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Abstract
This paper provides a new simple, nonparametric method that directly elicits a joint weighting function to be immedi-
ately associated with multi-attribute utility under uncertainty. The method allows to include the subjective perception 
of probabilities and consequences in the decision-making process while dealing with multi-attributes. The concept was 
only possible when dealing with one outcome; this study demonstrates that it can be achieved for multiple outcomes 
by mean of a parametric method. First, the newly proposed procedure is described. Then, the experimental protocol is 
presented while applied to the performance-based earthquake engineering (PBEE) methodology. The decision-making 
process of PBEE is improved by including the preferences of the decision maker, which is usually the owner. This improve-
ment is important, especially in seismic risk mitigation, because the problem involves low probabilities, which may 
be inaccurately estimated or even unknown, and these are coupled with catastrophic events. Such combined factors, 
when objectively weighed, lead to decisions counter to the distorted perception of probabilities and consequences that 
reflect the implicit desires of the decision maker. Using the newly proposed method, the owner, whose own preferences 
are elicited, is more likely to embrace the solution since he is involved in the decision process. The results and implica-
tions of the analysis are discussed showing the difference in results while including the joint weighting function in the 
decision-making procedure. The method, which is a step forward in multi-attribute utility theory, is not restricted to the 
decision-making process applied to PBEE but can be implemented to any multi-attribute decision analysis problem.

Keywords Decision analysis · Multi-attribute utility · Joint weighting function · Strengthening of structures · 
Earthquakes · Risk analysis

1  Introduction: the decision analysis 
process under uncertainty

Probability encoding in uncertain situations is an old prob-
lem. Bernoulli [1] raised the issue of subjective probabil-
ity. However, he did not offer any specific methodology of 
elicitation. Subjective probabilities were introduced in [2] 
and then axiomatized in [3], where the certainty equiva-
lent method, CE, was used to encode the unique distri-
bution of subjective probability. Later, Spetzler and Staël 
Von Holstein [4] examined different alternative encoding 
procedures to obtain subjective probabilities. Encoding 

procedures require that the subject responds to a set of 
questions either directly by providing numbers as answers 
(i.e., either values or probabilities; this method is known 
by judged probabilities method) or indirectly by choosing 
between simple bets (this method is known by choice-
based method). In the indirect method, the bets are 
adjusted, according to the subject’s response, until he is 
indifferent to choosing between them. Moreover, Spetzler 
and Staël Von Holstein [4] distinguished further, according 
to the response mode chosen, i.e., whether a probability or 
a quantity had to be the answer to the question.
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Meanwhile, decision models under risk evolved and 
considered decision weights. Indeed, in experimental and 
real-life situations, people do not conform to the expected 
utility theory of von Newman and Morgenstern [5] and 
violates the axioms. Thus, Quiggin [6] introduced the 
theory of cardinal utility, and decision weights to general-
ize the expected utility theory. The aim is to analyze the 
phenomena associated with the distortion of subjective 
probability. Decision weights can be obtained from the 
decumulative probability distribution through a probabil-
ity weighting (or probability transformation) function, as in 
the rank-dependent model [6] or the cumulative prospect 
theory [7]. In the latter, a probability transformation func-
tion is elicited for gains and another for losses; gains and 
losses are being measured with respect to some anchored 
origin, as in [8] or in prospect theory [9].

Parametric methods have been most frequently used 
to elicit probability weighting functions. Many presented 
approaches that specify parametric forms for these func-
tions and then estimated them through standard tech-
niques [7, 10–12]. However, these approaches made infer-
ences about their functional forms. Therefore, Abdellaoui 
and Munier [13] presented a nonparametric method for a 
decision model using a univariate value function. Wu and 
Gonzalez [14] avoided the parametric estimation problems 
by testing simple preference conditions for standard von 
Neumann Morgenstern utility functions. Abdellaoui [15] 
used nonparametric methods at the level of individuals to 
elicit both the utility function—using Wakker and Denef-
fe’s method [16]—and the probability weighting function.

Later, in the mid-nineties, models were proposed to 
deal with uncertainty by mean of decision weights, and 
methods were proposed to elicit those decision weights. 
Several authors [12, 17–19] used variants of a decomposi-
tion model in which the decision weight assigned to some 
uncertain event results from a two-stage process: a subjec-
tive probability of the event results from the agent’s judg-
ment and is then transformed into a decision weight by a 
transformation function known from earlier experiments 
under rank-dependent expected utility, RDEU, under risk. 
Wakker [20] provided a decomposition model of decision 
weights, which [21] operationalized within one single 
experiment under uncertainty.

Few authors have tackled obtaining the probability 
weighting function in the case of many attributes. Using 
RDEU, Beaudouin et al. [22] elicited a probability weight-
ing function under risk for every attribute and found the 
weighting functions to be different according to the attrib-
ute considered. However, the latter method cannot be rec-
onciled with utility independence in the sense of Keeney 
and Raiffa [23], which is respected in the present paper.

Abdellaoui et al. [21] used a procedure to elicit and 
decompose decision weights for gains and losses under 

uncertainty, i.e., when “objective” probabilities do not exist. 
However, the procedure was not extended to the multi-
attribute theory; moreover, it could not elicit the joint 
weighting function.

