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Abstract
This work is oriented to studying the learning capabilities of neural networks and their impact on the development of 
a method for the generation of spatial variation of peak ground accelerations PGAs. This spatial variation is based on 
a limited number of accelerograms registered in specific geotechnical zones, along with a map of soil periods on the 
Mexico City area. The continuous surfaces that resulted are compared with the most common methods of interpolation, 
aiming to evidence the substantial advantages of NNs on those of these methods. Based on the results presented, it can 
be argued that using multi-parameters approaches to define spatial interpolations of a variable as important as PGA, 
allows to make safer engineering decisions.

Keywords  Neural networks · Spatial predictive modelling · Spatial variation · Peak ground acceleration · Mexico City 
clay deposits · September 19th 2017 earthquake

1  Introduction

The design of a secure structure implies a good modelling 
of ground responses and this requires the most compre-
hensive compilation of information related to the soil’s 
environment and the possible damages due to earth-
quakes [1]. Given the spacing and distribution between 
seismic monitors and geotechnical sampling sites, it is not 
always possible to obtain these data directly for each site 
under construction, so building codes usually offer para-
metric maps as guidelines for design of new works and 
reconstructions.

The challenge to geotechnical and earthquake engi-
neering is to generate meaningful and reliable maps of 
spatial variability of soil properties and associated seismic 
responses [2, 3]. To solve this, engineers have turned to 
the use of available interpolation techniques due to the 
lack of certainty and the liability of costs when perform-
ing detailed geo-investigations [4–6]. The majority of the 
conventional interpolation schemes requires a relevant 

amount of input data to yield acceptable estimations. 
Because of these shortcomings it is necessary to search 
for new alternatives for developing spatial interpolation 
models.

In this research, a neural network NN [7] is presented 
as an alternative to analyze seismic and geotechnical 
parameters in a geographical context. The relations that 
exist between the spatial patterns of the stratigraphy and 
seismic responses beyond excessive physical simplifica-
tions are all contained in the spatial-neural model.

Other techniques such as Inverse Distance Weighting 
[8], Radial Basis Function [9], Local Polynomial [10] and 
Kriging [11], as well as the presented NN, are used to visu-
alize the peak ground accelerations PGAs during the dam-
aging September 19th 2017 earthquake that hit Mexico 
City. According to the results obtained, the best represen-
tation of PGAs contours can be conceived through the 
neural method, being the approximation that best locates 
the regions of maximum movements and higher levels 
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of damages while unveiling its relationship with specific 
arrangements of materials.

In this document, in addition to this first introduction 
section, in Sect. 2 a brief presentation of the evolution of 
the interpolation methods is presented and the essential 
components of the alternative technique, neural networks, 
are listed. Without being exhaustive, this section tries to 
introduce the reader to the artificial intelligence tool, for 
those interested, references of great technical rigor are 
offered. Section 3 presents the application exercise, a spa-
tial definition of the response (in terms of PGA) in Mexico 
City during three devastating earthquakes: September 19, 
1985, October 9, 1995, and September 19, 2017. Neural 
networks predictions are compared with interpolation 
results from some techniques most commonly used in 
geotechnical-earthquake engineering to demonstrate 
the theoretical, conceptual and practical advantages of the 
artificial intelligence tool. The conclusions are presented 
in Sect. 4.

2 � Spatial predictive modelling

A great expansion of the technical literature on the soil 
mapping through the use of different mathematical 
approaches, has been observed in the past decades. 
Some methods like linear and non-linear regression, geo-
statistics, and neural networks, among others, have been 
a recurrent implement for soil properties representation. 
A comprehensive review of computational methods used 
in digital mapping is presented by [12]; especially in the 
area of soil science. Park and Vlek [13] have analyzed the 
spatial variability of physical–chemical characteristics of 
soil, making use of NNs, regression trees and linear models. 
Other works with a detailed foundation are those of [14], in 
which satellite images plus GIS information and Bayesian 
methods have been applied, and also of [15] who in order 
to interpolate geologic layers borders used fuzzy neural 
networks. These scientists support the statement of the 
remarkable capacity of hybrid soft-computing methods 
to successfully perform these tasks [16–18].

