
Vol.:(0123456789)

SN Applied Sciences (2019) 1:1496 | https://doi.org/10.1007/s42452-019-1512-2

Research Article

Hybrid NSGA‑II based decision‑making in fuzzy multi‑objective 
reliability optimization problem

Hemant Kumar1  · Shiv Prasad Yadav1

Received: 16 March 2019 / Accepted: 17 October 2019 / Published online: 26 October 2019 
© Springer Nature Switzerland AG 2019

Abstract
This paper suggests a hybrid NSGA-II based decision-making method in a fuzzy multi-objective reliability optimization 
problem. Multi-objective evolutionary algorithms (MOEAs) are popular techniques to be solved various kinds of multi-
objective optimization problems efficiently. NSGA-II is one of the elitist MOEAs, which is largely used in engineering 
design problems. The reliability-based system design problem comprises various kinds of uncertainties such as expert’s 
information character, qualitative statements, vagueness, incompleteness, unclear system boundaries, etc. Fuzzy optimi-
zation techniques can be useful during the initial stage of the conceptual design of a system. In many complex problems, 
it is not possible to produce the entire Pareto-optimal set in one simulation run. Apart from this, getting a well diverse 
solution set is another important phenomenon in this field. The proposed approach finds the optimal system design 
by resolving these issues in a fuzzy multi-objective reliability optimization problem. A numerical example of the over-
speed protection system consisting of three mutually conflicting objectives such as system reliability, system cost, and 
system weight is considered with several design constraints to illustrate the method. Finally, the results obtained by the 
proposed approach are discussed with the existing approach.

Keywords System reliability · NSGA-II · Pareto-optimal front (POF) · Fuzzy set theory · Local search · Clustering

1 Introduction

Practically, reliability enhancement may be involved with 
other mutually conflicting objectives such as system’s cost, 
weight, volume, etc. Multi-objective optimization problems 
(MOOPs) are an evitable part of the reliability-based sys-
tem design. Conventional optimization methods assume 
that all the design data involved in the system design are 
precisely known, the constraints delimit a well-defined set 
of feasible decisions, and the objectives are well defined 
and easy to formulate. However, incompleteness and unre-
liability of input information are typical for many practical 
problems of multi-objective optimization decision-making 
of reliability. Park [1] suggested that a fuzzy non-linear opti-
mization technique is a superior way to analyze the sys-
tem reliability. The fuzzy approach [2] deals with the kind 

of uncertainty that arises due to imprecision associated 
with the complexity of the system as well as the vague-
ness of human judgment. Dhingra and Moskowitz [3] used 
fuzzy set theory effectively in engineering design problems 
where uncertainty or ambiguity arises about the precise-
ness of permissible parameters, degree of credibility, and 
correctness of statements and judgments. Bellman and 
Zadeh [4] initially proposed a fuzzy optimization technique, 
which combines fuzzy goals and fuzzy decision space by 
using aggregate operators. Dhingra [5], Rao and Dhingra 
[6] solved fuzzy multi-objective optimization problems in 
four and five stages series system subject to several design 
constraints. Huang [7] developed a fuzzy multi-objective 
decision-making method in the series system. Ravi et al. 
[8] proposed various kinds of aggregate operators to look 
into the impacts on their optimal system design in complex 
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systems. Huang et al. [9] proposed a coordination method 
in solving fuzzy multi-objective optimization of system 
reliability. Mahapatra and Roy [10] proposed a fuzzy multi-
objective optimization method in the decision-making of 
multi-objective reliability optimization. Garg and Sharma 
[11] also report that the probabilistic approach is unsuit-
able to reliability analysis due to its random nature and 
model the multi-objective reliability-redundancy allocation 
problem in a fuzzy environment.

In order to solve the MOOPs, generally weighted sum 
approach is used [12]. This method finds one Pareto solu-
tion at a time by assigning a weight to each objective func-
tion. Such a method is not fit for producing a well distribu-
tive solution set which is considered an ideal approach 
to an MOOP. Apart from this, such methods require tedi-
ous work to find multiple solutions, adequately showing 
limitations in the search space like plateaus, or ridges in 
the fitness (search) landscape, or discontinuous. A set of 
well-distributive trade-off optimal solutions is an impor-
tant demand for ideal multi-objective optimization. This 
procedure is more practical, methodical and less subjec-
tive [12]. Keeping these views in mind, a number of MOEAs 
such as MOGA-Multi-Objective Genetic Algorithm [13], 
NPGA-Niched Pareto Genetic Algorithm [14], NSGA-Non-
dominated Sorting Genetic Algorithm [15], SPEA-Strength 
Pareto Evolutionary Algorithm [16], PAES-Pareto Archived 
Evolution Strategy [17], PESA-Pareto Envelop-based Selec-
tion Algorithm [18], MOMGA-Multiobjective Optimization 
with Messy Genetic Algorithm [19], PESA-II [20], SPEA2 [21], 
NSGA-II [22], MOEA/D-Multi-objective Evolutionary Algo-
rithm based on Decomposition [23], AGE-Approximation 
Guided Evolutionary-II [24], NSGA-III [25] etc., are suggested 
to tackle the different types of the MOOPs. MOEAs and their 
solution approaches can be viewed in Deb [12], Coello et al. 
[26], and Das and Panigrahi [27]. A more updated survey on 
MOEAs can be viewed in Zhang and Xing [28].