Recently, many have proposed interesting works in 
multi-attribute utility theory (MAUT). Abbas and Bell [24] 
proposes a new independence assumption to help assess-
ment of multi-attribute utility functions. Bleichrodt et al. 
[25] demonstrate that standard sequences can also be 
used in MAUT where risk is assumed. Bosi and Herden [26] 
argue that the representation of a continuous multi-utility 
exists by considering adequate concepts of a continuity 
of a preorder. Durbach and Stewart [27] review multiple 
criteria decision analysis models used when the evalua-
tion of attributes is uncertain. Ekeland et al. [28] propose 
a multivariate extension of the notion of comonotonicity, 
which consist of simultaneous optimal rearrangements of 
two vectors of risk. Engel and Wellman [29] offer a new 
utilization of preference structure in multi-attribute auc-
tions. Galaabaatar and Karni [30] axiomatizes expected 
multi-utility representations of incomplete preferences 
under risk and under uncertainty. Galaabaatar and Karni 
[31] provide new axiomatizations of preference relations 
that exhibit incompleteness in both beliefs and tastes. 
Mongin and Pivato [32] present a ranking of multidimen-
sional alternatives. Andersen et al. [33] discuss the intem-
poral utility.

Some proposed specifically to elicit multi-attribute util-
ity functions [34, 35]. Others argued the proper scoring 
rules [36–38]. Many discussed the expected utility, such as 
[39–45], and [46] examined the conditional expected util-
ity. Others discussed ambiguity [47–53]. Wakker and Yang 
[54] analyzed the concave/convex utility and weighting 
functions. Some authors debated the preferences such as 
in [55–60]. Others discussed probabilities in [61–65].

Nevertheless, no work has been proposed to solve the 
problem of eliciting a joint weighting function. Hence, an 
innovative method to directly encode joint weights for the 
multi-attribute utility function under uncertainty condi-
tions is suggested in the present paper. A nonparametric 
(point by point) choice-based method is employed. This 
method helps identify and describe the true attitude of the 
decision maker toward probabilities when dealing with 
multi-attributes. Including people in the decision process 
allows them to comprehend and embrace their own way 
of thinking (or decision making) and decide based on it.

Moreover, this paper aims to improve the decision 
analysis model used in the performance-based earthquake 
engineering methodology (PBEE). The method intends to 
mitigate likely encountered seismic risk and deals with a 
specific construction. In this context, the newly proposed 
decision analysis method involves the owner in the deci-
sion-making process and helps him embrace his own 
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decision. It enables him to select among the projects of 
building rehabilitation based on his personal and subjec-
tive elicited utilities and probability functions. Thus, when 
informed not only about the risk but also about his risk 
attitude toward this specific situation, he will be hopefully 
more involved and can willingly take measures to help 
mitigate seismic threat faced by his structure. Such pro-
cesses are already used in the medical field since the mid-
twentieth century [66]. As noted by Charles et al. [67] and 
Parsons [68], the goal is to move from a paternalist pattern 
to include the patient in the decision-making procedure. 
This method will help the engineering profession to shift 
from the paternalist pattern when dealing with seismic risk 
and involve the community of owners, which are the ones 
who are funding the strengthening measures needed to 
mitigate those risks.

The proposed decision analysis method is not limited to 
be used in the PBEE context, and numerous other applica-
tions of this encoding methodology can easily be envisioned.

For that purpose, Sect. 2 presents the decision analysis 
existing methods used in multi-attribute utility theory, 
notes limitations, and possible needed development. Sec-
tion 3 proposes the innovative methodology to obtain the 
joint weighting function attached to the multi-attribute 
utility function. Section 4 offers the case study of perfor-
mance-based earthquake engineering, and the improve-
ments proposed by using the already existing decision 
analysis models, and specifically the decision analysis 
method proposed in this paper. Section 5 shows the vali-
dation of the proposed decision analysis method through 
the experimental economy applied to the PBEE case study. 
The results of the experiment are offered. Finally, Sect. 6 
concludes the paper.

2  Decision analysis in multi‑attribute utility 
theory: existing methods

One of the models, which is still widely used in risk analy-
sis, is the von Neumann Morgenstern. The risk attitude of 
the decision maker is taken into account through the von 
Neumann Morgenstern utility function. The score of some 
project is then defined for each possible outcome xi, with 
discrete probabilities pi for each event i (i = 1, 2, …, n), and 
a von Neumann Morgenstern utility function, ui (.):

The von Neumann Morgenstern utility reflects the pref-
erences with respect to each attribute or outcome con-
sidered. But as already mentioned, in experimental and 
real-life situations, people do not conform to the expected 

(1)
n∑

i=1

piu(xi)

utility theory of von Newman and Morgenstern [5] and 
violates the axioms. This violation highlighted the fact that 
people might also subjectively consider the probabilities 
and not just the outcomes. Therefore, the research that 
followed the “Allais Paradox” has shown that individuals 
do transform given probabilities into nonadditive deci-
sion weights πi (case of risk) and implicitly make use of 
risk measures, which are similar to decision weights, 
sometimes called nonadditive probabilities [69]. Aiming 
to study the phenomena associated with the distortion 
of subjective probability, Allais [70] proposed a deci-
sion analysis model which is the risk version of the rank-
dependent utility model (RDU) proposed by Quiggin [71, 
72]. The latter makes use of both the probability transfor-
mation function w(p) and the standard utility function u(x). 
w(p) is defined on the domain [0, 1] of the decumulative 
probability distribution, such that w(1) = 1, w(0) = 0, and for 
all p in this domain, w(p) > 0. Paying attention to the fact 
that the outcomes and their associated probabilities are 
indexed in such a way as x1 < x2 ··· < xn, the corresponding 
score functional for some lottery P can be described by:

The uncertainty version of this type of decision model 
is only contained in (3), without the possibility to connect 
the decision weights to probabilities, as in (4). If the out-
comes were mixed, i.e., losses and gains, the cumulative 
prospect theory model, CPT, with different probability 
weighting functions  w+ for gains and w− for losses, would 
be the best choice. In the case where only losses are 
addressed (since the PBEE case study presented in Sect. 4 
deals with losses), RDU is the most suitable choice.

