebyshev collocation method. The non-
Newtonian fluid is modeled by the couple stress fluid theory, which permits for polar effects and encountered regularly 
in liquids with very large molecules. It is established that Squire’s theorem is valid and the modified Orr–Sommerfeld 
equation is derived by considering the fact that the magnetic Prandtl number Pm, for recognized electrically conducting 
liquids is too small. The triplets (Rc, αc, cc), where Rc is the critical Reynolds number, αc is the critical wave number and cc 
is the critical wave speed, are obtained for different values of couple stress parameter Λ and the Hartman number M. It 
is found that increasing M has a stabilizing effect on the system while an increase in the couple stress parameter shows 
twofold deeds. Individual aspects of the kinetic energy spectrum are observed and presented for different parametric 
values to obtain comprehensive information at the critical state of fluid flow.
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σ	� Electrical conductivity
ϕ	� Velocity stream function
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1  Introduction

The pressure-driven flow in an isothermal channel has pre-
occupied fluid dynamicists for centuries. The ubiquitous 
nature of turbulence and its inability to give a universal 
theory have led many to try conceiving of the transition 
from laminar state to turbulent as a simple problem. It has 
many applications in engineering, geophysics, meteorol-
ogy, oceanography and so on. The studies undertaken by 
many authors on this subject are very collectible in the 
book by Drazin and Reid [1].

The stability of hydromagnetic Poiseuille flow has addi-
tionally gotten equivalent significance in the literature. Lock 
[2] initiated this study by assuming Pm is exceptionally small 
and showed that the magnetic field has a stabilizing effect 
on the fluid flow. Later, Potter and Kutchey [3] re-examined 
the problem without any simplification and observed 
that the fluid flow becomes more stable as Pm increases. 
Takashima [4] re-considered the problem explored by Potter 
and Kutchey [3] under the appropriate boundary conditions 
on the magnetic field perturbations. The Lock’s arguments 
were supported by Lingwood and Alboussiere [5], who 
solved the problem numerically including all magnetic con-
tributions and their results differed only a few percent from 
Lock’s results. Using the multi-deck asymptotic approach, 
the effect of transverse magnetic field on the stability of Poi-
seuille flow at high Reynolds number was investigated by 
Makinde [6]. Proskurin and Sagalakov [7] analyzed the effect 
of longitudinal magnetic field on the stability of Poiseuille 
flow. Later, Makinde and Mhone [8] extended the work of 
Takashima [4] to an isotropic porous domain case and sub-
sequently to an anisotropic porous domain by Shankar and 
Shivakumara [9]. In the past, the stability of conducting fluid 
flows in a channel in the presence of a uniform magnetic 
field has attracted the attention of a host of researchers 
(Takashima [10], Kaddeche et al. [11], Balyaev and Smorodin 
[12], Adesanya et al. [13], Hayat et al. [14], Hudoba et al. [15], 
Hudoba and Molokov [16], Bhatti et al. [17], Shankar et al. 
[18], Ijaz et al. [19], Hassan et al. [20], Shankar et al. [21] and 
references therein).

The stability of forced convection in a fluid layer has been 
studied extensively. However, its counterpart for non-Newto-
nian fluids is in the much-to-be preferred state as these flu-
ids bound to occur in many engineering applications. There 
exist various types of non-Newtonian fluids and the couple 
stress fluid, formulated by Stokes [22] based on micro-con-
tinuum theories, is one such non-Newtonian fluid which 
takes into account the size of fluid particles. These fluids are 
found to be useful in scientific and engineering applications. 
The effect of couple stresses on the stability of fluid flow was 
initially studied by Jain and Stokes [23] and its counterpart 
in a porous medium was examined by Shankar et al. [24]. 

In a slit channel with metrically astringent walls, the hydro-
magnetic flow of a couple stress fluid was investigated by 
Mekheimer [25]. The stability of free (natural) convection in a 
vertical couple stress fluid layer was investigated by Shankar 
et al. [18] while later this study was extended by Shankar 
et al. [26] and Shankar et al. [27] to include a uniform AC 
electric field and magnetic field, respectively. In addition, 
many researchers investigated the effect of couple stresses 
on fluid flows in different contexts (Rudraiah et al. [28], Shi-
vakumar et al. [29], Turkyilmazoglu [30], Shivakumara and 
Naveen Kumar [31], Srinivasacharya and Rao [32], Ramesh 
[33], Tripathi et al. [34], Mahabaleshwar et al. [35], Layek and 
Pati [36], Nandal and Mahajan [37], Reddy et al. [38], Naveen 
Kumar et al. [39]).