NSGA-II is a second-generation MOEA, effectively used 
by Salazar et al. [29] in constrained multi-objective reliabil-
ity and redundancy problems to identify a Pareto-optimal 
set. Later, Wang et al. [30] solved the multi-objective reli-
ability redundancy allocation problem (MORRAP) using 
NSGA-II and compared their results with single-objective 
approaches. Kishore et al. [31, 32] suggested fuzzy multi-
objective reliability optimization using NSGA-II. Safari 
[33] proposed a variant of NSGA-II in solving an MORRAP. 
Vitorino et al. [34] tackled the reliability problem in multi-
objective power distribution system using NSGA-II. Sharifi 
et al. [35] solved MORRAP for a series–parallel problem and 
k-out-of-n subsystems with 3 objectives using NSGA-II. 
Kumar et al. [36–39] analyzed the reliability optimization 
problem using NSGA-II. In recent work, Muhuri et al. [40] 
addressed the problem of MORRAP using NSGA-II with an 
interval type-2 fuzzy set.

In this paper, an approach is developed to find the opti-
mal system design from the POF. The optimization goals 
are set in the following fashion:

• The distance of the resulting POF to the true POF 
should be minimized.

• The obtained Pareto-optimal solutions should be uni-
formly distributed.

• The spread of the obtained POF should be maximized, 
i.e., each objective function should have a wide range 
of values.

To achieve the above goals, hybrid NSGA-II is proposed 
for fuzzy multi-objective reliability optimization. The opti-
mal system design is found in a purely multi-objective 
manner where no aggregate operator is used and a well 
distributive solution set is obtained. Finally, a fuzzy ranking 
method [41] is used to obtain the best compromise solution 
from the solution set. A comparative experiment has been 
performed to show its efficacy with the existing approach.

The rest of the paper is organized as follows. Section 2 
gives some preliminaries. Section 3 gives a brief descrip-
tion of NSGA-II. Section 4 gives the proposed approach in 
step by step. Section 5 gives the problem statement of the 
over-speed protection system. Section 6 gives the results 
and discussion and Sect. 7 gives conclusions.

2  Preliminaries

In this section, some basic facts of this paper are given.

2.1  Formulation of an MOOP

In general, an MOOP is defined as follows:

where k ≥ 2 is the number of objectives; m is the total 
number of constraints; me is the number of equality con-
straints; X =

[
x1, x2,… , xn

]T
 is n-dimensional decision vec-

tor from the feasible region or decision space � defined by

The image of the feasible region is denoted by Z ⊂ ℝ
k 

and it is called a feasible objective region or objective 
space which is defined by Z =

{
F(X) ∈ ℝ

k ∣X ∈ �
}

 . The 
elements of Z are called objective vectors or criterion vec-
tor denoted by z = F(X ) =

[
f1(X ), f2(X ),… , fk(X )

]T
 ; xl

j
 and 

(1)

Minimize F(X ) =
[
f1(X ), f2(X ),… , fk(X )

]T
subject to gi(X ) = 0, i = 1, 2,… ,me;

gi(X ) ≥ 0, i = me + 1, me + 2,… ,m;

xl
j
≤ xj ≤ xu

j
, j = 1, 2,… , n

� =

{
X ∈ ℝ

n|||
gi(X ) ≥ 0, gi(X ) = 0, xl

j
≤ xj ≤ xu

j
,

j = 1, 2,… , n

}
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xu
j
 are the lower and upper bounds of the decision variable 

xj respectively. For every point X  in the decision space Ω, 
there exists a point F(X ) in the objective space Z  . It is a 
mapping between the n-dimensional solution vector and 
the k-dimensional objective vector.

2.2  Basic definitions

The concept of optimality in an MOOP depends on Pareto 
optimality. Therefore, the following definitions can be 
defined in terms of Pareto terminology [26].

D e f i n i t i o n  1  ( Pa r e t o  d o m i n a n c e )  A  v e c t o r 
U =

[
u1, u2,… , uk

]T
 is said to dominate another vector 

V =
[
v1, v2,… , vk

]T
 (denoted by U≼V  ) if and only if U is 

partially less than V  , i.e., ∀ r ∈ {1,… , k} , ur ≤ vr and ∃ at 
least one ṙ ∈ {1,… , k}s.t.uṙ < vṙ.

Definition 2 (Pareto optimality) A solution vector X ∈ � 
is said to be Pareto-optimal with respect to � if and only if 
there is no X � ∈ � for which V =

[
f1
(
X

�)
, f2

(
X

�)
,… , fk

(
X

�)]T 
dominates U =

[
f1(X ), f2(X ),… , fk(X )

]T
 . The phrase “Pareto-

optimal” is taken to mean with respect to the entire deci-
sion variable space unless otherwise specified.

Definition 3 (Pareto-optimal set) For a given MOOP, F(X ) , 
the Pareto-optimal set, ℘∗ , is defined as:

Definition 4 (Pareto-optimal front) For a given MOOP, 
F(X ) , and the Pareto-optimal set, ℘∗ , the Pareto-optimal 
front ℘F

∗ is defined as:

Definition 5 (Ideal objective vector) [26] If a deci-
sion vector X∗ =

[
x∗
1
, x∗

2
,… , x∗

n

]T
∈ � is such that 

fi(X
∗) = minX∈� fi(X ) ;  i ∈ {1, 2,… , k} then the vec-

tor F(X∗) =
[
f1(X

∗), f2(X
∗),… , fk(X

∗)
]T

∈ Z  is called an 
ideal objective vector for an MOOP given by (1) and 
X∗ =

[
x∗
1
, x∗

2
,… , x∗

n

]T
∈ � is called an ideal vector.