Given that the set of consequences is multidimen-
sional, a multi-attribute utility function f over the set X of 
all attributes is needed. The multiplicative form of the util-
ity function is presented in Keeney and Raiffa [23]. Even 
though it is and can be developed for the case of n attrib-
utes, the case of n = 3 and X = {X1, X2, X3} is presented here 
(as the PBEE case study given in Sect. 4 deals with three 
attributes). It rests on the assumption that “if X1 is utility 
independent of {X2, X3}, and if {X1, X2}, and {X1, X3} are pref-
erentially independent of X3 and X2, respectively, then

(2)VRDU(P) =

n∑

i=1

�iu(xi)

(3)

where ∀i = 1, 2,… , n − 1,

�i = w

(
j=n∑

j=i

pj

)
− w

(
j=n∑

j=i+1

pj

)
,

and for i = n �n = w(pn)

(4)K u
(
x1, x2, x3

)
+ 1 =

3∏

j=1

[
K kjuj

(
xj
)
+ 1

]
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If the interval of the jth attribute is taken as being [ x0
j
 , 

x∗
j
 ], then:

All the kj’s are scaling constants. K is an additional scal-
ing constant given by Eq. (6). If K = 0, then (5) reduces to 
an additive form described by:

Equation (5) can be used in the framework defined by 
(3) or (4), as shown in Miyamoto and Wakker [73], and in 
Dyckerhoff [74]. The difficulties, arising when the w(p) 
function takes a specific form for each attribute, were 
shown in Beaudouin et al. [22].

Now that the utility function can be computed using 
[23]. In order to be able to compute the distorted function 
of probabilities w(p) that will help calculate VRDU in multi-
attribute utility theory (MAUT). The method is proposed 
to estimate the distorted probability of each outcome (pi) 
such as in [15], but no technique until now is proposed 
to compute the w(p) when this probability is attached to 
all the outcomes. The method proposed in Sect. 3 allows 
computing the function w(p) related to all outcomes or 
the joint probability in multi-attribute utility theory, which 
helps to obtain VRDU in MAUT.

3  The suggested procedure: multi‑attribute 
utility function and joint weighting 
function

In this section, a nonparametric method is proposed to 
elicit both a multi-attribute utility function and a joint 
weighting function associated with this multi-attribute 
utility. It enables the evaluation of some prospect P, 
using the RDU [70, 71] or, if the probabilities are unknown 
(uncertainty), nonadditive multi-attribute utility weights—
the weighting function denoted as in [74] by w or w(p). 
Even though the method is presented here for three 
attributes (since the PBEE case study is limited to three 
attributes), the theory similarly holds and can be straight-
forwardly done for n attributes.

3.1  Elicitation of the partial utility functions

The three chosen attributes (cost, downtime, and 
deaths) are indexed by j and denoted by xj (j = 1, 2, 

(5)
with k1 + k2 + k3 + Kk1k2 + Kk1k3 + Kk2k3 + K2k1k2k3 = 1

uj(x
0
j
) = 0, uj(x

∗
j
) = 1, j = 1, 2, 3,

and similarly u(x0
1
, x0

2
, x0

3
) = 0,

u(x∗
1
, x∗

2
, x∗

3
) = 1.

u(x
1
, x

2
, x

3
) = k1u1(x1) + k2u2(x2) + k3u3(x3), with k1 + k2 + k3 = 1.

…, m). As a first step (step 1), the three partial utility 
functions related to the three attributes were elicited. 
For this purpose, the method used in [15, 16] was fol-
lowed. Abdellaoui [15] process follows the approach 
suggested in Wakker and Deneffe [16] to elicit the util-
ity functions. A “standard sequence” of outcomes, i.e., a 
sequence of equally spaced outcomes in terms of utility, 
was constructed. The primary advantage of the method 
is its robustness to any transformation of probabilities. 
Indeed, the procedure works even when the probabili-
ties are unknown.

The standard sequence obtained from the elicitation of 
some partial utility function uj(xj) is constructed as follows 
(j = 1, 2, 3). An outcome x1

j
 was determined to make the 

subject indifferent between the prospects ( x0
j
 , p; Rj, 1 − p) 

and ( x1
j
 , p; rj, 1 − p), denoted ( x0

j
 , p; Rj) and ( x1

j
 , p; rj), respec-

tively, where x1
j
 < x0

j
 < Rj < rj ≤ 0 are the negative real num-

bers in the case of losses, with some discretionary p ∈ (0, 
l). The amounts rj, Rj, and x0

j
 are held fixed for any given j. 

Then, an outcome x2
j
 was determined to make the subject 

indifferent between the prospects ( x1
j
 , p; Rj) and ( x2

j
 , p; rj). 

