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Abstract
Landslide is one of the important disasters taking place on earth, which may be either a natural or man-made process. 
Landslides are more active and disastrous in hilly and mountainous regions. The present study aims to identify the land-
slide susceptibility areas in the Relli river basin in Darjeeling Himalaya using logistic regression (LR) and frequency ratio 
(FR) models. The GIS techniques have been used for landslide susceptibility mapping. A total number of 67 landslide 
locations have been identified from Google Earth images and multiple field surveys. 70% of landslide locations have 
been randomly selected and used as training data set for preparing landslide susceptibility map, and the remaining 30% 
have been used as validation data set. For the present study, 20 different factors like drainage density, drainage texture, 
infiltration number, stream frequency, stream junction frequency, stream power index, lithology, soil, relative relief, slope, 
maximum relief, drainage intensity, ruggedness number, rainfall, dissection index, aspect, relief class, and distance from 
stream, topographic wetness index and land use land cover have been used. The application of the logistic regression 
and frequency ratio model has demonstrated that the lower catchment of the basin has been widely dominated by the 
most landslide susceptibility areas than other parts of the catchment. Almost 6.92 sq km (4.05%) and 7.44 sq km (4.36%) 
areas out of 170.61 sq km area of the basin have been observed as very high and high landslide susceptibility categories, 
respectively, for FR model and 5.75 sq km (3.37%) and 1.86 sq km (1.09%) areas have been under very high and high 
landslide susceptibility zones for LR model. Finally, the ROC curve has been used to validate the models. The prediction 
capabilities of the models seem significant as the area under the curve value ranges from 75 to 81%.

Keywords  Landslide susceptibility mapping · Logistic regression (LR) · Frequency ratio (FR) · ROC curve · Darjeeling 
Himalaya

1  Introduction

Unexpected environmental conditions like tsunami, flood, 
earthquake, landslides, etc., that cause significant environ-
mental and human loss on the surface of the earth are 
called natural disaster [48]. Landslide is one of the most 
dangerous and costly natural disasters of the earth, and it 
is a form of mass wasting also known as landslip or mud-
slide which may cause a wide range of ground move-
ments [99]. Gravity of the earth is the main driving force 

for landslides occurrences [56]. It is estimated that almost 
9 percentages of worldwide natural disasters constitute 
landslides during the 1990s [35]. Almost 600 people are 
killed every year throughout the world as a result of slope 
instability [100]; Xie et al. [102]. Both people and the prop-
erties such as building, roads, communication networks, 
houses, agricultural land, forest are destroyed, every year 
due to landslides; thus, a huge amount of money is spent 
globally to mitigate the destruction of landslides [14].
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Himalayan region frequently faced different types of 
natural hazards, and landslide is one of the prominent 
which damages property, agriculture and human lives [9]. 
The area selected for the present study has also suffered 
a lot of damages due to landslides, triggered by heavy 
rainfall; thus, the area seems suitable site to evaluate the 
frequency and distribution of landslides [28]. Rai et al. [78] 
stated that more than 20,000 landslides were recorded in 
one day. According to Basu and Pal [9], several landslides 
have been induced in different parts of Darjeeling Hima-
laya due to intensive rainfall, earthquake and expansion of 
anthropogenic activities such as road construction, build-
ing construction, resort formation. In 2015 more than 38 
people were killed and 500 people were displaced due to 
landslides during monsoon season in this area [92]. Thus, 
the landslide mitigation and susceptibility studies become 
one of the most required fields of studies in this region.

There are several quantitative and qualitative methods 
for preparing landslide susceptibility maps [3]. Quantita-
tive approaches have been used by number of researchers 
such as bivariate regression analysis [11, 51], multivariate 
regression analysis [62, 75, 74], logistic regression analy-
sis [73, 2, 32], fuggy logic [71], artificial neural network 
[57, 72]. Many researchers have worked with more than 
one model and compared to find out which one is most 
accurate [9]. Recently, machine learning (ML) techniques 
have become popular in spatial prediction of natural haz-
ards studies such as wildfire [45], sinkhole [91], ground-
water and flood [1, 12, 16, 17, 40, 49, 50, 59, 76, 77, 82, 
93], droughtiness [80], gully erosion [7, 98], earthquake 
[4], land/ground subsidence [96] and landslide studies [68, 
70, 79, 87, 67, 97]. ML is a subdivision of artificial intelli-
gence (AI) that uses computer techniques to analyze and 
forecast information by learning from training data. ML 
algorithms that have been used for landslide prediction 
include support vector machine [20, 30, 47, 69, 95], artifi-
cial neural network [31, 86], decision trees such as naïve 
Bayes tree (NBT) [22, 85], radial basis function (RBF) [38], 
kernel logistic regression (KLR) [13, 21], Bayes’ net (BN) 
[19], bivariate statistical index (SI) [23], stochastic gradi-
ent descent (SGD) [94], particle swarm optimization (PSO) 
[18], best-first decision tree (BFDT) [24], random subspace-
based support vector machines (RSSVM) [39] and logistic 
model tree (LMT) [20]. Ensemble models have been used 
in landslide susceptibility mapping due to their novelty 
and their ability to comprehensively asses landslide-
related parameters for discrete classes of independent 
factor [15, 16, 25, 44, 49, 63, 67, 87, 93] . To achieve this, 
a frequency ratio (FR) and logistic regression (LR) models 
have been applied to obtain maps of landslide susceptibil-
ity (spatial prediction) using the ArcGIS software (version 
10.2) for the area. The frequency ratio model is useful to 
analyze the slope instability and treated as one of the best 

quantitative approaches [43]. Literature reviews show that 
the logistic regression model is so accurate to support vec-
tor machine, classification tree and likelihood ratios [29, 
83]. The logistic regression model is one of the most effec-
tive mathematical methods which are useful to find out 
the relationship between landslide causative factors and 
landslide locations [8, 28].