For the approximation of the values of a variable at 
locations that have not been sampled, the procedures, in 
the context of Earth Sciences, involve well-known inter-
polation techniques like linear regression, ordinary krig-
ing and co-kriging [19–22]. Regionalized variable theory 
has been used to estimate soil data providing a summary 
of soil variability in the form of a semi-variogram and a 
predictive technique, kriging, for unobserved values [23, 
24]. This technique has become the most worked in sci-
entific environments in which it is required to interpolate 
values of properties at low cost, however the information 

requirements grow as the size of the area that is analyzed 
increases.

The application of NN (the artificial intelligence tool 
that mimics the human brain processes) in spatial data 
analysis can be divided into two major categories: (1) 
remote sensing, and (2) spatial modelling [25, 26]. Some 
successful examples on spatial modeling using NNs [27, 
28], fuzzy logic [29, 30] and genetic learning [14] have 
contributed to the demonstration that the utilization of 
artificial intelligence tools leads significantly to the devel-
opment of important geological and geotechnical topics.

2.1 � General comments on neural networks

Neural networks NNs have been positioned in the last 
decades, as relevant instruments especially for complex 
processes modeling. This technique demonstrates to be 
particularly suitable when the development of phenom-
enological or conventional regression models results 
unmanageable. NNs represents an approach which resorts 
computer modeling to learn from examples without 
demanding of previous knowledge of the relationships 
among parameters; the iterative learning process permits 
to NNs adapt themselves to changing, uncertain, noisy 
environments.

The NN-based models constructed from historic pro-
cess input–output data, display excellent generalization 
abilities that permit to have accuracy in the predictions for 
new input data sets. Additionally, multiple input-multiple 
output nonlinear relationships can be simultaneously and 
easily approximated.

In order to cope with the input–output duality problem, 
the NN paradigm that professionals resort to the most of 
times is the multilayered perceptron, MLP. An approxima-
tion or mapping of any nonlinear computable function 
to an arbitrary degree of accuracy, can be elaborated by 
means of a three-layered MLP with a single intermedi-
ate (hidden) layer. To have an accurate execution of the 
simulations there should be a sufficiently large number of 
nodes, known as hidden neurons or processing elements. 
The physics encrypted in the input–output database is dis-
covered by the NN through the learning process. Through 
the use of an iterative numerical procedure along with any 
of the training algorithms that have been published else-
where (i.e., [7, 31–33]), is that this task can be achieved.

In Fig. 1 the architecture of the MLP that was used in 
this work is shown. The neural structure is formed by input, 
hidden and output layers that are respectively represented 
with N, L and K letters. The total of nodes of a given layer 
are connected by means of links, or weights, to all nodes 
of the next layer that is moving forwardly once the output 
layer has been reached. A bias node (with fixed output 
of + 1) is included in the MLP that means supplementary 
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adjustable parameters (weights) for the fitting of the 
model. The inputs and the number of nodes N need to be 
equal and the number of processed outputs determines 
the number of nodes K. Nevertheless, the number of hid-
den nodes L is associated with the problem or NN task and 
with the desired approximation and generalization capa-
bilities of the network model. The success of the learning 
process of a NN can be considered as long as the system 
displays good prediction on unknown test data.

3 � Neuro‑spatial estimation of PGA

The modelling of the spatial variation of PGAs during some 
earthquakes that have struck Mexico City, was developed. 
The main objective was to define the variations between 
geotechnical zones because, in seismic design of struc-
tures, recognizing the spatial variation of the earthquake 
force dependent of the soils deposits is a crucial step. 
Using strong motion recordings from accelerometer arrays 
at the area, the NN is constructed and validated.