Under RDU, the two obtained indifferences lead to the two 
following equations, for some given j:

The elicitation of the jth partial utility function related 
to the jth attribute leads to:

Therefore, x1
j
 , x2

j
 , …, xn

j
 can be determined as a 

decreasing standard sequence of losses, i.e., ∀j, a 
sequence xn

j
 < xn−1

j
 < ··· < x1

j
 < x0

j
 of equally spaced out-

comes in terms of utility. Thus, the following equation is 
obtained:

The same procedure is repeated to construct the other 
standard sequences in eliciting the other partial utility 
functions uj(xj), with the same property holding for all 
attributes j. Finally, we note that in the case where the 
subject is an EU maximizer (i.e., does not distort probabili-
ties, but considers them objectively), the same concept 
is applied, except that the particular case of w(p) = p is 
obtained, where w is the probability weighting function.

(6)
w(p)u

(
x0
j

)
+ (1 − w(p))u

(
Rj
)
= w(p)u

(
x1
j

)
+ (1 − w(p))u

(
rj
)

(7)
w(p)u

(
x1
j

)
+ (1 − w(p))u

(
Rj
)
= w(p)u

(
x2
j

)
+ (1 − w(p))u

(
rj
)

(8)

u1

(
x1
j

)
− u1

(
x0
j

)
= u1

(
x2
j

)
− u1

(
x1
j

)
= ⋯ = constant.

(9)
u(xn

j
) − u(xn−1

j
) = u(xn−1

j
) − u(xn−2

j
) = ⋯ = u(x1

j
) − u(x0

j
).
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3.2  Elicitation of the joint weighting function

This paper proposes to innovate the decision analysis the-
ory, namely to directly elicit the joint weighting function. To 
the best of our knowledge, no method exists to solve this 
problem.

In [15], the standard sequence of outcomes constructed 
above in step 1 (eliciting the partial utility function) is used 
in simple risky choices to obtain a standard sequence of 
probabilities, i.e., equally spaced probabilities of each 
attribute successively (j = 1, …,m) in terms of the weight-
ing function. However, the proposed method tackles the 
joint probability weighting function of the multi-attribute 
utility function. It derives from [16] as above, and also from 
the procedure in [23] used in the multi-objective case, but 
it does not reduce to any of those methods. Let us con-
sider the above-defined sequences x0

j
 , x1

j
 , x2

j
 , …, xn

j
 , for 

j = 1, 2, 3. Consider now the probabilities pi, i = 1, …, n − 1, 
satisfying indifference between the following lotteries, 
where each lottery encompasses elements of all three 
attributes:

Relation (11) means that the subject is indifferent between 
the lottery, with  pi giving the best outcome ( xn

1
 , xn

2
 , xn

3
 ) and 

(1 − pi) giving the worst outcome ( x0
1
 , x0

2
 , x0

3
 ) on one hand, 

and on the other, the certain outcome ( xi
1
 , xi

2
 , xi

3
 ) obtained 

from the three standard sequences previously elicited for 
every i = 1, …, n − 1, where xn

j
 < ··· < x0

j
 < 0, for j = 1, 2, 3. Such 

indifference implies:

Knowing that u(xn
1
 , xn

2
 , xn

3
) = 1, and u(x0

1
 , x0

2
 , x0

3
) = 0 (hence, 

all our partial utilities are in fact disutilities, the best outcome 
having u = 0, the worst u = 1), we obtain:

Because u ( xi
1
 , xi

2
 , xi

3
 ) can be computed from the global 

utility function, w(pi) can be obtained easily.
Therefore, the assessment of a standard sequence of out-

comes and the construction of the indifferences (12) allow 
direct elicitation of the joint weighting function w related to 
the multi-attribute utility function straightforwardly.

(10)

[(xn
1
, xn

2
, xn

3
), pi ; (x

0
1
, x0

2
, x0

3
)] ∼ [(xi

1
, xi

2
, xi

3
), 1; (x0

1
, x0

2
, x0

3
)]

(11)

w
(
pi
)
= [u(xi

1
, xi

2
, xi

3
)

− u(x0
1
, x0

2
, x0

3
)]∕[u(xn

1
, xn

2
, xn

3
)

− u(x0
1
, x0

2
, x0

3
)], (i = 1,… , n − 1)

(12)w
(
pi
)
= u(xi

1
, xi

2
, xi

3
); i = l,… , n − 1

4  An improved decision analysis model 
for performance‑based earthquake 
engineering

The method we propose in this article aims to improve 
the decision analysis model proposed for the perfor-
mance-based earthquake engineering PBEE methodol-
ogy developed at the Pacific Earthquake Engineering 
Research Center PEER, among others. It is described in 
the PEER report 2005/2011 [66]: “This method is defined 
as design, evaluation, and construction of engineered 
facilities whose performance under common and extreme 
loads responds to the diverse needs and objectives of 
owner–user and society.” The assessment of the perfor-
mance method addresses a facility defined by its location, 
design (structural and non-structural), and site conditions. 
It embodies four stages: the hazard analysis, the structural 
analysis, the damage analysis, and the loss analysis. Each 
stage considers one of the four variables: intensity meas-
ure (IM), engineering demand parameter (EDP), damage 
measure (DM), and decision variable (DV) such as the total 
repair cost, the repair duration, and the number of casual-
ties (for example dollars, downtime, and deaths).