Landslide susceptibility mapping is important to ensure 
the safety of human life and mitigate the negative impact 
on regional as well as the national economy of a country 
[48]. This map helps government agencies, policymak-
ers and planners to reduce the damages that a landslide 
incident can cause. The main objective of this study is to 
locate probable landslide susceptible areas within the 
basin using FR and LR models and compare the results 
using the ROC curve for the most suitable or acceptable 
method between these two (FR & LR) models.

2 � Study area

Relli Khola river basin or Relli River is a small Himalayan 
river of the Indian States of West Bengal flowing through 
Kalimpong district. The river originates between the Ala-
gara and Lava forest range at an elevation of 2400 meters 
known as t’Tiffin Dara and joins Teesta River as one of its 
tributaries. The length of the river is almost 27.38 km. A 
small village known as Relli is situated on its bank. Dur-
ing Makar Sankranti (January 14), a fair is held annually 
at the Relli. The basin extends from 26°58′2″ to 27°5′31″N 
and from 88°26′32″ to 88°39′14″E which is about 170.61 
sq km. Relli Khola river basin is the left bank tributary of 
the Teesta River. Being a part of the Himalayan region, the 
area is characterized by intensive rainfall. The total basin 
is situated over two geological units. From top to bottom, 
the two geological units are Darjeeling Gneiss, and slate, 
schists, quartzite. The basin has natural beauty for its sur-
rounding environment. Its culture is full of diversity, peo-
ple from different parts live in the area. But the area is not 
safe from natural difficulties. So many natural disturbances 
such as earthquakes and landslides are common phenom-
ena of the basin. Intensive rainfall (200–250 cm/annu-
ally) and a moderate-type temperature are the common 
characters of the basin. Being a forested area the basin is 
suffered few for landslide incidents. But where lands are 
open and deforestation takes place, landslides damage the 
area. In the lower course of the river, Komesi forest, Suruk 
Khasmahal and Mezok forest landslides have mainly been 
observed. But due to low habited place, damages are not 
found big. The portion that is close to Kalimpong town 
is a highly settled area and this portion is characterized 
as a gentle uniform slope, and thus, no such noticeable 
landslides are found in this portion (Fig. 1). 
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3 � Data and methods

A digital elevation model (DEM) with the resolution of 
30 m × 30 m has been extracted from the ASTER GDEM 
data of October 2011 and downloaded from USGS Earth 
Explorer on January 18, 2018. The DEM data have been 
applied to extract slope, aspect, relief parameters (relative 
relief, maximum relief, dissection index, TWI, stream power 
index, etc.) and drainage parameters such as drainage 

density, drainage frequency, stream junction frequency, 
stream junction angle and infiltration number of the study 
area using ArcGIS 10.2 software. To apply the models, 20 
parameters have been selected. These are (a) drainage 
density, (b) drainage texture, (c) infiltration number, (d) 
stream frequency, (e) stream junction frequency, (f ) stream 
power, (g) lithology, (h) soil, (i) relative relief, (j) slope, (k) 
maximum relief, (l) drainage intensity, (m) ruggedness 
number, (n) rainfall, (o) dissection index, (p) aspect, (q) 

Fig. 1   Location map of the study area
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relief class and (r) distance from stream, (s) TWI and (t) land 
use land cover (lulc). These factors have been further clas-
sified into five subclasses such as (1) drainage factors, (2) 
relief factors, (3) hydrological factors, (4) lithological fac-
tors and (5) triggering factors. The methodologies for each 
parameter as stated above have been provided in detail in 
the following sections (Table 1).

3.1 � Drainage factors

3.1.1 � Drainage density (Dd)

Drainage density is the length of stream per unit area of a 
river basin. Landslides are prominent in such areas where 
drainage density is high and the soil layer is too thin [65]. 
Figure 2a shows the drainage density of the Relli Khola 
river basin. The drainage density of the basin ranges from 
0.13 to 5.84 km/sq km (Fig. 2a). The formula is given below 
[41].

where Dd is drainage density, Lµ is the length of the stream 
and A is the total area. The grid method has been used to 
calculate the specific drainage density of the basin.

(1)Dd =
L�

A

3.1.2 � Stream frequency (Fs)

Stream frequency is one of the important factors for land-
slide susceptibility measuring. Stream frequency (Fs) is 
the number of streams per unit area of the basin [41]. The 
stream frequency of the basin ranges from 0 to 20 stream/
sq km (Fig. 2b). The value close to 0 means less diversity of 
slope and less landslide susceptible areas, and the higher 
value means high diversity of slope and high probability 
of landslides. Stream frequency is calculated in the follow-
ing way [41]

where Fs is stream frequency, Nµ is the total number 
of stream and A is the total area of the basin or region 
adopted for the present study.

3.1.3 � Drainage intensity (Id)

Drainage intensity (Id) denotes the ratio between stream 
frequency (Fs) and drainage density (Dd) [33]. The value 
ranges from 0.26 to 8.86 (Fig. 2c). High drainage intensity 
indicates a high probability of landslide, and low drainage 
intensity indicates less probability of landslide. Faniran [33] 
calculated drainage intensity in the following way.

(2)Fs =
N�

A

Table 1   Database of the current study

Datasets Parameters Source Scale or resolution Classification method

ASTER GDEM Slope USGS Earth Explorer 30 m × 30 m Natural break
Aspect 30 m × 30 m Equal interval
Dissection index 30 m × 30 m Natural break
Distance from river 30 m × 30 m Natural break
Maximum relief 30 m × 30 m Natural break
Relative relief 30 m × 30 m Natural break
Relief 30 m × 30 m Natural break
Ruggedness number 30 m × 30 m Natural break
Drainage density 30 m × 30 m Natural break
Stream frequency 30 m × 30 m Natural break
Drainage intensity 30 m × 30 m Natural break
Drainage texture 30 m × 30 m Natural break
Stream junction frequency 30 m × 30 m Natural break
Infiltration number 30 m × 30 m Natural break
Stream power index (SPI) 30 m × 30 m Natural break
Topographic wetness index(TWI) 30 m × 30 m Natural break

Geological map Lithology Geological Survey of India, Kolkata 1:250,000 Lithological units
Soil map Soil NBSS & LUP Regional Centre, 

Kolkata
1:250,000 Textural units

Rainfall map Rainfall https​://pmm.nasa.gov/data-acces​s/
downl​oads/trmm

0.25° × 0.25° Natural break

LANDSAT 8 OLI/TIRS Land use land cover USGS Earth Explorer 30 m × 30 m Supervised classification

https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/trmm
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Fig. 2   Raster layer of drainage parameter a drainage density, b stream frequency, c drainage intensity, d drainage texture, e stream junction 
frequency, f infiltration number
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where Id is drainage intensity, Fs is the stream frequency 
and Dd is the drainage density.