Definition 6 (Fuzzy set) [2] Let X  be a collection of objects 
generically denoted by x . A fuzzy set Ã in X  is a set of 
ordered pair defined in the form as

where 𝜇Ã : X → [0, 1] is called the membership function 
and its value is called the grade of membership of x in Ã.

Definition 7 [Linguistic hedge (or modifier)] [37] A linguis-
tic hedge (or a linguistic modifier) is an operation that 
modifies the meaning of the term. Suppose H̃ is a fuzzy set 

℘∗ ∶=
{
X ∈ 𝛺∣¬∃X � ∈ 𝛺 s.t. F

(
X �
)
≼ F(X )

}

℘F
∗ ∶=

{[
f1(X ), f2(X ),… , fk(X )

]T
∣X ∈ ℘∗

}

Ã =
{(

x,𝜇Ã(x)
)
∣x ∈ X

}

in X  , then the modifier m generates the composite term 
M̃ = m(H̃) . Modifiers are frequently used in mathematical 
models as follows.

Concentration It decreases the membership grades of all 
the members of H̃ by spreading in the curve. It is defined as:

Dilation Similarly, it increases the membership grades 
of all members by spreading out the curve. It is defined as:

Therefore, in general, strong and weak modifiers are 

given as: m𝛿

(
𝜇(H̃)(x)

)
=
(
𝜇(H̃)(x)

)𝛿

 = a strong modifier or 

concentrator, if 𝛿 > 1 and a weak modifier or dilator if 𝛿 < 1.

The following linguistic hedges are associated with 
above mathematical operators: very H̃= con(H̃); more or less 
H̃= dil(H̃); Indeed H̃ = Int(H̃); plus H̃=H̃1.25; slightly H̃= int[plus 
H̃ and not (very H̃].

3  Elitist non‑dominated sorting genetic 
algorithm (NSGA‑II)

Srinivas and Deb [15] proposed the NSGA which is an 
early dominance-based MOEA. The purpose of develop-
ing NSGA is to find better solutions according to their 
non-domination levels. NSGA uses the naive and slow [12] 
sorting approach to distribute a population into different 
non-domination levels, and a sharing function method 
to maintain the diversity of the population. However, it 
has high computational complexity O(kN3) , where k is 
the number of objectives and N is the population size in 
the non-dominated sorting. So, NSGA is computationally 
expensive for large population sizes. Moreover, NSGA is 
a non-elitist approach that affects its convergence rates 
compared to other MOEAs and it also requires a sharing 
parameter to calculate the sharing fitness, which ensures 
the diversity of the population.

Deb et al. [22] proposed NSGA-II to overcome the draw-
backs of NSGA. Specifically, NSGA-II presents a fast-non-
dominated sorting approach with the worst-case com-
putational complexity O(k(2N)2) . This approach searches 
iteratively non-dominated solutions into different fronts.

First, for each solution i in the population, the algorithm 
calculates two entities:

1. ni , the number of solutions dominating i,
2. Si , a set of solutions dominated by i.

𝜇con(H̃)(x) =
(
𝜇(H̃)(x)

)2

for all x ∈ X

𝜇dil(H̃)(x) =
(
𝜇(H̃)(x)

)1∕2

for all x ∈ X
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The solutions for which ni = 0 belong to the first front. 
Second, for each member j in the set Si , the value of nj is 
reduced by one. If any nj is reduced to zero during this 
stage, the corresponding member j is put in the second 
front. The above process is continued with each member 
in the second front to identify the third front and so on. 
Furthermore, NSGA-II applies the concept of crowding-
distance with the worst-case computational complexity 
O(k(2N) log (2N)) . The introduction of crowding-distance 
replaces the fitness sharing approach that requires a shar-
ing parameter to be set by the user.

The crowding-distance value ( CDi) (See Fig. 1) of the ith 
solution is calculated as follows:

where f i+1
p

 and f i−1
p

 denote the pth objective function of the 
(i + 1) th and (i − 1) th individual (solution) respectively, 
and f max

p
 and f min

p
 represent the maximum and minimum 

values of the pth objective function.
According to Deb et al. [22] “A higher value of crowding-

distance gives the lesser crowded region and vice versa”. 
After applying the fast-non-dominated sorting procedure, 
the crowding-distance picks those solutions which locate 
in the less-crowded region or possesses a higher value of 
crowding distance. This procedure is extended up to the 
entire POF for maintaining the diversity in the solutions 
set. Finally, NSGA-II applies an elitist strategy with the 
worst-case computational complexity of O(2N log (2N)) . 
The elitist strategy [42, 43] improves the convergence of 
an MOEA and avoids the loss of optimal solutions after 
getting it.