To the best of our knowledge, the simultaneous presence 
of couple stresses and magnetic field on the pressure-driven 
stability of fluid flow in a channel is missing in the literature 
despite the study finds importance in biological fluid flows. 
The novelty of this paper is to unveil the validity of Squire’s 
theorem in analyzing the stability characteristics of the cou-
ple stress fluid in a channel in the presence of a uniform ver-
tical magnetic field and undertaking energy budget analysis 
to understand the physical mechanisms involved in the flow 
transition.

2 � Mathematical formulation

We consider fully developed pressure-driven steady flow 
of an electrically conducting incompressible couple stress 
fluid in an isothermal horizontal channel of thickness 2 h 
(Fig. 1). For modeling this flow, a Cartesian coordinate 
system (x, y, z)is used where the axes x, y and z denote 
the streamwise, spanwise, and wall-normal coordinates, 
respectively. The fluid layer is permeated by a uniform ver-
tical magnetic induction B⃗0 = (0, 0, B0) . Following Stokes 
[22], Takashima [4] and Shankar et al. [27], the governing 
linear stability equations in the dimensionless form are
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Fig. 1   Schematic of the problem considered
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The relevant boundary conditions are

The basic flow is fully developed, unidirectional, steady 
and laminar. Under these circumstances, the governing 
equations reduce to
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Equations (10) and (11) are solved using the boundary 
conditions

The solution is found to be
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note that ub =
coshM−coshMz
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 and Bxb =

sinhMz−z sinhM

M(coshM−1)
 as 

� → ∞ which coincide with the expression obtained by 
Takashima [4]. Since ub and Bxb are real, from Eqs. (13) and 
(14) it follows that Λ > 2 M. We look for normal mode solu-
tion of Eqs. (1)–(8) in the form

Substituting Eq. (15) into Eqs. (1)–(8), we obtain
Using Eq. (15), Eqs. (1)–(8) become,
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û

+M
2

(
DB̂x

RPm

+ i𝛼BbB̂x + B̂zDBb

)

(18)

i𝛼
(
ub − c

)
v̂ = −i𝛽P̂ +

1

R

(
D2 − 𝛼2 − 𝛽2

)
v̂

−
1

R𝛬2

(
D4 + 𝛼4 + 𝛽4 + 2𝛼2𝛽2 − 2𝛼2D2 − 2𝛽2D2

)
v̂

+M2

(
DB̂y

RPm
+ i𝛼BbB̂y

)



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1523 | https://doi.org/10.1007/s42452-019-1557-2

Let us introduce the following modified Squire’s 
transformation

so that the exceeding 3D equations can be reduced to an 
equivalent 2D ones.

Equations (16)–(20), using Eq. (24), become
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ŵ

−
1

R𝛬2

(
D

4 + 𝛼4 + 𝛽4 + 2𝛼2𝛽2 − 2𝛼2
D

2 − 2𝛽2
D

2
)
ŵ
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The relevant boundary conditions are

It is viewed that Eqs. (25)–(30) and Eqs. (16)–(23) dis-
play the same mathematical structure if β = v = By = 0. The 
transformation involving the Reynolds number suggests 
that 2D disturbances are more unstable than 3D ones. The 
velocity stream function ϕ(x, z, t)and the magnetic stream 
function ψ(x, z, t)are introduced through (neglect the tilde 
in the subsequent analysis)

and eliminate P from the Eqs. (26) and (27) to obtain

It is well known that Pm for the liquid sodium is of the 
order 10−5 and for mercury it is of the order 10−7 and hence 
terms in Eqs. (33) and (34) concerning Bb, and 

(
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Eq. (34) can be neglected, provided that R is not too large. 
As a result, the above equations lead to a single stability 
equation

Equation (35) agrees with Takashima [4] for the Newto-
nian case (Λ → ∞).