3.1.4 � Drainage texture (T)

Drainage texture is also an important morphometric fac-
tor that indicates a relative spacing of streams per unit 
length. Drainage texture is the ratio between the number 
of streams and the length of the perimeter of the basin 
[42]. The value of drainage texture ranges from 0 to 6 
stream per km (Fig. 2d). Horton [42] gave the formula for 
calculating drainage texture as stated below.

where T is the drainage texture of the basin, Nµ is the num-
ber of streams and P is the perimeter of the basin.

3.1.5 � Stream junction frequency

Stream junction frequency is the number of stream junc-
tion points within a unit area of a drainage basin. Being 
a part of the source region, i.e., mountainous region, the 
river has many stream junction points throughout the 
basin. Stream junction frequency indirectly indicates 
the slope’s instability, because the break of slope occurs 
where two or more streams join in a single point. The 
value ranges from 0 to 10 stream junctions/sq km (Fig. 2e). 
Stream junction frequency is calculated in the following 
formula.

where Fsj is the frequency of stream junctions, fj is the 
number of stream junction points and A is the area of the 
basin

3.1.6 � Infiltration number (If)

Faniran [33] also defines infiltration number (If ) as the 
multiplication of both stream frequency (Fs) and drain-
age density (Dd). The infiltration number value of the 
basin ranges from 0 to 176.19 (Fig. 2f ). The value close to 
0 indicates the high infiltration and low surface runoff and 

(3)Id =
Fs

Dd

(4)T =
N�

P

(5)Fsj =
fj

A

higher value indicate the opposite, i.e., low infiltration and 
high surface runoff. The infiltration number is calculated 
in the following ways [33].

where If is the infiltration number, Fs is the stream fre-
quency and Dd is drainage density.

3.2 � Relief parameter

3.2.1 � Slope

Slope is one of the most dominant factors of landslide 
occurrences [27, 6, 36]. Occurrences of landslides are 
directly affected by the slope angle of an area [53]. ASTER 
GDEM data have been used for preparing the slope map 
of the basin with 30 m resolution in ArcGIS 10.2 in degree 
form. The slope of the basin ranges from 0 to 67.48 (Fig. 3a)

3.2.2 � Aspect

Aspect of slope describes the slope direction of an area. 
This is also an important factor of landslide and exposure 
to sunlight, drying winds, rainfall (degree of saturation), 
discontinuities are the aspect-associated parameters are 
also important factors of landslides [52]. Aspect map of 
the basin has been prepared from ASTER GDEM data with 
30 m resolution in ArcGIS 10.2. Figure 3b shows the aspect 
map of the basin.

3.2.3 � Dissection index

Dissection index is one of the most important factors to 
understand the relief as it is defined as the ratio between 
relative relief and absolute relief [64]. The value of DI of the 
area ranges from 0.06 to 0.58 (Fig. 3c). The lower portion of 
the basin is highly dissected, whereas the upper portion 
is less dissected which indicates the relative relief is low in 
case of the upper portion and high in case of lower portion 
of the basin. It is calculated in the following formula [64].

where DI is the dissection index of the basin, Rr is relative 
relief and Ar is the absolute relief of the basin. The value 
of DI ranges from 0 to 1. 0 means complete absence of 
dissection, and 1 means vertical cliff.

3.2.4 � Distance from stream

Distances from stream have been measured by using Arc-
GIS 10.2 software. It is also an important factor for land-
slides. The area close to streams can get water from the 

(6)If = Fs × Dd

(7)DI =
Rr

Ar

Fig. 3   Raster layers of relief factors a slope, b aspect, c dissection 
index, d distance from river, e maximum relief, f relative relief, g 
relief and h ruggedness number

◂
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streams that help the rock or soil to be fragile for erod-
ing or sliding. Therefore, there is a possibility of landslides 
close to the streams. The map shows that the value of the 
distance from the stream of the basin ranges from 0 to 
704.96 m (Fig. 3d)

3.2.5 � Maximum relief

Maximum relief is simply defined as the highest altitude 
of an area. It is also known as absolute relief. The map is 
prepared by using the grid method in ArcGIS 10.2. The 
maximum relief of each grid has then been used to pre-
pare the maximum relief map using IDW (inverse distance 
weighted) method. The value of maximum relief ranges 
from 286 to 2378 ms (Fig. 3e). The source region shows the 
maximum relief of the basin.

3.2.6 � Relative relief

Relative relief is another form of representing the slope 
of a terrain. It is the difference between the highest alti-
tude and lowest altitude. Therefore, a high relative relief 
zone has a chance of landslide. This map is also prepared 
using the grid method and IDW technique in ArcGIS. The 
formula is given in the equation. The maximum and mini-
mum values of relative relief of the basin are 489 and 88 
meters, respectively (Fig. 3f ). Smith [88] gave the formula 
for calculating relative relief in this way.

where RR is relative relief, H is the highest altitude and the 
lowest altitude of the basin.

3.2.7 � Relief class

Relief class has been done based on the DEM classification 
of the basin. It is done basically to understand what range 
of relief class has been dominating the high landslide 
areas. The minimum and maximum reliefs of the basin are 
179 and 2378 meters, respectively (Fig. 3g).