3.1 � Data base and topology of the network

The Mexico Basin holds the metropolitan area and con-
tains the remnants of the Chalco and Texcoco lakes. The 
drying process of the bodies of water and the deposition 
mechanisms gave rise to sequences of materials that are 
dependent of the position on the antique lakes systems. 
In the center of the city, for (Texcoco lake) a superficial Dry 
Crust (DC), a First Clay Layer (FCL) of several tens of meters 
thick, a First Hard Layer (FHL), a Second Clay Layer (SCL) and 
the so-called Deep Deposits (DD) can be found [34]. This 
arrangement changes as it approaches the mountains, it 
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Fig. 1   Architecture of the MLP used in this study
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can even change very drastically between sites separated 
by a few meters on the surface.

Based on information processed from hundreds of 
soundings, Mexico city’s building code [35–37] recom-
mended a division of the subsoil of the metropolis in 
three geotechnical zones (Fig. 2): Zone I-Hills, formed by 
hard soils- rock like deposits firm deposits, Zone II-Tran-
sition, constituted by erratic intercalations (in size and 
arrangement) of loose sands and clays with heteroge-
neous moisture contents, and Zone III-Lake that consists 
of clay sediments of with high water content and high 
compressibility.

Based on the catastrophic experiences related to the 
1985 seismic event that hit the Mexico City, the building 
codes were corrected to take into account the impressive 
energy content that could be generated from the Mexican 
Pacific [38] and, until then, different ways of responding 
from the soils.

With spectral amplification functions for about 100 
instrumented soft sites at Mexico City [39], complemented 
with around 500 microtremor measurements, predomi-
nant ground periods Ts have been studied and calculated 
for a grid of 80 × 80 points covering most part of the city 
[40]. This resulted in the microzoning map displayed in 
Fig. 3. The isoperiod curves for Ts = 0.5 and 1 s roughly 
mark the separations between both the firm and transition 
zones as well as the transition and soft zones, respectively.

In addition to parameters that describe the environ-
ment, to model the spatial variation of PGA, it is neces-
sary to situate the seismic monitors. The Accelerographic 
Network for Mexico City, RACM (abbreviations in Spanish) 
is constituted by more than 80 accelerographs distributed 
in the surface, in buildings and underground. This number 
of stations have been growing from the disastrous earth-
quakes of 1985. The accelerographs used in this investi-
gation are installed in the different zones in the valley of 
Mexico that means, firm ground, intermediate ground and 
soft ground.

The previously described geotechnical zonation, the 
predominant ground periods Ts and the location (Latitude, 
Longitude) of the accelerographic stations are the infor-
mation used as inputs of the NN. In the neuro spatial analy-
sis, the function PGA = f {(Lat, Long, Geotechnical Zone, Ts)} 
is to be approximated, with which the PGA values at any 
surface point can be determined.

Table 1   Parameters of the tried 
architectures

ID Number of hid-
den layers

Number of hidden 
neurons per layer

Number of 
iterations

Number of train-
ing samples

Number of 
testing sam-
ples

85-A 1 50 850 9 2
85-B 2 50 320 9 2
85-C 1 150 725 9 2
95-A 2 50 920 26 8
95-B 1 100 1430 26 8
95-C 1 150 2205 26 8
17-A 1 500 4010 38 10
17-B 2 50 1960 38 10
17-C 2 100 3420 38 10

Table 2   Average accuracy and standard deviation of the three 
Architectures for different values of iterations keeping constant the 
learning rate

5500 iterations 10,000 iterations

1 Hidden layer 50 nodes 97.2 ± 0.22% 98.7 ± 0.19%
2 Hidden layers 50 nodes/layer 96.1 ± 0.31% 99.0 ± 0.12%
1 Hidden layer 150 nodes 94.7 ± 0.52% 93.1 ± 0.78%

Sta�on ActualValue Predicted Value Absolute error Rela�ve error
TACY 33.97 28.9 -1.13 0.03326
CDAO 84.61 82.1 2.51 0.02967
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Fig. 4   Predicted and actual values for testing samples, the Sept 
19th 1985 event
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The 80% of the stations were used to construct the 
network and the remaining 20% is separated for valida-
tion of the model. In addition to checking that the values 
estimated by the network are below the error declared as 
objective, the congruence of the PGA contours is verified.