(2)dip =
f i+1
p

− f i−1
p

f max
p

− f min
p

(3)CDi =

k∑
p=1

dip

For handling the constraints, the binary tournament 
selection method is applied. A search space (decision 
space) is categorized into two regions—feasible and infea-
sible. According to Deb et al. [22], “a solution X  is called a 
constrained-dominate to a solution Y if

• X is feasible and Y is infeasible.
• X and Y are infeasible, but X contains a smaller overall 

constraint violation.
• X and Y are feasible, but X dominates Y”.

In Fig. 2, the evaluation cycle of the NSGA-II is shown. 
First, an offspring Qt of size N is obtained by using genetic 
operators such as selection, recombination, and muta-
tion. A combined population Rt of size 2N is then formed 
which consists of the current population Pt and the off-
spring population Qt . By using fast non-dominated sort-
ing, Rt is divided into different fronts PF1, PF2,… , PFn . Let 
the number of solutions in each front PFi be Ni . Next, we 
choose members for the new population Pt+1 from the 
front PF1 to PFt−1 , noting that N1 + N2 +⋯ + Nt > N and 
N1 + N2 +⋯ + Nt−1 ≤ N . Afterwards, to get the exactly N 
population members in Pt+1 , we sort the solutions in front 
PFt using the crowding distance sorting procedure and 
choose the best solutions to fill an empty slot in the new 
population Pt+1 . This process is continued until the termi-
nation condition is satisfied. The flow diagram of NSGA-II 
is shown in Fig. 3.

4  Proposed methodology

This section describes the proposed methodology in step 
by step as follows.

Step 1 Determine the best and worst values for each 
objective function.

Fig. 1  Fitness evaluation and individual crowding distance estima-
tion Fig. 2  An evaluation cycle of the NSGA-II algorithm
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where the diagonal entries of matrix M are found to be 
the minima in their respective columns. The best mp and 
worst Mp values of the pth objective function fp are identi-
fied as:

Step 2 Construct the membership function.
Here, the sigmoidal shape is chosen for the member-

ship function in the given problem because “When the 
decision-maker (DM) is worse off with respect to a goal 
for the objective function, the DM tends to have a higher 
marginal rate of satisfaction with respect to that objec-
tive function. A convex shape captures that behavior in 
the membership function. On the other hand, when the 
DM is better off with respect to a goal, the DM tends to 
have a smaller marginal rate of satisfaction. Such behav-
ior is modeled using the concave portion of the mem-
bership function” [5]. It is defined as:

Step 3 Reformulate the MOOP as a fuzzy MOOP.
Each membership function is expected to achieve the 

maximum satisfaction level. Therefore, a fuzzy MOOP is 
suggested to maximize all the membership functions so 
that it could get the maximum satisfaction level simulta-
neously [39]. From the extreme values of fp obtained by 
(6) and (7), a fuzzy MOOP can be given as:

or, Minimize

(5)M =

⎡
⎢⎢⎢⎣

f1(X
∗
1
) f2(X

∗
1
) … fk(X

∗
1
)

f1(X
∗
2
) f2(X

∗
2
) … fk(X

∗
2
)

⋮ ⋮ ⋱ ⋮

f1(X
∗
k
) f2(X

∗
k
) … fk(X

∗
k
)

⎤
⎥⎥⎥⎦

(6)mp = fp(X
∗) = min

p
fp

(
X∗
p

)

(7)Mp = fp(X
∗) = max

p
fp

(
X∗
p

)

(8)�H

�
fp
�
=

⎧
⎪⎨⎪⎩

1, if fp ≤ mp

1

2
tanh

��
Mp+mp

2
− fp

�
�p

�
+ 1

2
, if mp ≤ fp ≤ Mp; �p = 6∕

�
Mp −mp

�
0, if fp ≥ Mp,

Maximize �(F) =
[(
�1

(
f1
)
,�2

(
f2
)
,… ,�k

(
fk
))]T

(9)

�(F) =
[(
−�1

(
f1
)
,−�2

(
f2
)
,… ,−�k

(
fk
))]T

subject to gi(X ) = 0, i = 1, 2,… ,me ;

gi(X ) ≥ 0, i = me + 1,me + 2,… ,m;

xl
j
≤ xj ≤ xu

j
, j = 1, 2,… , n

Fig. 3  Flow diagram of the NSGA-II

Each objective function is solved as a single-objective 
optimization problem (SOOP) one by one to get its bound-
aries as follows:

Let us consider X∗
i

 , i = 1, 2,… , k be the optimal design 
vector for each objective function fi , then construct a 
matrix as

(4)

Minimize fp(X ); p = 1, 2,… , k

subject to gi(X ) = 0, i = 1, 2,… ,me ;

gi(X ) ≥ 0, i = me + 1,me + 2,… ,m;

xl
j
≤ xj ≤ xu

j
, j = 1, 2,… , n
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Theorem 1 The Pareto-optimal solution of the fuzzy MOOP 
(9) satisfies the MOOP (1).