3.2.8 � Ruggedness number (Nr)

Ruggedness number is a unitless value as both relative 
relief and drainage density are expressed in the same units 
and help to combine the slope steepness and [90]. The 
value of the ruggedness number of the basin ranges from 
0 to 1.88 (Fig. 3h). The ruggedness number is calculated by 
using the following formula.

(8)RR = H − h

(9)Nr =
Dd × Rr

K (1000)

where Dd is drainage density and K is a conversion con-
stant (5280 in case of mile grid and when relative relief is 
expressed in feet and drainage density in miles/sq. mile 
and is 1000 when relative relief is expressed in meter and 
drainage density in meter/sq meter

3.3 � Hydrological parameters

3.3.1 � Stream power index (SPI)

Stream power index is the power of stream to move 
sediment, and thus, it is the potential of flowing water 
to complete geomorphic works such as incise, widen or 
aggrades of channel. It is estimated that if discharge or 
slope is increased, stream power is also increased pro-
portionally. Stream power is low in the case of flat areas 
and high in the case of rugged topography. The stream 
power index is calculated with the following equation 
(Fig. 4a) [61]

where As is the specific catchment’s area (sq m/m) and β 
is the slope gradient

3.3.2 � Topographic wetness index (TWI)

Beven and Kirkby [10] developed the topographic wet-
ness index (TWI) which is commonly used to measure 
and quantify the topographic control on hydrologi-
cal processes [89]. If the moisture in the soil is high, the 
strength of soil will decrease and this enhances landslides. 
Wilson and Gallant [101] defined TWI in the following way 
(Fig. 4b).

where As is the specific catchment’s area (sq m/m) and β 
is the slope gradient.

3.4 � Lithological factors

3.4.1 � Lithology

Himalayan mountain region belongs to a very special con-
vergence zone of two plates, e.g., (a) Indian Plate and (b) 
Eurasian Plate. Therefore, small and medium earthquakes 
have been occurring throughout the years. Landslide is 
also related to the earthquake. An earthquake can increase 
the rate and dimension of landslide. The lithological unit 
map has been collected from the Geological Survey of 

(10)SPI = As × tan �

(11)TWI =
As

tan �
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India and was grouped into two classes according to their 
character and lithological ages (Fig. 5a).

3.4.2 � Soil

Five soil classes are observed in the basin (Fig. 6b). Soil 
demarcates the land use pattern. Soils having shallow depth 

on steep slopes are affected most by landslides [84]. Soil 
map has been collected from the National Bureau of Soil 
Survey (NBSS) and Land Use Planning (LUP), Kolkata.

Fig. 4   Raster layers of hydrologic parameters a stream power index (SPI), b topographic wetness index (TWI)

Fig. 5   Lithological parameters a lithology and b soil
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3.5 � Triggering factors

3.5.1 � Rainfall

The most important triggering factor of landslide is rain-
fall. In Darjeeling Himalaya, intensive rainfall (almost 300 
to 350 cm annually) is recorded every year. The duration 
of rainfall is also important for landslide. Landslides mainly 
occur during the monsoon season (July–Aug). The mean 
annual rainfall map has been prepared using TRMM (Tropi-
cal Rainfall Measuring Mission) data of the last 19 years 
(1998–2017) for the study area and downloaded from 
https​://pmm.nasa.gov/data-acces​s/downl​oads/trmm 
website. The thematic layer of rainfall has been prepared 
using the interpolation method of IDW (Inverse Distance 
Weighted) in a GIS platform. Figure 6a shows the annual 
rainfall map of the basin.

3.5.2 � Land use land cover (lulc)

The upper layer of the earth’s crust is used for different 
purposes by man. Each land use land cover has different 
intensities of landslide, e.g., forest can reduce landslide 
rate and open bare surface; build-up areas can increase 
the rate of the landslide. Five land use classes have been 
identified based on supervised image classification 
(Fig. 6b). The Landsat 8 OLI images with the resolution 
of 30 m × 30 m have been used to extract land use map 
using ArcGIS 10.2 software. The Landsat 8 OLI images have 
been downloaded from USGS Earth Explorer on January 
18, 2018.

3.6 � Landslide inventory map

Guzzetti et al. [37] stated that the landslide inventory map 
is an important part of analyzing landslide susceptibility, 
hazard as well as risk assessment. A landslide distribution 
map or landslide inventory map (Fig. 2) has been prepared 
to determine the landslide affected areas (%) and frequency 
of landslides of each class of possible landslide causing fac-
tors [60]. The landslide locations have been identified using 
Google Earth imagery and multiple field survey to cross-
check the prepared landslide map. Ten-day (December 30, 
2017, to January 8, 2018) extensive field survey and observ-
ing Google Earth imagery have been done for identifying 
landslide locations. In this current study, a total of 67 land-
slides have been identified. Out of the total, 47 (70%) land-
slides have been used as a training data set and 20 (30%) 
landslides have been used as validation data set. After 
that landslide inventory map has been prepared in the GIS 
environment to run the models and identify the probable 
landslide susceptible areas (Fig. 7). All the possible landslide 
causing factors have been incorporated with this landslide 
inventory map to understand the degree of importance of 
each possible landslide causing factors [60].