The boundary conditions on the magnetic field are no 
longer required now and the suitable boundary conditions 
are

3 � Numerical solution

The resulting stability equation is solved using the Che-
byshev collocation method, which is an efficient and fast 
numerical solver for the investigation of the stability of 
fluid flow problems. We follow the procedure given in 
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Shankar et al. [27] to discretize the stability equation, 
which yields

with the corresponding boundary conditions

where (Canuto et al. [40])

with
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The exceeding equations form the following system of 
linear algebraic equation

where c is the eigenvalue and X is the discrete represen-
tation of eigenfunctions; Δ1 andΔ2are matrices of order 
(N + 1). For fastened values of all parameters concerned 
within, the eigenvalue c which compose a definite non-
trivial solution of Eq. (41) is reached. Once c is established, 
then the method and algorithm explained in Shankar et al. 
[41] are followed to find the critical parameters.

(41)Δ1X = cΔ2X
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4 � Energy analysis

To understand the physical mechanisms that contribute to 
instability, the two-dimensional kinetic energy balances 
are studied. The rate of change of kinetic energy in dimen-
sionless form is given by

Here, the brackets 〈 〉 represent the volumetric average 
over the volume of disturbance waves.

5 � Results and discussion

The stability against small disturbances of the pressure-
driven plane laminar motion of an electrically conduct-
ing couple stress fluid under a transverse magnetic field is 
investigated numerically using the Chebyshev collocation 
method. A necessary condition for the amplification of a 
disturbance in the basic flow field is found to be Λ > 2 M. 
We begin the presentation by demonstrating the basic 
velocity ub and the basic magnetic induction Bb, which 
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strongly modify the stability of the system. Figures 2a, b 
and 3a, b display the impact of Hartman number and cou-
ple stress parameter on ub and Bb, respectively. Figure 2a, 
b, respectively exhibit that raise in the values of M and Λ 
is to boost the fluid flow. Figure 3a, b show that Bb is con-
cealed with rising M (Fig. 3a) and Λ (Fig. 3b).

Figure  4 displays the neutral stability curves in the 
(R, α)—plane showing the division of the plane into stable 
and unstable zones. The neutral stability curve is obtained 
when M → 0 (hydrodynamic case) and � → ∞(absence 
of couple stresses) (Fig. 4a) from the present code and it 
can be seen that Rc = 5772.22 andαc = 1.020, which are the 
known standard results (Orszag [42]). The computed val-
ues of Rc for several values of M as Λ → ∞ are compared 
in Fig. 4b with those of Takashima [4] and the outcomes 
complement with one another. These cross checking of 
results inspire further assurance in the prophecy of our 
numerical procedure.

The neutral stability curves for various values of Hart-
man number and couple stress parameter are exhibited, 
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Fig. 2   Basic velocity profiles for different values of a Hartmann number and b couple stress parameter
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respectively, in Fig. 4c, d. We observe that increasing M 
is to increase Rc, indicating that the Hartman number 
enhances the stability of the system (Fig. 4c), whereas 
a dual behavior is observed with increasing Λ (Fig. 4d). 
We locate that Rc move towards higher values of α with 
increasing M representing that the cell width dimin-
ishes. However, the cell width enlarges with increasing 
Λ.

Figure 5a illustrates the variation of Rc as a function 
of Λ for various values of M. When M = 0, the curve ema-
nates from Rc = 45695.77 and experiences a steep fall as 
the value of Λ increases to 6. As the curve approaches to 
20, the gradient of the curve changes from negative to 
positive. The curve progresses with a gradually increas-
ing positive gradient thereafter. The curve of M =

√
2 

has a value of Rc = 11179.47 at Λ = 2.9. The curve faces 
a negative gradient initially and thereafter progresses 
with a gradually increasing positive gradient. The curves 
of M2 = 5, 10, 20 and 25 follow a similar trend throughout 
the domain of Λ considered. The curve of M = 0 lies well 
below the curves of M ≠ 0 indicating the magnetic field 
is more effective in stabilizing the system. This is due to 
the Lorentz force seizes backing the flow and therefore 
higher Reynolds number is necessary to coerce the flow. 
It is further seen that Rc decrease with increasing value 
of Λ initially for each M due to decrease in the couple 
stress viscosity and thus it has a destabilizing effect on 

the flow. However, Rc increases at higher values of Λ as 
it turns to Newtonian case.