Proof Let X∗ be a Pareto-optimal solution of the fuzzy 
MOOP (9). Then, it is defined by definition as follows:

• ∄ X ∈ � s.t. −[�i

(
fi
)
](X ) ≤ −[�i

(
fi
)
](X∗) ∀ i = 1, 2,… , k , 

and −[𝜇j

(
fj
)
](X ) < −[𝜇j

(
fj
)
](X∗) for at least one 

j ∈ {1, 2,… , k} , j ≠ i.
• ∄ X ∈ � s.t. −hi

[
fi(X )

] ≤ −hi
[
fi(X

∗)
]
 ∀ i = 1, 2,… , k , and 

−hj
[
fj(X )

]
< −hj

[
fj(X

∗)
]
 for at least one j ∈ {1, 2,… , k} , 

j ≠ i.
• ∄ X ∈ �  s . t .  fi(X ) ≤ fi(X

∗) ∀  i = 1, 2,… , k  ,  and 
fj(X ) < fj(X

∗) for at least one j ∈ {1, 2,… , k} , j ≠ i ; 
since h is monotonically decreasing function.

• ∄ X ∈ � s.t. −fi(X ) ≥ −fi(X
∗) ∀  i = 1, 2,… , k  , and 

−fj(X ) > −fj(X
∗) for at least one j ∈ {1, 2,… , k} , j ≠ i ; 

since h is monotonically increasing function.
• ∄ X ∈ � s.t .  fi(X ) ≤ fi(X

∗) ∀  i = 1, 2,… , k  ,  and 
fj(X ) < fj(X

∗) for at least one j ∈ {1, 2,… , k} , j ≠ i ; since 
h is either monotonically decreasing or increasing func-
tion.

• X∗ is a Pareto-optimal solution of the MOOP given by (1).□

Step 4 Biased Pareto-optimal solutions.
The proposed approach does not find a single com-

promise solution; instead, it finds a biased distribution 
of solutions. If a user wants to have a bias towards a par-
ticular objective, the modified membership function pro-
duces more solutions towards the preferred region in the 
search space. Finding more dense solutions in the region 
of preference is a much better approach then predefining 
a weighted sum of objective and then finding only one 
the optimum solution. Here, the linguistic modifier is pro-
posed to show biasedness towards the objective.

Step 5 Set the parameters of NSGA-II and apply to the 
fuzzy MOOP (9) with modification of linguistic modifier.

The NSGA-II parameters such as number of objectives, 
number of design constraints, number of design variables, 
population size, the maximum number of generations, 
crossover probability, mutation probability, distribution 
indices [12] for SBX crossover and Polynomial mutation 
are set accordingly to the given problem. Rigorous experi-
mentation and tuning of the parameters are required to 
achieve a well-distributive Pareto-optimal solution set.

Step 6 Find the Pseudo-weight vector.
The purpose of local search can be fulfilled by finding 

a pseudo weight to each Pareto point. It is calculated as 
follows:

(10)wi =
�i

�
fi
�

∑k

j=1
�j

�
fj
� , i = 1, 2,… , k

w =
[
w1,w2,… ,wk

]T
 represents the Pseudo-weight vector 

dictating roughly the priority of different objective func-
tions for the solution X  , 

∑k

i=1
wi = 1 , wi ≥ 0.

Step 7 Start the local search.
After getting the pseudo-weight to each Pareto-point, 

the local search strategy is used to update the Pareto-
optimal solution. It helps in enhancing the convergence 
rate to each Pareto point. The local search strategy is given 
as follows.

The crisp formulation of fuzzy MOOP (9) is given by

where �(F) =
[(
�1

(
f1
)
,�2

(
f2
)
,… ,�k

(
fk
))]T

 is a vector of 
k-fuzzy regions of satisfaction corresponding to k-objec-
tive vector, ∧ denotes the aggregate operator known as 
intersection and it is defined as the minimum operator 
i.e., 

(
1∧�i

(
fi
)
∕wi

)
 gives the minimum of two values 1 and 

�i

(
fi
)
∕wi that value lies in [0, 1].

Step 8 Apply the clustering technique.
In order to maintain a good spread in the solutions 

set, a clustering technique is used. It also reduces the size 
of the solutions set that is useful for a practical point of 
view [12]. Let Pt+1 be the set of non-dominated solutions 
of size N.

The clustering algorithm (see Fig. 4) is given as follows:

Step 1 Initially, each solution belongs to a distinct clus-
ter or Ci = {i} so that C =

{
C1,C2,… ,CN

}
.

Step 2 If N ≤ N′ (required no. of solutions), go to Step 5. 
Otherwise, go to Step 3.

Step 3 For each pair of clusters (there are 
( |C|

2

)
 of 

them), calculate the cluster-distance by using the fol-
lowing formula:

where ||C1|| and ||C2|| number of solutions in the cluster 
set C1 and C2 respectively, and D(i, j) is the Euclidean dis-
tance between two solutions i and j. Find the pair 

(
i1, i2

)
 

which corresponds to the minimum cluster-distance.
Step 4 Merge the clusters Ci1 and Ci2 together. This 
deducts the size of C by one. Go to Step 2.
Step 5 Select only one solution from each cluster and 
remove others. The solution having the minimum aver-
age distance from other solutions in the cluster repre-
sents a solution to that cluster.

(11)

Maximize
(
1∧�1

(
f1
)
∕w1

)
∧
(
1∧�2

(
f2
)
∕w2

)
∧…∧

(
1∧�k

(
fk
)
∕wk

)
subject to gi(X ) = 0, i = 1, 2,… ,me ;

gi(X ) ≥ 0, i = me + 1,me + 2,… ,m;

xl
j
≤ xj ≤ xu

j
, j = 1, 2,… , n

(12)D12 =
(
1∕||C1||||C2||

) ∑
i∈C1,j∈C2

D(i, j)
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Step 9 Choose the best compromise solution.
The fuzzy ranking method [41] is used to rank the solu-

tions as per their satisfaction levels. In this way, a solution 
achieves the highest degree of satisfaction is considered as 
the best compromise solution. It is given as follows.

where P is the number of Pareto-optimal solutions.