3.7 � Frequency ratio model

The frequency ratio model is a well-accepted and popular 
quantitative approach for preparing landslide susceptibility 
mapping [60]. Lee and Talib [55], Lee and Pradhan [54], Jadda 
etal. [46], Avinash and Ashamanjari [5], Mondal and Maiti 
[60] successfully applied frequency ratio model for prepar-
ing susceptible map. To obtain the frequency ratio of each 

Fig. 6   Raster layer of triggering factors a rainfall and b land use land cover

https://pmm.nasa.gov/data-access/downloads/trmm
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class of all the data layers, the following equation has been 
applied.

where Npix(Si )
 is the number of landslide pixels containing 

in class i, Npix(Ni )
 is the total number of landslide pixels hav-

ing class i in the watershed, 
∑

i Npix(Si )
 is the total number of 

pixels containing landslide and 
∑

i Npix(Ni )
 is the total num-

ber of pixels in the watershed. The total number of pixels 
containing landslide is 400 out of 189,500 pixels (almost 
170.61 sq km) in the watershed. Most of the landslides 
in the study area are rainfall-induced shallow types. The 
derived frequency ratio value of more than 1 means strong 
and positive relationship between landslide occurrences 
and concerned class of the selected data layers and high 
landslide probability; on the other hand, frequency ratio 
value of less than 1 means poor and negative correlation 
between landslide occurrences and concerned class of the 
data layer and low landslide probability, whereas 1 means 
moderate relationship. After calculating the frequency 
ratio, all the raster map parameters of frequency ratio have 

(12)FR =
Npix(Si )

�

Npix(Ni )
∑

i Npix(Si )

�
∑

i Npix(Ni )

been summed up to make landslide susceptibility index 
value (LSIV) using the following equation.

where LSIV is landslide susceptibility index value and Fr1, 
Fr2, Frn is the frequency ratio of the raster data layers and 
n is the total number of factors for the study [20]. Higher 
value indicates high landslide susceptibility, and lower 
value indicates low susceptibility and vice versa.

3.7.1 � Logistic regression model

The logistic regression model is also known as multivari-
ate analysis is measured with dichotomous variables such 
as 1 or 0 (presence or absence), and it is determined by 
one or more independent variables [58]. The general pur-
pose of the study is to determine the best-fitting model 
to describe the relationship between dependent variables 
(Landslide occurrence) and many independent variables, 
e.g., slope, lulc, lithology, rainfall, etc. (Kavzoglu et al. 2013). 
Dai and Lee [27] argued that the advantage of the model 
is that the dependent variable can have only two values, 
presence (Value 1) or not presence (Value 0). The logistic 

(13)LSIV = Fr1 + Fr2 +⋯ + Frn

Fig. 7   Landslide inventory 
map of the study area
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regression model is based on the generalized linear model 
and can be calculated by the following equation.

where p is the probability of landslide occurrence and z is 
the linear regression model.

b0 is the intercept of the model, n is the number of inde-
pendent variables, b1, b2…bn are the coefficients and x1, 
x2,…xn are the landslide causing factors.

P, probability of vulnerability, varies from 0 to 1. 
Whenever it is nearer to 1, it indicates high vulnerable, 
and whenever it is nearer to 0, it indicates very low vul-
nerable. The entire calculation of logistic regression has 
been done in SPSS software (Fig. 8).

(14)P = 1∕(1 + e−z)

(15)z = b0 + b1x1 + b2x2 +⋯ + bnxn

4 � Results and analysis

FR and LR models have been developed to prepare two 
landslide vulnerability maps (Fig.  9) based on raster 
inputs, and each vulnerable map has been classified into 
five subtypes indicating varying intensity of vulnerability 
[66]

4.1 � Frequency ratio model

The susceptibility map based on the frequency ratio model 
has been classified into 5 groups such as very high, high, 
moderate, low and very low which represent 4.05%, 4.36%, 
9.12%, 14.34 and 68.11% area of the total basin, respec-
tively (see Table 2). The lower portion of the basin has 

Fig. 8   Picture showing 
the landslide sites—from 
the Google Earth image 
a near Suruk Khasmahal 
(26°59ʹ31.03ʹʹN, 88°28ʹ14.43ʹʹE), 
b Mezok forest (26°59ʹ36.23ʹʹN, 
88°27ʹ28.89ʹʹE), c near 
confluence with Teesta River 
(27°00ʹ22.89ʹʹN, 88°27ʹ15.37ʹʹE) 
and from the field d Dalap-
chan Slip Reserve Forest 
(27°04ʹ53.47ʹʹN, 88°32ʹ08.78ʹʹE), 
e near Komesi Forest 
(27°01ʹ37.43ʹʹN, 88°29ʹ05.67ʹʹE) 
and f Suruk Khasmahal 
(26°58ʹ51.62ʹʹN, 88°28ʹ25.30ʹʹE)
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mainly been characterized as high landslide-prone area 
(Fig. 9). The landslide areas have been mostly dominated 
along the river channel of the basin.

The frequency ratio for different classes of each param-
eter helps us to understand the importance or probabil-
ity of subclass under landslide occurrences. For example, 

Fig. 9   Landslide susceptibility 
maps (a, b) of Relli Khola river 
basin (a) frequency ratio model 
and (b) logistic regression 
model
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frequency ratio of river and barren land (subcategories of 
lulc) is 12.84 and 5.74 indicating landslide vulnerable of 
these zones (Table 3). That is the significance of this model. 
The frequency ratio of the fourth class (5.56–8.17) of topo-
graphic wetness index (TWI) is high (2.04) compared to 
other subclasses of this parameter (Table 3). Therefore, it 
can be said that this zone is highly landslide prone and 
this zone is more responsible for landslide occurrences. 
Thus, this model helps us to understand the importance 
of each subclass.

Slope is a major parameter of landslide. The higher 
slope indicates the risk of landslide. In Table  3 it is 
observed that the frequency ratio of fifth (38.37 to 67.48 
degrees) subclass of the slope is high (2.97). In the case 
of maximum relief, the result is different, i.e., higher value 
represents a low-frequency ratio and the lower value rep-
resents a high-frequency ratio (Table 3). It seems that not 
only maximum altitude is responsible for landslide but 
also other parameters are playing the dominant role for 
the basin’s landslide. In the case of relative relief, it gives a 
good result with our view that higher relative relief (rug-
ged topography) represents a high-frequency ratio, i.e., 
high probability of landslides (Table 3). The two classes of 
land use land cover (lulc), i.e., (a) river and water body and 
(b) barren land, have been dominated with high landslides 
as a frequency ratio of these two subclasses are 12.84 and 
5.74 respectively (Table 3). Vegetation cover is the least 
subclass of land use land cover which interrupts landslide 
incidents. Slate, Schists, Quartzite rock is dominated by a 
high-frequency ratio (Table 3). The higher value of stream 
power index (SPI) indicates a high risk of landslide occur-
rences. It has been noticed that the frequency ratio of the 
fifth class of ruggedness number value is maximum (1.72) 
and lower classes have been gradually decreased. It seems 
that high ruggedness number values play a significant role 
in landslide occurrences.