One is thus led to the framework equation for perfor-
mance assessment for the desired realization of the deci-
sion variable, such as the mean annual frequency MAF of 
the decision variable DV, λ(DV), in accordance with the 
total probability theorem:

This integration implies that the conditional prob-
abilities G(EDP|IM), G(DM|EDP), and G(DV|DM) need to 
be assessed parametrically over a suitable range of levels 
of the damage measure DM, the engineering demands 
parameter EDP, and the intensity measure IM. PBEE is thus 
a probabilistic method accounting for all uncertainties in 
all four assessed stages. It is not just based on “building 
codes” but considers decision analysis and risk manage-
ment. Thus, it helps implement more cost-effective solu-
tions and prevents executing the uneconomical solution 
of strictly applying the current seismic code provisions 
proposed for new buildings. Indeed, uneconomical solu-
tions to retrofit buildings are usually rejected by the own-
ers, who cannot afford the price. Moreover, earthquakes 
are mainly low-probability high-consequence events; 
therefore, the preferences of the owner need to be con-
sidered in the decision-making process, i.e., the distortion 
of the perception of consequences and probabilities if the 
latter are known.

(13)

�(DV) = ∭ G⟨DV�DM⟩dG⟨DM�EDP⟩dG⟨EDP�IM⟩d�(IM)
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4.1  Evaluating alternatives

To evaluate alternatives, measures of effectiveness must 
be specified because they explicitly describe the poten-
tial impact on each of the involved agents (which are the 
owner such as the builder or building contractor, and the 
users of the considered facilities). The decision model 
(named 3D model) chosen by the committee of PEER con-
siders the three attributes (or decision variables): deaths 
(D), downtime (D), and cost in dollars (D). The attributes, 
as presented, are in the order of their importance to the 
owners; this order was obtained based on the statistical 
referendum [66]. The PBEE methodology helps to assess 
their value while the specific building is facing likely sce-
narios of a future earthquake.

The chosen model of cost, downtime, and deaths is 
widespread; it is the classical loss model used in perfor-
mance earthquake engineering worldwide since the PBEE 
was proposed. Many have used it, such as in [75, 76], and 
many codes adapted it, such as [77] or [78]. Moreover, this 
model is used for consequence-based risk management 
methodology at a city level, such as in Ergo a global plat-
form for loss estimations, in Hazus for the USA or SYNER-G 
methodology in Europe using Capra among others.

This paper limits itself to the three mentioned attrib-
utes, which are the most decisive ones because techno-
logical advances allow a better understanding of each one 
of them. Indeed, many methods are available to evaluate 
damage fragility functions needed to evaluate those 
attributes. Other, less important attributes, if found, such 
as injured and environmental component, might be more 
difficult to quantify currently [79].

4.2  The decision analysis process

The PBEE decision analysis process [66] singles out only 
one decision variable from the multi-criteria decision 
model. The procedure can be improved by establishing 
that the optimal decision can be obtained by consider-
ing a multi-criteria model that considers the subjective 
evaluation of the criteria: cost, downtime, and deaths. 
Such preferences (i.e., the subjective view of the owner 
regarding the three attributes) may exclude strengthening 
of the whole structure, which is very costly, and might be 
unaffordable for the owner, who will reject the strength-
ening project.

Some authors, as [80], have considered the expected 
utility in making seismic risk management decisions for 
individual buildings, using assembly-based vulnerability 
methodology. In [80], Porter used a parametric method 
to elicit an exponential utility function. Recently, Cha 
and Ellingwood [81] studied the role of risk aversion on 
seismic risk mitigation of building structures. They used 

a parametric cumulative prospect theory model, CPT, 
which has the advantage of handling mixed lotteries, 
i.e., loss and gain prospects [7].

In this paper, we choose a more suitable decision anal-
ysis model to apply to the specific case of the PBEE deci-
sion analysis process, allowing to mitigate the seismic 
risk. As noted in Sect. 2, in the case where only losses are 
addressed, RDU is the most suitable choice. Moreover, it 
was proved that RDU is suitable for low-probability high-
consequence events [82]. Since the 3D model of cost, 
downtime, and deaths is used in the PBEE case study, the 
attributes or outcomes are limited to the case of n = 3.

In the end, after performing all elicitations and 
computations, it will be possible to compare all likely 
proposed strengthening projects based on VRDU. Thus, 
instead of using the mathematical expectation through 
the formula U(P) =

∑n

i=1
pixi or the maximization of the 

expected utility, with u being a logarithmic (or nonlin-
ear) function U(P) =

∑n

i=1
piu(xi) , it is possible to compare 

the total subjective evaluation of the decision maker 
through the formulas presented in Eqs. (3) and (4). The 
highest VRDU is retained as the best project from the 
point of view of the decision maker.

Finally, in Sect.  5, the proposed decision analysis 
method proposed in Sect. 2 is validated through the 
experimental economy applied to the PBEE real case 
study. We note that in this paper, the values of the alter-
natives of the 3D model were not computed since they 
are already calculated in the report [66]. Even though the 
PBEE methodology is a lengthy process and needs spe-
cific competence, it is already available to all. The work 
in this paper is limited to improve the decision analysis 
model applied to PBEE.

5  Applying the procedure: the experimental 
protocol

As we proved previously, the function representing our 
case best is the RDU functional; therefore, a probability 
weighting function in addition to the utility function is 
needed. In this case, the only method that can elicit the 
utility function without prior knowledge of the weight-
ing function w(.) is the trade-off method (TO) [16].

To elicit the probability weighting function and the 
utility function of the decision maker, a new method was 
used through a computer algorithm, which was devel-
oped borrowing from the method in [16] and the bisec-
tion method in [15]. The conducted experiment and the 
employed protocol are described. Figure 1 shows the 
flowchart of the experimental protocol.
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5.1  Subjects stimuli and procedure

All subjects were civil engineers (either project manag-
ers, PhDs or endowed with some substantial working 
experience in the field, or students in their last year of a 
civil engineering school). Their engineering background 
and practical experience allowed them to understand 
real engineering concepts behind the decision-making 
process. Participants were motivated by their willingness 
to help scientific research in their field moving forward; 
therefore, they were not paid. As noted in [83], “the results 
of choice-based experiments rather than judgment-based 
experiments do not most of the time substantially depend 
on a compensation scheme.”