5  Problem statement

Let us consider a four-stage over-speed protection system 
for a gas turbine [5]. Here, the electrical and mechanical 
systems continuously provide detection. If an over-speed 
occurs, then 4-control valves (V1–V4) get closed and the 

(13)�best = max
P

[
min

{
�1

(
f1
)
,�2

(
f2
)
,… ,�k

(
fk
)}]

fuel supply gets interrupted. Each component has a con-
stant failure rate in the system. A schematic representation 
of the over-speed protection system is shown in Fig. 5. This 
system is a series–parallel system configuration having 
several parallels and identical components arrayed at each 
stage. It is shown in Fig. 6. The objective is to determine 
the optimal design variables i.e., ri (component reliability) 
and ni (number of the redundant components) at stage i 
such that:

1. the system reliability ( RS ) is maximized,
2. the system cost ( CS ) is minimized,
3. the system weight ( WS ) is minimized.

In addition, several design constraints such as the mini-
mum requirement for the system reliability Rlim , overall sys-
tem cost of the system Clim , the total permissible volume 
of the system Vlim , and maximum allowable weight of the 
system Wlim are considered.

The mathematical formulation of the over-speed protec-
tion system is given as:

(14)Maximize f1 ≡ RS(r, n) =

4∏
i=1

[
1 −

(
1 − ri

)ni]

Fig. 4  Flow diagram of the clustering technique

Fig. 5  A schematic diagram of a four-stage over-speed protection 
system

Fig. 6  Series-parallel system configuration
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“Each component of the system has a constant failure 
rate λi that follows an exponential distribution” [5]. The reli-
ability of each component is given as:

It is also mentioned that “ ci
(
ri
)
 is assumed to be an 

increasing function of ri (conversely, a decreasing function 
of the component failure rate)” [5] in the form:

From (22) and (23), we have

where the parameters �i and �i are the physical feature 
(shaping and scaling factor) of the cost-reliability curve 

(15)Minimize f2 ≡ CS(r, n) =

4∑
i=1

ci
(
ri
)[
ni + exp

(
ni∕4

)]

(16)Minimize f3 ≡ WS(r, n) =

4∑
i=1

winiexp
(
ni∕4

)

(17)subject to g1 ≡
4∑
i=1

vin
2
i
≤ Vlim

(18)g2 ≡
4∑
i=1

winiexp
(
ni∕4

) ≤ Wlim

(19)g3 ≡
4∏
i=1

[
1 − (1 − ri)

ni
] ≥ Rlim

(20)g4 ≡
4∑
i=1

�i
[
−T∕ ln

(
ri
)]�i [ni + exp

(
ni∕4

)] ≤ Clim

(21)0.5 ≤ ri ≤ 1 − 10−6, 1 ≤ ni ≤ 10, i = 1, 2, 3, 4;

(22)ri(T ) = ∫
∞

T

λie
−λi T dT = e−λi T

(23)ci
(
ri
)
= �i∕λ

�i
i

(24)ci
(
ri
)
= �i

[
−T∕ ln

(
ri
)]�i

of each component in the ith subsystem; T is the active 
operational time; vi is the volume of a component at stage 
i; wi is the weight of a component at stage i; the factor 
exp

(
ni∕4

)
 is responsible for the additional cost due to the 

interconnection between the parallel components. The 
design data of the given problem is listed in Table 1. The 
given problem is an MORRAP which contains a series–par-
allel system configuration. This system contains several 
parallels and identical components arrayed at each stage. 
Generally, redundancy is applied to increase the system 
reliability but this technique gives more complexity in 
terms of cost, weight, and volume to the system design. 
So, it is suitable to adopt the multi-objective programming 
model-based problem. Here, two-fold design variables are 
required to determine the optimal design of the system. 
One is the reliability of each component and the other is to 
select a number of redundant components at each stage. 
Moreover, several design constraints are considered in this 
model. Such type of problem is a mixed-integer, non-linear 
programming problem as well as NP-hard [44] for which 
only approximate solutions have been proposed [45, 46]. 
Heuristic approaches to such types of problems can be 
viewed in [47–50].

6  Results and discussion

After applying the proposed approach, this section 
describes the numerical results. Initially, the lower and 
upper limits on each objective are evaluated with the 
given constraints using MATLAB optimization tool-box 
function namely “fmincon” [51]. Here, integer variables ni 
are initially treated as real variables but during the evalu-
ation of the objective functions, the real values are trans-
formed into the nearest integer values. The results of the 
SOOPs are given in Table 2 and compared with heuristic 
methods such as Genetic Algorithm (GA) [52], Particle 
Swarm Optimization (PSO) [53], and Dhingra’s approach 
[5]. It gives the best and worst solutions to each of the 
objective functions. These values are used as boundaries 
in the membership function of the objective.

All experiments are performed in MATLAB (R2017a) on 
Intel(R) Core (TM) i3-2370 M CPU @ 2.40 GHz with 4 GB 
RAM. The parameter settings for the MOEAs presented in 
this study are as follows.