4.2 � Logistic regression model

Logistic regression is a useful method to determine the 
magnitude of the correlation between landslide loca-
tions and affective factors [34]. Table 2 shows that 5.75 

sq km (3.37%) and 1.86 sq km (1.09%) areas of the total 
area of the Relli Khola basin are under very high and high 
landslide susceptibility zones, respectively. This map also 
shows almost the same result that the lower portion of 
the basin has been dominated by a highly landslide-prone 
area. Landslide is dependent on different factors (it can 
be physiographic or it can be anthropogenic), and logistic 
regression is useful to predict the future landslide trend 
based on the factors, and it also helps us to predict the 
most dominating factors of landslide occurrences [34]. 
Among the 20 parameters drainage density, slope, aspect, 
lulc, soil and rainfall have been identified as dominating 
factors of landslide occurrences (Table 4). The significance 
levels of these 3 parameters are 95 to 100. The steep slope 
is responsible for slope failure. The areas which have steep 
slope represent rugged topography and high gravity 
power and hence are at high risk of landslide occurrences. 
Lulc is also a major factor of landslide occurrences. It is the 
upper layer of the soil.

A particular land use has a high capability to slide such 
as bare land or open land tends high landslide. On the 
other hand, the forest cover area has a low tendency of 
landslide. Rainfall can increase the rate of landslide as it 
can make the soil fragile and detach soil from other soil 
molecules.

Table 4 shows the logistic regression result calculated 
in SPSS software. This result shows that the rate of land-
slide occurrences is noticeably and positively determined 
by stream frequency (Wald = 0.028, Exp(B) = 7.067, df = 1), 
stream power (Wald = 0.001, Exp(B) = 1.001, df = 1), lithol-
ogy (Wald = 0.604, Exp(B) = 1.830, df = 1), relative relief 
(Wald = 0.005, Exp(B) = 1.005, df = 1), Slope (Wald = 0.048, 
Exp(B) = 1.049, df = 1), ruggedness number (Wald = 2.152, 
Exp(B) = 8.604, df = 1 and rainfall ( Wald = 0.004, 
Exp(B) = 1.004, df = 1) (Table 4). For the categorical factors 
of soil, aspect, some subclasses have been categorized 
as positively determined and some subclasses have been 
categorized as negatively determined. But for lulc it has 
been positively determined (Table 4). Other parameters 
and their logistic results are shown in Table 3. This result 
denotes that landslide occurrence is not controlled by a 
single parameter; rather, it is the result of multiple factors.

Table 2   Area under different 
landslide vulnerable classes 
based on frequency ratio 
model and logistic regression 
model

Landslide vul-
nerable class

FR model Logistic regression

Pixel Area(sq km) Area in % Pixel Area(sq km) Area in %

Very low 129,068 116.2 68.11 152,343 137.16 80.39
Low 27,190 24.48 14.34 17,761 15.99 9.37
Moderate 17,292 15.57 9.12 10,943 9.85 5.77
High 8268 7.44 4.36 2062 1.86 1.09
Very high 7682 6.92 4.05 6391 5.75 3.37
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Table 3   Class frequency ratios of selected parameters

Parameters Classes No of pixels 
[

Npix(Ni )

]

% of Npix(Ni )
Landslide 
pixels 
[

Npix(Si )

]

% of Npix(Si )
FR

Topographic wetness index (1) − 0.72–1.63 68,619 36.21 98 24.5 0.67
1.64–3.46 52,812 27.86 107 26.75 0.96
3.47–5.55 38,544 20.33 75 18.75 0.92
5.56–8.17 22,958 12.11 99 24.75 2.04
8.18–21.51 6567 3.46 21 5.25 1.51
Total 189,500 100 400 100

Drainage density (meter per 
sq km) (2)

0–1.18 42,591 22.48 22 5.5 0.24
1.19–2.13 45,827 24.18 141 35.25 1.46
2.14–3.08 46,038 24.29 149 37.25 1.53
3.09–4.14 38,079 20.09 84 21 1.05
4.15–6.44 16,965 8.95 4 1 0.11
Total 189,500 100 400 100 –

Soil types (3) Gravelly Loamy 44,108 23.28 26 6.5 0.28
Fine Loamy—Coarse Loamy 24,149 12.74 103 25.75 2.02
Gravelly Loamy—Coarse Loamy 107,257 56.6 271 67.75 1.2
Gravelly Loamy—Loamy Skeletal 11,810 6.23 0 0 0
Coarse Loamy 2176 1.15 0 0 0
Total 189,500 100 400 100 –

Lithology (4) Unclassified, Crystallines (Mainly 
Gneisses)

49,182 25.95 62 15.5 0.6

Slate, Schists, Quartzite 140,318 74.05 338 84.5 1.14
Total 189,500 100 400 100 –

Distance from river (meter) (5) 0–99.20 94,672 49.95 223 55.75 1.11
99.21–221.82 52,024 27.45 86 21.5 0.78
221.83–313.70 22,744 12 79 19.75 1.64
313.71–409.02 13,041 6.88 12 3 0.43
409.03–704.96 7019 3.7 0 0 0
Total 189,500 100 400 100 –

Slope in degrees (6) 0–13.76 30,057 15.86 15 3.75 0.23
13.77–21.70 51,565 27.21 72 18 0.66
21.71–29.37 52,423 27.66 104 26 0.93
29.38–38.37 38,752 20.44 104 26 1.27
38.38–67.48 16,703 8.81 105 26.25 2.97
Total 189,500 100 400 100 –