Participants were explicitly told and also read the fol-
lowing statement: in this experiment, you are, as a Civil 
Engineer, in charge of choosing a civil engineering reha-
bilitation project taking into consideration three factors, 

which are: the cost of rehabilitation, the downtime (time 
needed to accomplish this task), and deaths that could 
result, should a disaster, i.e., an earthquake occurs. You are 
responsible for managing the situation, finding the best 
compromise between the cost of strengthening, down-
time, and likely human lives’ losses.

This section describes two experiments that elicit, 
under RDU, the utility function u(x

1
, x

2
, x

3
) and the prob-

ability weighting function. A significant effort was made 
to collect high-quality data from 30 subjects who were 
recruited to participate in these experiments. In this 
experience, all prospects entailed loss outcomes; the first 
attribute (cost) varied from − 5 M€ to − 605 M€, the sec-
ond attribute (downtime) from − 10 to − 10,810 days, and 
the third attribute (number of deaths) from − 5 deaths to 
− 2405 deaths. As noted in [15], “to make the curvature of 
the utility function sufficiently pronounced, it is necessary 
to investigate a sufficiently wide interval of outcomes.” The 

Fig. 1  Flowchart of the experi-
mental protocol
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values of the considered intervals for each outcome were 
chosen to ensure that the obtained standard sequence 
reached or contained the real estimated value of the 
project through the loss evaluations model in the PEER 
report 2005/2011 [66]. Indeed, as noted in [15], the out-
comes need to be chosen such that the range of outcomes 
between them includes all outcomes of interest.

The experiments were conducted at an individual level. 
Subjects were seated in front of a personal computer 
and were encouraged to take their time. Many were not 
familiar with probabilities and expectations. Thus, they 
were all given the needed explanation of the information 
regarding “choice trials” approximately 10–15 min before 
the experiment started. Then, subjects participated in 
a 30–40 min session to perform trade-off experiments, 
denoted by TO experiments, which consisted of an out-
right choice between two prospects, followed by probabil-
ity weighting experiments indicated by PW experiments, 
then by the experiments to elicit the scaling constants, 
and finally by the consistency checkup. The answers to 
the questions raised were used by the subsequent ones. 
Before applying the procedure, the weighting of the 
assumptions is required.

5.2  Assessing the assumptions

5.2.1  Utility independence

The utility independence definition is presented in [84]. A 
method to test this assumption is presented in [23], where 
it was clearly noted that utility independence is a neces-
sary condition to build the multi-attribute utility function, 
as per the definition offered in Sect. 2. In the following, x

1
 

is the index of cost, x
2
 stands for downtime, and x

3
 repre-

sents the number of deaths. Utility independence (UI) of 
downtime x

2
 and deaths were estimated, i.e., x

3
 UI x

2
 and 

conversely x
2
 UI x

3
 . Additionally, the cost and deaths are 

UI: x
1
 UI x

3
 and x

3
 UI x

1
 . Finally, the cost and downtime were 

considered to be UI ( x
1
 UI x

2
 and x

2
 UI x

1
 ) with a margin 

of error of approximately 10%. Indeed, only one person 
noticed that downtime is primarily related to cost, whereas 
two others evoked the relation as having very weak mean-
ing, hence the 10% rough estimate. This margin is accept-
able to state the independency of those two outcomes 
[23]. The procedure was detailed in [79] following the 
methodology and recommendations presented in [23].

5.2.2  Stochastic independence

Because usual methods compute multi-attribute scores 
from the partial utilities’ scores, stochastic independence 
is required if one wants to avoid very complex computa-
tions. In this method, we do not elicit three subjective 

probability functions attached each to its related attrib-
ute. Indeed, the proposed method directly addresses 
multi-attribute utility and its joint probability distribu-
tion, so that the stochastic independence assumption 
is not needed.

5.3  Encoding utility functions

For the first attribute, the outcomes |x0|, |R| and |r| (see 
the section above) were fixed at the following amounts: 
− 5 M€, − 4 M€, and − 3 M€, respectively. For the second 
attribute, the outcomes were fixed to − 10 days, − 3 days, 
and − 1 day, respectively. Finally, for the third attribute, 
the outcomes were fixed to − 5 deaths, − 3 deaths, and 
− 1 death, respectively. Indeed, Wakker and Deneffe [16] 
noted that the reference outcomes r, R are chosen close 
enough to each other so that the revealed sequence x1, 
x2, …, xn is sufficiently narrow and gives utility to the 
desired level of accuracy.

In these experiments, subjects were asked to choose 
among each pair of lotteries. Based on the answers to 
our choice questions for each of the three attributes, a 
standard sequence encompassing seven outcomes was 
constructed ( x1

1
 , x2

1
 , …, x7

1
 ), then ( x1

2
 , x2

2
 , …, x7

2
 ), and finally 

( x1
3
 , x2

3
 , …, x7

3
 ). The reason the choice-based method was 

used is clarified in [85]: “Choice is more consistent than 
matching.”