It is important to point out that the proposed NN is not 
used here merely as a spatial interpolator for estimating 
the PGA values at unobserved locations. The neural tool 
is a spatial method that captures spatial dependency in a 
kind of multidimensional and multiparametric regression 
analysis, providing useful information on 2D relationships 
among the soils, topography and PGAs involved.

3.2 � Neuro‑contours of PGAs

The ground motions registered during the iconic 1985, 
September 19th, Michoacán Earthquake, (Mw 8.1), a 
medium intensity event (Mw 7.6) and the most recent 
devastating shaking, the 2017 September 19th (Mw 7.1), 
Morelos-Puebla event are used as examples of the neural 
methodology results.

Fig. 5   PGA Neural distribu-
tion for the 1985 Michoacán 
Earthquake
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For this model, Back Propagation algorithm [41, 42] was 
selected and the momentum gradient descent method as 
the network training method. The momentum factor has 
been set to 0.8, the learning rate to 0.05, the maximum 
number of the training times to 10,000, and the expected 
error is 1.0 (in cm/s2). The model convergence calculation 
uses the mean square error (MSE) function as the optimiza-
tion objective function:

where E is MSE, N is the number of samples, yd
i

 is the ideal 
output, yi is the actual output. The network converges until 
the network global error E is less than expected error.

The PGA-model structure uses a three layers neural net-
work which includes an input layer IL, one or two hidden 
layers HL, and an output layer OL. The structure is IL-HL-
OL. The input layer contains four neurons corresponding 
to the geotechnical (zonation) and seismological (funda-
mental period Ts) parameters coupled with the position 

E =

1

N

N
∑

i=1

(

yd
i
− yi

)2

(Latitude, Longitude) of the stations. The output layer has 
one neuron (the PGA). The hidden layer transfer function 
is sigmoid while the output layer transfer function is pure-
lin. In Table 1 the parameters of the tried architectures are 
shown.

The criterion to select the architecture that best meets 
the objective of predicting PGA, one indispensable condi-
tion must be reached: that the NN to through the training 
process present the best compromise be-tween precision 
and generality. Because of the number of monitors exist-
ing, the amount of data available to estimate PGA at each 
point on the surface is very limited. So in order to avoid 
overfitting a cross-validation approach was used to search 
for the optimal model. To define the predictive accuracy 
of the set of neural architectures an independent set of 
data (test samples) were used. With the k-fold cross-vali-
dation the samples for each seismic event were randomly 
partitioned into k sets (k = 5). Once the errors across the 
different test sets were calculated for each NN, they were 
compared and the architecture with the lowest values was 
labeled as the optimal model.

Fig. 7   The neuro-PGAs distri-
bution during the October 9th 
1995 (Mw 7.9) event
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September 19th 1985 During the Michoacán earthquake 
(Mw8.1) only eleven recording stations were in operation, 
three in the hilly area and the rest in the lake and tran-
sition zones. From these sites two acceleration stations 
were selected to test the network and the rest were left 
for training the NNs. In Table 2 the results obtained for the 
3 best network architectures are shown. After tried with 
different architectures and based on the k-cross validation 
results, the 4-50-50-1 model was considered the optimal. 
The comparison of the predicted and actual values for the 
training and test validation samples is shown in Fig. 4. It 
can be seen that the errors of the accelerations predictions 
are sufficiently low from the point of view of engineering 
practice.

Then, this NN was used to predict the PGAs on a mesh 
(grid every 150 m) on the surface of Mexico City (included 
inside the thick continuous line) and their spatial display 
is shown in Fig. 5.

Severe damages occurred in the metropolis, despite 
of the distance of 300 km to the rupture area. The scale 
of the destruction was mainly attributed to the dynamic 
amplification of the lakebed deposits (in Fig. 4, the area of 
maximum damage is within the dashed line). It is remark-
able that the neural pattern of PGAs-distribution is very 
congruent with the areas that have outstanding amplifica-
tion potential (Lake Zone with particular Ts-isocurves) and 

highest number of collapses. Besides the acceptable cor-
relation between measured and estimated PGAs, the dis-
tribution of acceleration levels is adequately anticipated 
for each geotechnical zone.