Lulc (7) Vegetation 104,234 55 93 23.25 0.42
Settlement 12,521 6.61 15 3.75 0.57
Barren land 9244 4.88 112 28 5.74
River and water body 4354 2.3 118 29.5 12.84
Agricultural land 59,147 31.21 62 15.5 0.5
Total 189,500 100 400 100 –

Stream power index (8) − 1.81 18,669 9.85 33 8.25 0.83
− 1.37 34,109 17.99 36 9 0.5
− 0.69 67,570 35.65 97 24.25 0.68
0.34–0.92 52,643 27.77 165 41.25 1.48
0.93–4.46 16,509 8.71 69 17.25 1.98
Total 189,500 100 400 100 –
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Table 3   (continued)

Parameters Classes No of pixels 
[

Npix(Ni )

]

% of Npix(Ni )
Landslide 
pixels 
[

Npix(Si )

]

% of Npix(Si )
FR

Relief (meter) (9) 179–669 32,737 17.28 171 42.75 2.47
670–992 52,455 27.68 129 32.25 1.16
993–1311 51,673 27.27 90 22.5 0.82
1312–1684 35,740 18.86 10 2.5 0.13
1685–2378 16,895 8.92 0 0 0
Total 189,500 100 400 100

Ruggedness number (10) 0–0.31 41,901 22.11 46 11.5 0.52
0.32–0.56 48,182 25.42 103 25.75 1.01
0.57–0.79 48,869 25.78 113 28.25 1.09
0.80–1.06 36,506 19.26 87 21.75 1.12
1.07–1.88 14,042 7.41 51 12.75 1.72
Total 189,500 100 400 100 –

Maximum relief (meter) (11) 286.88–820.10 33,261 17.55 177 44.25 2.52
820.11–1115.43 50,887 26.85 114 28.5 1.06
1115.44–1418.95 50,550 26.67 99 24.75 0.92
1485.96–1779.90 36,939 19.49 10 2.5 0.12
1779.91–2378.75 17,863 9.42 0 0 0
Total 189,500 100 400 100

Aspect (direction of slope) (12) Flat 3 0.0016 0 0 0.00
North 28,988 15.29 74 18.5 1.21
Northeast 16,193 8.54 28 7 0.82
East 13,699 7.22 71 17.75 2.46
Southeast 25,393 13.4 54 13.5 1.01
South 34,587 18.25 62 15.5 0.85
Southwest 23,806 12.56 85 21.25 1.69
West 19,427 10.25 17 4.25 0.41
Northwest 27,404 14.49 9 2.25 0.16
Total 189,500 100 400 100

Stream junction frequency (no. of 
stream junction/sq km) (13)

0–1.84 75,204 39.69 175 43.75 1.1
1.85–4.09 61,354 32.38 104 26 0.8
4.10–6.75 36,051 19.02 77 19.25 1.01
6.76–10.54 14,101 7.44 38 9.5 1.27
10.55–26.11 2790 1.47 6 1.5 1.01
Total 189,500 100 400 100

Infiltration number (14) 0–13.12 71,553 37.75 108 27 0.71
13.13–31.09 55,675 29.37 164 41 1.39
31.10–53.20 36,858 19.45 118 29.5 1.51
53.21–82.22 19,215 10.13 10 2.5 0.24
82.23–176.19 6199 3.27 0 0 0
Total 189,500 100 400 100

Relative relief in meter (15) 88.09–214.13 40,088 21.15 88 22 1.03,996
214.14–255.09 54,803 28.92 73 18.25 0.63,106
255.10–297.63 49,113 25.92 42 10.5 0.40514
297.64–349.62 30,339 16.01 109 27.25 1.70206
349.63–489.83 15,157 8.00 88 22 2.75054
Total 189,500 100 400 100
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5 � Validation of FR and LR models

After preparing landslide susceptibility, map validation 
is necessary. Otherwise, it has no use and has no scien-
tific importance [26]. A receiver operating characteristic 
curve (ROC) has been used to validate these models. The 
ROC curve measures the goodness of fit from the area it 
falls under the curve [9]. There are five categories of AUC 
(area under the curve) value under the ROC curve such as 
excellent (0.90–1.00), good (0.80–0.90), fair (0.70–0.80), 
poor (0.60–0.70) and fail (0.50–0.60) to understand the 
accuracy level [81].

Figure 10 shows the ROC curves of landslide maps using 
FR and LR models. The ROC curves of both models have 
been prepared using SPSS software. The values of AUC 
(area under the curve) of the FR model and LR model are 

0.814 and 0.751, respectively. The value of the FR model 
has indicated a good accuracy level with 81% area under 
the curve, and the value of the LR model has indicated a 
fair accuracy level having 75% area under the curve. Thus, 
it can be said that these two models have a considerable 
amount of accuracy and that can be used for further study.

6 � Conclusion

Logistic regression and frequency ratio models have 
been used for the present study of landslide suscepti-
bility of the Relli Khola river basin, a small tributary of 
the Teesta River in Darjeeling Himalaya. A total number 
of 20 possible parameters have been identified to pre-
pare landslide susceptibility maps of the basin. Out of 

Table 3   (continued)

Parameters Classes No of pixels 
[

Npix(Ni )

]

% of Npix(Ni )
Landslide 
pixels 
[

Npix(Si )

]

% of Npix(Si )
FR

Dissection index (16) 0.08–0.17 56,698 29.92 0 0 0
0.18–0.24 60,244 31.79 88 22 0.69
0.25–0.31 39,554 20.87 99 24.75 1.18
0.32–0.42 17,229 9.09 171 42.75 4.7
0.43–0.58 15,775 8.32 42 10.5 1.26
Total 189,500 100 400 100