Table 1  Design data for the 
given problem

Stage 105�i �i vi wi Rlim Clim Wlim Vlim T

1 1.0 1.5 1 6 0.75 400 500 250 1000 h
2 2.3 1.5 2 6
3 0.3 1.5 3 8
4 2.3 1.5 2 7
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1. NSGA-II: Population size N = 80; crossover probability 
pc = 0.9; mutation probability pm = 1/n, where n is the 
number of design variables; the distribution indices 
[22] for crossover and mutation operators as �c = 10 and 
�m = 100; maximum number of generation tmax = 100.

2. SPEA2 [21]: Population size N = 80; pc = 0.9, pm = 1/n; 
and �c = 10, �m = 100, archive size = 80; tmax = 100.

3. PESA-II [20]: Hyper-grid size = 10 × 10; pc = 0.9, pm = 1/n; 
and �c = 10, �m = 100, archive size = 80; tmax = 100.

4. MOPSO [54]: Inertia weight w  = 0.8; acceleration con-
stants c1 = c2 = 2; archive size = 80; tmax = 100.

In order to solve SOOP, the parameter settings for GA are 
taken as selection type = binary tournament, pop_size = 30, 
crossover rate = 0.9, mutation rate = 0.01, max_gen = 100; 
in PSO swarm size = 30, cognition learning factors as 
c1 = c2 = 2, maximum and minimum inertia weights 0.9 
and 0.4 respectively. To avoid the stochastic discrepancy, 25 

independent runs are made to these algorithms. The given 
problem is solved by Dhingra [5] using a fuzzy optimization 
technique (Zimmerman’s approach) [2], goal programming 
[12], goal attainment [25] methods. The intention was to 
show how the fuzzy optimization technique can be effec-
tive to solve such type of a problem. The sigmoidal shape 
is chosen for each membership function. At the same time, 
the preference is given to reliability more than the system 
cost and the system weight of the system. It is mentioned 
by Dhingra [5] that the reliability is twice as important as 
cost and weight. Linguistic hedge “very” is used instead of 
assigning the weight. The shape of the membership func-
tion of the objectives is as shown in Fig. 7a and b. Apart 
from this, crisp multi-objective reliability optimization is 
shown by goal programming, goal attainment methods 
by assigning the weighs to the objectives as w1 = 0.5, 
w2 = 0.25, w3 = 0.25. Huang’s approach [7] is also applied, 
where the fuzzy optimization technique combines the 

Table 2  The optimal solutions for each objective function

MATLAB optimization function 
“fmincon”

GA PSO Dhingra’s approach

Design variables Attributes Design variables Attributes Design variables Attributes Design variables Attributes

Max RS (0.91403, 5) RS = 0.99994 (0.92472, 5) RS = 0.99810 (0.91513, 6) RS = 0.9996 (0.81604, 6) RS = 0.99961
(0.86723, 6) CS = 399.52 (0.87732, 3) CS = 396.95 (0.87883, 4) CS = 393.92 (0.80309, 6) CS = 399.94
(0.94282, 3) WS = 439.02 (0.83430, 6) WS = 434.05 (0.94312, 5) WS = 442.30 (0.98364, 3) WS = 495.65
(0.87349, 5) VS = 174 (0.91449, 4) VS = 183 (0.87959, 4) VS = 175 (0.80373, 5) VS = 185

Min CS (0.5, 4) RS = 0.7541 (0.5, 4) RS = 0.7608 (0.53447, 4) RS = 0.7615 (0.5, 4) RS = 0.7604
(0.5, 4) CS = 20.30 (0.5, 4) CS = 20.62 (0.5, 4) CS = 20.71 (0.5, 4) CS = 20.72
(0.54536, 5) WS = 314.55 (0.53150, 5) WS = 314.55 (0.51812, 5) WS = 314.55 (0.59251, 5) WS = 314.55
(0.5, 3) VS = 141 (0.51457, 3) VS = 141 (0.5, 3) VS = 141 (0.5, 3) VS = 141

Min WS (0.95638, 1) RS = 0.83681 (0.91623, 1) RS = 0.7972 (0.94566, 1) RS = 0.8318 (0.96221, 1) RS = 0.80786
(0.94286, 1) CS = 396.63 (0.96254, 1) CS = 397.89 (0.95262, 1) CS = 397.73 (0.92315, 1) CS = 399.51
(0.97705, 1) WS = 34.67 (0.95627, 1) WS = 34.67 (0.97205, 1) WS = 34.67 (0.98787, 1) WS = 34.67
(0.94984, 1) VS = 8 (0.94526, 1) VS = 8 (0.94984, 1) VS = 8 (0.92065, 1) VS = 8