October 9th 1995 The Tecomán earthquake (Mw7.6) 
struck the area near the town of Manzanillo, Colima, 
affecting the southwestern part of Jalisco (on the coast 
of the Mexican Pacific). Around the epicentral area more 
than 17,000 structures suffered significant damage (3000 
of them collapsed), affecting cities or municipalities with 
nearly 45,000 inhabitants. Unfortunately, 60 deaths were 
recorded in different states near the epicenter. In Mexico 
City, about 540 km from the epicentral zone, this earth-
quake felt strongly and caused alarm in the population, 
even activated the protocols for post-seismic reviews.

Over the years and after the painful experience of 1985, 
the efforts to implement useful instrumentation in the 
areas with the greatest potential for amplification, led to 
the start-up of many more registration stations. Using the 
information from 34 stations (separating eight stations to 
test the network) the neuro-PGAs distribution during the 
Tecomán event was developed. Following the procedure 
described for the 1985 event, many possible architectures 
were tried and the 4-150-1 arrangement was finally con-
sidered the best. The error between the registered and the 
predicted PGAs is very low (Fig. 6). Again, the NN is applied 
to predict the PGAs on a smaller mesh (grid every 100 m) 
on the surface of Mexico City and their spatial display is 
shown in Fig. 7.

As can be seen, as more stations are involved the zones 
of uppermost amplitudes are better defined. The spatial 
variation of the ground accelerations is complex and its 
connection with the thickness of the clay deposits starts 
to be clearer. However, the southern transition zone is still 
a region with poor spatial definition.

September 19th 2017 The intermediate-depth nor-
mal-fault earthquake occurred approximately 120 km 
away from Mexico City (Mw 7.1), produced the collapse 
of more than 50 structures in the capital city, which 
resulted in more than 330 deaths. This has been the most 
intense earthquake to hit Mexico City since the Micho-
acán event. Preliminary studies of the characteristics of 
collapsed buildings shown that the losses were primarily 
located in Zones IIIa and IIIb (subdivisions of Lake Zone) 
of the microzonation of the building code, regions with 
total thickness of soft clay deposits between 25 and 40 m 
and by predominant periods of vibration between 1 s 
and 2 s.

With 48 stations registering the movement, a valuable 
set of PGAs could be related to a broad range of funda-
mental periods and stratigraphies. From these sites 10 
acceleration stations were selected to test the network and 
the rest were left for training. Between the many different 

Sta�on ActualValue Predicted Value Absolute error Rela�ve error
FJ74 91.0565 90.18 0.8765 0.00963
EO30 82.1321 82.49 -0.3579 0.00436
MT50 58.2667 76.8 0.3767 0.00647
CO56 113.992 132 -7.008 0.06148
NZ31 97.7278 78.9 1.2278 0.01256
JA43 106.286 103.5 2.786 0.02621
SI53 177.565 170.35 7.215 0.04063
BO39 95.1432 99.55 -4.4068 0.04632
CE23 59.9871 62.02 -2.0329 0.03389
DM12 90.5161 83 0.5061 0.00559
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Fig. 8   Predicted and actual values for testing samples, the Sept 
19th 2017 event
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architectures tried the 4-100-100-1 structure was con-
sidered the optimal. The predicted and actual values of 
PGAs, for the training and test validation samples, are very 
closer (Fig. 8). This neural model was used to construct the 
2D variation, shown in Fig. 9 (on a grid every 50 m). The 
remarkable capacity of the NN for predicting the PGAs in 
the three different geotechnical zones can be seen. The 
collapsed buildings are concentrated around 120-240 cm/
s2 (Zones IIIa and IIIb, right on the border with the Transi-
tion Zone) but the highest levels of PGAs were generated 
in a not completely-defined geotechnical zone with evi-
dence of considerable topographic effects.