Figure  5b establishes a relationship between αc 
and Λ for different values ofM. The curve of M = 0 ema-
nates from αc= 1.604 when Λ = 1 and it progresses with 
a decreasing value of αc for increasing value ofΛ. The 
curve of M2 = 2 runs parallel to the curve of M = 0 but 
originates from (2.9, 1.538). The curve of M2 = 5 ema-
nates from (4.5, 1.480) and has a constant negative 
gradient throughout where the value of αc decreases 
with increasing value ofΛ. The curves of M2 = 10, 20 and 
25 follow a similar trend with a positive gradient at the 
beginning followed by a gradual change to negative 
gradient, that is, the value of αc increases initially and 
then gradually decreases as the curve progresses. The 
corresponding critical wave speeds are illustrated in 
Fig. 5c as a function of Λ for various values ofM. The 
curves of M2 = 0, 2, 5, 10, 20 and 25 follow a similar trend 
where they experience a gradual fall in their value as 
they progress. The curves for higher values of M origi-
nate with a smaller value initially and the curves run 
almost parallel to each other. All the curves have their 
maximum value at their respective origin.

To obtain a clear understanding of the fluid flow sta-
bility characteristics for specific parameters, the second-
ary flow energy spectra are examined in detail. Theo-
retically at the critical points, ∂ Ekin/ ∂ t = 0. Of all the 
numerical results produced here for the energy analysis, 

(a) (b)

-1.0

-0.5

0.0

0.5

1.0

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Bb

=10

z

M 2=0,2,5,10,20

-1.0

-0.5

0.0

0.5

1.0

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Bb

M 2=5

=5,10,15,20,25

Fig. 3   Basic magnetic field profiles for different values of a Hartmann number and b couple stress parameter



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1523 | https://doi.org/10.1007/s42452-019-1557-2

this phenomenon can be observed at the critical points. 
It can be seen that for all the values of M considered 
here, Es has a propensity to destabilize the flow whereas 
Ed, Ec and EM stabilize it, throughout the domain of 

couple stress parameter. However, the contribution of 
EM is negligible in the domain. One important finding of 
this study is that prior to the threshold value of couple 
stress parameter, the contribution of Ec to stabilize the 
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flow is more than offered by Ed but beyond the thresh-
old value this characteristic reverses. Threshold values 
of couple stress parameter from where this reversal 
observed is shown in Fig. 6a–d. Quantitatively, prior to 
the threshold value of couple stress parameter, contri-
bution of Ec (Ed) in the stability of the fluid flow varies 
from 78 to 48% (19 to 48%). It is also noted that the 
contribution of Ed (Ec) is strictly increasing (decreasing) 
as a function of couple stress parameter.

6 � Conclusions

The stability of forced convective flow is investigated 
in a horizontal channel of electrically conducting cou-
ple stress fluid under the influence of a uniform vertical 
magnetic field. The complicated complex stability equa-
tion is obtained and solved computationally by using the 
Chebyshev collocation method after determining that 
two-dimensional motions are more unstable than three-
dimensional motions via an analogue of Squire’s transfor-
mation. The existence of a point in the basic flow field, for 
which the couple stress parameter must be greater than 
twice the Hartman number, is a necessary condition to 
be noted in order to exacerbate a disturbance. The Hart-
man number significantly affects the flow and increase in 
its value results in the stabilization of the fluid flow while 
increase in the couple stress parameter shows a twofold 
behavior. Energy spectrum indicates that kinetic energy 
due to the shear term (Es) has a propensity to destabilize 
the flow while kinetic energy due to surface drag (Ed) and 
couple stress viscosity (Ec) stabilizes it, throughout the 
domain of couple stress parameter. Nevertheless, the 
contribution of kinetic energy due to magnetic field (EM) 
is found to be negligible. Contribution of Ec on the sta-
bility of flow is observed to be more (less) than Ed prior 
(beyond) the threshold value of couple stress parameter. 
Also noted that the contribution of Ed (Ec) is strictly increas-
ing (decreasing) as a function of couple stress parameter. 
Finally, it is observed that the transverse magnetic field 
has a stabilizing effect on the Poiseuille flow even in the 
presence of couple stresses.
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