Fig. 7  Membership function for a monotonically increasing function i.e. system reliability; b monotonically decreasing functions i.e. system 
cost and weight
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degree of satisfaction to each of the objectives using the 
“min” operator. In this approach, the weights are given as 
w1 = 1, w2 = 0.5, w3 = 0.5 following the non-convexity. In 
fuzzy optimization, the assigned weight to the objective 
function may affect the result especially the case of convex-
ity and non-convexity search space. It is advantageous to 
adopt the ideal approach by taking the whole POF instead 
of one solution. That is why the proposed approach does 
not use any kind of aggregation and finds the solution set 
in one simulation run. The biasedness of the POF is shown 
by the linguistic hedge “very” to the reliability while system 
cost and its weight are taken with no hedge. This behavior 
is used in the proposed methodology to make the results 
effective in terms of better POF. This preference is the same 
as Dhingra [5]. The proposed approach gives the solution 
set in the desired region. This is an ideal multi-objective 
optimization procedure to search for the optimal system 
design [12]. In Fig. 8a, firstly, multiple fronts are shown in 
the membership values (degree of satisfactions) by apply-
ing NSGA-II to fuzzy MOOP. In Fig. 8b, all the fronts are 
compared with respect to the highest degree of satisfac-
tion. In Fig. 9a, the degree of satisfactions lead to find the 
solutions in the objective space. From here, the search for 

the optimal front starts using local search which is later 
maintained the diversity in the solution set with the help of 
the clustering technique. In Fig. 9b, the optimal front of the 
hybrid NSGA-II is compared with first front of the NSGA-II. 
The obtained optimal front is comparatively shown with 
other MOEAs in Fig. 10a and b. In Fig. 11a and b, the optimal 
front of the proposed approach is compared with MOPSO 
and the preference-based approach  (goal program-
ming, goal attainment, Huang’s approach, Zimmerman’s 
approach) [12] respectively. In Table 3, a well diverse solu-
tion set is shown by the proposed approach. In Table 4, the 
list of the optimal system design obtained by the various 
approaches is given. Table 5 gives a comparative analysis 
of the hypervolume metric [55] of the POFs obtained by 
the various approaches. This performance is based on 10 
independent runs of each multi-objective algorithm.       

7  Conclusions

In this piece of work, a hybrid NSGA-II based decision-
making is proposed for fuzzy multi-objective optimiza-
tion of system reliability. The results are shown by taking 

Fig. 8  a Multiple fronts are shown in the membership values; b satisfaction level achieved by multiple fronts

Fig. 9  a Multiple fronts are shown in the objective space; b The optimal front obtained by the proposed approach is compared with the first 
front of NSGA-II
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three mutually conflicting objectives such as system reli-
ability, system cost and system weight subject to sev-
eral design constraints. The conclusions of the proposed 
work can be drawn as follows.

• From Table 2, a design with high system reliability has 
a high total cost and a large weight. While attempting 
to minimize the system cost, it results in heavy design 
with low reliability. When the system weight is mini-

mized, the resulting system has a high cost and low 
reliability.

• Single-objective optimization is unable to give compromise 
solution among these mutually conflicting objectives.

• From Table 3, a reasonable number of “compromise” or 
“trade-off” optimal solutions are obtained which can 
be useful in practical practices.

• The proposed technique is seen as an ideal multi-
objective optimization procedure, where a set of well-
distributive solutions is obtained.

Fig. 10  The optimal front by the proposed approach is compared with other MOEAs a PESA-II; b SPEA2

Fig. 11  The optimal front by the proposed approach is compared with a MOPSO; b classical (preference-based) approach

Table 3  The trade-off optimal solutions or Pareto-optimal solutions obtained by the proposed approach

�
1
(RS) �

2
(CS) �

3
(WS) RS CS WS VS r

1
n
1

r
2

n
2

r
2

n
3

r
4

n
4

1 0.9950 0.0572 0.3082 0.9997 298.82 298.69 128 0.8898 4 0.8802 4 0.9123 4 0.8812 4
2 0.9944 0.3870 0.7637 0.9974 224.70 221.85 72 0.8806 3 0.8707 3 0.8959 3 0.8716 3
3 0.9914 0.8335 0.9463 0.9884 159.19 156.08 72 0.8882 3 0.8399 3 0.9201 3 0.8441 3
4 0.9830 0.9210 0.9730 0.9741 132.44 128.34 52 0.8610 3 0.8425 3 0.8937 2 0.8514 2
5 0.9547 0.9570 0.9826 0.9532 111.99 110.92 42 0.8522 2 0.8393 2 0.8772 2 0.8403 2
6 0.8256 0.9812 0.9910 0.9228 85.01 85.02 42 0.7290 3 0.6822 3 0.7191 3 0.6932 3
7 0.5297 0.9900 0.9947 0.8955 64.75 64.34 32 0.7280 3 0.7183 3 0.7200 3 0.6917 3
8 0.0953 0.9931 0.9961 0.8582 52.91 52.40 32 0.6936 3 0.6958 2 0.7290 3 0.6842 3
9 0.0003 0.9936 0.9963 0.7909 50.52 50.35 32 0.7561 2 0.5353 3 0.8252 4 0.7282 2
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• From Table 4, the hybrid technique finds the optimal 
system design which satisfies a comparatively maxi-
mum degree of satisfaction compared to other MOEAs.

• From Table 5, a statistical analysis of the hypervolume 
metric performance is shown which concludes that 
the proposed approach gives a better distribution of 
solution set with minimum deviation compared to the 
others.

• The preference-based approach does not follow the 
ideal multi-objective optimization procedure. In fact, 
it behaves like a random walk in the search space.

• However, in our experiment, MOPSO achieves the 
maximum degree of satisfaction (see Table 4), but 
slightly worse than the proposed approach with 
respect to the hypervolume metric (see Table 5).

• The proposed approach can be effective in the deci-
sion-making of a fuzzy multi-objective reliability-
based system design problem.
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