Seven iterations (questions) were needed to assess 
each outcome xi

1
 , i = 1,…, 7, of the standard sequence 

using the bisection method, which is described as fol-
lows: Suppose that xi−1

1
 is a known outcome. To deter-

mine xi
1
 , the subject is asked in the kth choice to choose 

between prospects A = (xi−1
1

 , p; − 4) and B = (xi
1k

 , p; − 3), 
where xi

1k
 is taken as the middle point of the interval of 

the “feasible outcomes” corresponding to the kth itera-
tion (question). The interval corresponding to the first 
iteration is [ xi−1

1
 , xi−1

1
+ Δ ]. The procedure followed by the 

computer algorithm used seven iterations to determine 
x1
1
 because convergence was already attained at the sev-

enth iteration. If the subject expresses the strict prefer-
ence of the prospect A, the next choice situation involves 
a modification of the prospect B to be more attractive by 
replacing xi

1k
 by the midpoint of the interval [ xi−1

1
 , Δ/2]. If 

the subject expresses the strict preference of the pros-
pect B, the next choice situation involves a modification 
of the prospect B to be less attractive by replacing xi

1k
 

by the midpoint of the interval [Δ/2, xi−1
1

+ Δ ]. As intro-
duced by Abdellaoui and Munier [86] in the “closing in” 
method, this process aims to reduce the interval con-
taining x1

1
 . Finally, the seventh iteration is the value cor-

responding to the middle point of the last interval and 
is considered to be x1

1
.
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This procedure is repeated for every i = 1, 2, …, 7; thus 
x2
1
 , x3

1
 , x4

1
 , x5

1
 , x6

1
 , x7

1
 were obtained successively. A similar 

procedure is also used in [21].
For the first attribute, |Δ| was fixed at 100 M€. For the 

second attribute, |Δ| was fixed at 1800 days. For the third 
attribute, |Δ| was fixed at 400 deaths. Once the standard 
sequence x1

j
 , x2

j
 , …, x7

j
 is obtained, the computer algorithm 

checks the subject’s reliability by asking him to choose 
again between two prospects corresponding to the fourth 
iteration for each xj, for j = 1, 2, 3, and i = 1, 2, …, 7.

To select a probability p for the process of eliciting the 
utility functions, [16] did not provide a precise technique. 
In [87], p had the value of 1/3, in [86], it was 1/2, and in 
[15], it was 2/3. The last author noted that “All of the recent 
experimental studies using the trade-off method pro-
duced very similar results.” It was believed that probabili-
ties close to one or equal to one half should be discarded 
to avoid any heuristic bias. Therefore, the probability 2/3 
was used, and the three partial utility functions based on 
the seven items of the standard sequence in each case 
were obtained.

5.4  Eliciting the joint probability weighting 
function

Using a single joint probability weighting function for the 
three attributes ensures that the global preference in the 
studied case is taken into consideration and guarantees 
that Keeney and Raiffa’s utility independence assumptions 
are respected.

The procedure is shown as follows. In the PW experi-
ments, the objective was to determine the probabilities 
pl, …, p6, p7; therefore, each subject was asked a new 
series of questions, with the goal of each question being 
to determine the pi for i = 1, 2, …, 7 that makes the sub-
ject indifferent between the outcome Ai

k
 = (xi

1
 , xi

2
 , xi

3
 ), a 

certainty outcome, and the prospect Bi
k
 , where Bi

k
 = ((x7

1
 , 

x7
2
 , x7

3
 ), pik; ( x0

1
 , x0

2
 , x0

3
)), k = 1, …, 7. For the first set of ques-

tions, to obtain p1, we have i = 1, and we start by p11 = 1/2 
as well as by the first outcome A1

k
 = (x1

1
 , x1

2
 , x1

3
 ). With x0

j
 and 

x7
j
 are the two interval limits of each attribute while vary-

ing j = 1, 2, 3, x1
j
 is the first value obtained from the stand-

ard sequences of each attribute while iterating j = 1, 2, 3. 
p1k is taken as the middle point of the “feasible interval” 
corresponding to the kth iteration (question). The inter-
val corresponding to the first iteration was [0, 1]. The 
procedure used by the computer algorithm is described 
as follows: If the subject expresses a strict preference of 
the prospect A (B), the next choice situation involves a 
modification of prospect B to be more (less) attractive by 
replacing p12 by the midpoint of the interval [0, 1/2] 

([1/2, 1]). A series of seven trade-offs is thus performed, 
and finally, the probability p1 is taken to be the middle 
point of the last interval. The procedure of the bisection 
method followed by the computer algorithm to deter-
mine the probability  pl is similar to the one used for 
obtaining the outcome x1

1
.

Then, for the second set of questions, we have i = 2, 
and we use the same method to obtain the probability 
p2. However, in the lottery, the first value obtained for 
the standard sequences was replaced with the second 
value obtained for the standard sequences, which is 
A2
k
 = (x2

1
 , x2

2
 , x2

3
 ), and we start with p21 = 3/4 for k = 1.

Seven choice questions were needed to assess each 
probability of the standard sequence. By repeating the 
trade-off series for every value obtained from the stand-
ard sequences x1

j
 , x2

j
 , …, x7

j
 , for each j = 1, 2, 3, the values 

p1, p2, p3, p4, p5, p6, p7 were obtained successively by per-
forming this trade-off series. Overall, each subject had 
to address even a series of seven choice questions 
because convergence was attained at the seventh itera-
tion. The reliability test in PW experiments is as follows: 
The subject is asked to choose again between the two 
prospects Ai

4
 and Bi

4
 for every i = 1, 2, …, 7.