Rainfall in mm/year (17) 3225.19–3284 152,058 80.24 248 62 0.77
3284.01–3373.15 6114 3.22 45 11.25 3.48
3373.16–3477.49 3546 1.87 19 4.75 2.53
3477.50–3600.79 16,078 8.48 83 20.75 2.44
3600.80–3708.92 11,704 6.17 5 1.25 0.2
Total 189,500 100 400 100 –

Drainage intensity (per sq km) 
(18)

0.005–4.67 132,246 69.79 318 79.5 1.13
4.68–18.08 55,969 29.54 82 20.5 0.69
18.09–86.40 1229 0.65 0 0 0
86.41–296.55 33 0.02 0 0 0
296.56–595.44 23 0.01 0 0 0
Total 189,500 100 400 100

Stream frequency (no. of stream/
sq km) (19)

0.001–5.00 37,028 19.54 44 11 0.56
5.01–8.46 55,257.6 29.16 137 34.25 1.17
8.47–12.04 50,706.5 26.76 148 37 1.38
12.05–16.66 34,752.5 18.34 66 16.5 0.89
16.67–32.68 11,755.3 6.20 5 1.25 0.2
Total 189,500 100 400 100

Drainage texture (No of stream 
per 1 km perimeter) (20)

0–0.66 37,028 19.53 44 11 0.56
0.67–1.13 55,258 29.15 137 34.25 1.17
1.14–1.62 50,707 26.75 148 37 1.38
1.63–2.22 34,752 18.33 66 16.5 0.89
2.23–4.37 11,755 6.2 5 1.25 0.2
Total 189,500 100 400 100
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the total basin area, almost 7–14 sq km area has come 
under high landslide susceptible zones. Both the maps 
have shown that high landslide susceptibility zones have 
been located at the lower portion of the basin and along 
the river channel where the soil is saturated, open to 

sky and surface is unprotected, whereas the upper por-
tion of the basin has very less susceptible as this por-
tion has been covered with healthy forest cover that 
protects the soil from sliding. The susceptibility maps 
have been proved with satisfying accuracy of the ROC 

Table 4   Coefficient of logistic 
regression for different factors

Lithology (1) Unclassified, Crystallines (Mainly Gneisses), Lithology (2) Slate, Schists, Quartzite; Soil (1) 
Gravelly Loamy, Soil (2) Fine Loamy—Coarse Loamy, Soil (3) Gravelly Loamy–Coarse Loamy, Soil (4) 
Gravelly Loamy—Loamy Skeletal, Soil (5) Coarse Loamy

Parameters B S.E. Wald df Sig. Exp(B)

DD − 1.026 0.510 4.050 1 0.044 0.358
Drainage intensity − 0.093 0.102 0.816 1 0.366 0.912
Drainage texture − 13.652 87.031 0.025 1 0.875 0.000
Infiltration number − 0.021 0.024 0.818 1 0.366 0.979
Stream frequency 1.955 11.639 0.028 1 0.867 7.067
Stream junction frequency − 0.025 0.085 0.086 1 0.770 0.975
Stream power 0.001 0.131 0.000 1 0.994 1.001
Lithology 1.535 1 0.215 1.830
Lithology (1) 0.604 0.488 3.215 1 0.125 1.412
Lithology (2) 0.345 0.654 0.231 1 0.0213 2.354
Soil 9.482 4 0.050
Soil (1) − 0.953 0.470 4.112 1 0.043 0.386
Soil (2) 0.159 0.463 0.118 1 0.731 1.172
Soil (3) − 15.832 2518.445 0.000 1 0.995 0.000
Soil (4) 0.486 0.264 3.406 1 0.065 1.626
Soil (5) 0.398 0.345 2.564 1 0.456 0.234
RR 0.005 0.006 0.688 1 0.407 1.005
Maximum relief − 0.003 0.003 1.084 1 0.298 0.997
Slope 0.048 0.011 20.153 1 0.000 1.049
Aspect 22.099 9 0.009
Aspect(Flat) − 13.561 40,192.970 0.000 1 1.000 0.000
Aspect(N) 0.529 0.645 0.673 1 0.412 1.697
Aspect(NE) 0.550 0.617 0.796 1 0.372 1.734
Aspect(E) 1.401 0.573 5.966 1 0.015 4.058
Aspect(SE) 1.037 0.590 3.089 1 0.079 2.821
Aspect(S) 0.461 0.602 0.587 1 0.444 1.586
Aspect(SW) 0.884 0.589 2.254 1 0.133 2.420
Aspect(W) 0.190 0.631 0.091 1 0.763 1.210
Aspect(NW) − 0.732 0.719 1.035 1 0.309 0.481
Dissection index − 6.006 3.132 3.676 1 0.055 0.002
Ruggedness number 2.152 1.611 1.784 1 0.182 8.604
Distance from river − 0.002 0.002 2.512 1 0.113 0.998
Relief − 0.001 0.003 0.323 1 0.570 0.999
Rainfall 0.004 0.001 25.270 1 0.000 1.004
Lulc 129.367 4 0.000
Lulc (vegetation cover) 0.081 0.332 0.060 1 0.806 1.085
Lulc (build-up area) 1.824 0.596 9.363 1 0.002 6.196
Lulc (barren land) 2.387 0.338 49.937 1 0.000 10.883
Lulc (river) 3.071 0.390 62.030 1 0.000 21.553
Lulc (agricultural land) 2.312 0.448 30.451 1 0.004 13.214
TWI − 0.009 0.024 0.152 1 0.697 0.991
Constant − 14.769 3.502 17.790 1 0.000 0.000
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curve (Fig. 10). The resulting maps have provided the 
spatial distribution of landslide occurrences, but it can-
not forecast the time, degree of landslide occurrences 
and how often it can occur. Therefore, the government 
and responsible authorities should take responsibility 
and steps to mitigate the problem. The government and 
higher authorities should keep notice so that any kind 
of development project or market, towns, roads, tourist 
places, etc., will not grow in the future in the susceptible 
areas within the basin. These maps will be also useful for 
the planners and decision-makers to build up policies to 
restrict and save the destruction from landslides.
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