After an earthquake like the one in 2017, with the dam-
ages and human casualties recorded, it is very important 
to know the PGAs that were reached at every point of 
the metropolis (potential sites to develop constructions). 
For this purpose, normally interpolation methods such 
as those shown in the Fig. 10 are used. The techniques 
assessed include deterministic and stochastic meth-
ods (Inverse Distance Weighting, Radial Basis Function, 

Local Polynomial and Kriging). Selecting the appropriate 
method is fundamental so it is very important to point out 
the differences between the distributions calculated from 
the different schemes. In Table 3 the values of accelera-
tions measured in six stations are compared with those 
obtained from the contours derived from each method. It 
is important to note that these cases were used to develop 
the variations of the deterministic and stochastic methods, 
but they were not included to construct the NN model so 
they are “blind” cases.

In addition, the only tool capable of recognizing the 
natural obstacles (mountainous units) and the geotech-
nical zoning is the NN. The neural contours even show an 
important variation in the Hill Zone, which is in agreement 
with the recognized differences between materials in the 
region (i.e. rock, rock-like, stiff materials). The definition 
of the differences between Transition and Lake is very 
remarkable when compared with the spatial determina-
tions derived from the traditional methods. The defini-
tion of the differences in the transition is very remarkable 

Fig. 9   Distributions calculated 
from Neural Network
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Fig. 10   Distributions calculated from different methods of interpolation

Table 3   Values of accelerations 
measured during the 
September 19th 2017 
earthquake in six stations 
compared with those obtained 
from the contours derived 
from each method, for the NN 
these stations were test cases

Station Acceleration 
registered

Neural network Inverse distance Radial basis Local polynomial Kriging

Peak ground acceleration
 EO30 82.1321 82.49 95.94 85.49 93.89 86.1
 FJ74 91.0565 90.18 103.82 47.83 79.84 56.92
 JA43 106.286 103.5 102.01 98.11 106.29 102.6
 SI53 177.565 170.35 108.65 133.41 120.29 117.67
 BO39 95.1432 99.55 97.33 107.62 89.11 102.72
 CE23 59.9871 62.02 102.72 113.07 77.03 109.52
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when compared with the spatial determinations derived 
from the traditional methods. This is very important when 
dealing with zoning for building codes because the area 
responds to seismic inputs in a chaotic or undeterministic 
manner, the display with the conventional methods could 
minimize or oversimplify this fact.

4 � Conclusions

Conventional interpolating estimators require a great 
number of measurements accessible, what is generally 
impractical. In this investigation, NNs are presented as a 
flexible, efficient and convenient multiparametric-tool for 
the interpretation of geotechnical and seismological infor-
mation for modelling the spatial variation of PGAs. The 
neural technique can be used to integrate systematically 
the results of soil monitoring and exploration, handling 
the inherent in situ testing uncertainty and taking advan-
tage of broad stratigraphic descriptions. The presented 
results prove that NNs are able to better define the shape 
of accelerations contours that are limited by natural acci-
dents and the complex characteristics of soil deposits.

Between the advantages of using NNs in the spatial 
interpolation of this important seismic variable we can 
mention:

•	 Able to recognize very complex relationships between 
incoming seismic shocks and the reaction pattern of 
specific soil columns.

•	 The NN is straightforward to use and to implement in 
practice. Having reliable accelerations predictions in 
regions where seismic monitors are not available is by 
far the most attractive aspect of this neural model.

•	 Compared with the other interpolation techniques, the 
NN is relatively tolerant to noisy cases with remarkable 
good predictive capabilities

•	 The integration of the neural model and their results in 
a GIS is absolute.

While some of the disadvantages that the authors have 
been able to recognize are:

•	 It is still evident that the NN needs as many training 
cases as possible.

•	 For phenomena such as seismic in which the absence 
of data is a constant, overfitting is a very high risk, 
being higher the smaller the test set.

•	 Derived from its black box nature, the interpretation 
of the internal behavior of the network is very difficult 
and this is a limitation to achieve acceptance among 
professionals involved in the subject.
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