5.5  Assessing the scaling factors kj’s 
and the constant K

Assessing the scaling constants is not an easy task. The 
frequently used method suggested in [23], which is reli-
able and practical in many case studies, did not give 
appropriate results in the offered application. The attrib-
ute “number of deaths” took all of the attention in the 
trade-off experiments and made it challenging to obtain 
logical and acceptable results. This shortcoming encoun-
tered by experts familiar with elicitation procedures, due 
to the delicateness of the process, is noted by Keeney 
and Raiffa [23] as follows: “A major shortcoming of both 
questions I & II is the use of extreme levels of the attrib-
utes, …., we must force the decision-maker to respond 
to questions that are much more difficult than would be 
theoretically necessary, … rank the ki’s for less complex-
ity, ….”. Therefore, Serquin [88]’s method was used here, 
with an adjustment in steps two and three; the order of 
the equations was changed but not the essential charac-
teristics of the methodology. The assessment, presented 
in the following, was performed on a subject-by-subject 
basis, given this delicate situation [79]:

The first step requires that the decision maker 
arranges the three attributes of cost, downtime, and 
deaths in the order of importance he associates with 
each of these attributes. Assume this order to be: 
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k3 > k2 > k1. As a consequence of this order, step two leads 
the decision maker to assess x

′

2
 using the indifference 

( x∗
1
 , x0

2
) ~ (x0

1
 , x

′

2
 ), which leads to the following equation 

k1 = k2  u2(x
′

2
 ). Thus, k1 as a function of k2 is obtained.

Step two requires the decision maker to decide 
between ((x∗

1
 , x∗

2
 , x∗

3
 ), p1; ( x0

1
 , x0

2
 , x0

3
)), and ( x0

1
 , x0

2
 , x∗

3
 ), until 

obtaining the value of p1, which produces indifference. 
Similarly, by replacing p1 in the following, when the sub-
ject comes in terms of x

′

3
 to the indifference ((x0

2
 , xREF

3
 ), 

p1; ( x0
2
 , x0

3
)) ~ (x0

2
 , x

′

3
 ), then k3 = u3(x

′

3
)/u3(xREF

3
 ) might be 

computed, where xREF
3

 = (x0
3
 + x∗

3
)/2. The expression of k3 

is free of w(p1), which was simplified during the compu-
tation, as shown by Serquin [88]. In step three, the same 
procedure is repeated, and it is required that the decision 
maker decides between ((x∗

1
 , x∗

2
 , x∗

3
 ), p2; ( x0

1
 , x0

2
 , x0

3
)) ~ (x0

1
 , 

x∗
2
 , x0

3
 ) until obtaining the value of p2, which produces 

indifference. Then, by replacing p2 in the following when 
the subject comes, in terms of x

′′

2
 , to the indifference ((x0

1
 , 

xREF
2

 ), p2; ( x0
1
 , x0

2
)) ~ (x0

2
 , x

′′

2
 ), then k2 = u2(x

′′

2
)/u2(xREF

2
 ) can be 

computed, where xREF
2

 = (x0
2
 + x∗

2
)/2. The latter indifference is 

free of w(p2), which was removed during the computation.
To calculate the utility function, K must be computed 

using the method in [23]. K results from computing Eq. (6), 
which can also be written as:

Because k1, k2, and k3 are known, the equation is left with 
only one unknown, K. As previously noted, if 

∑
ki ≠ 1 and ∑

ki > 1 , the utility function is multiplicative rather than 
additive.

5.6  Experimental results

Following the simple procedure described above, the 
joint probability weighting function was elicited. There-
fore, it was possible to translate the subjective evaluation 
of engineers into equations, which allowed for assessing 
the strategies to strengthen buildings to withstand future 
earthquakes.

For most subjects, the loss attributes’ cost, downtime, 
and number of deaths were found to have a convex utility 
function or a utility function that was close to a linear func-
tion, reflecting what is called, under EU, neutral behavior. 
Moreover, for most subjects, a very concave joint prob-
ability weighting function is obtained; therefore, when 
combined with the utility function, risk aversion could be 
expressed.

The largest value of the scaling constant was given 
to the attribute number of deaths, whereas the scaling 
constants related to cost and to downtime varied widely 
from one person to another. Experienced engineers gave a 
higher scaling constant to the attribute downtime over the 
attribute cost. Four different typical results and diagrams 

(14)K + 1 =
(
Kk1 + 1

)(
Kk2 + 1

)(
Kk3 + 1

)

related to the four subjects are offered. For the other 26 
subjects, similar results and diagrams are obtained.

As shown in Fig. 2, for the first attribute cost, subjects 1 
and 2 have an almost linear utility function, expressing a 
neutral attitude toward this attribute, whereas subjects 3 
and 4 have a slightly convex utility function. For the second 
attribute downtime, subject 2 has an almost linear utility 
function expressing a neutral attitude toward this attrib-
ute, whereas the subjects 1, 3, and 4 have a slightly convex 
utility function. For the third attribute number of deaths, 
all the subjects have a slightly convex utility function. Sub-
jects 1, 3, and 4, who are presented in the graphs below, 
have a concave joint probability weighting function, 
which, when combined with the utility function, might 
illustrate the case of a slightly risk-averse person. Subject 2 
has an S-inverse joint probability weighting function, with 
an inflection point near 1/3, which when combined with 
the utility function, might illustrate the case of a slightly 
risk-averse person for low probabilities and a risk-seeking 
person for moderate-to-high probabilities.

The scaling constant K for the first, third, and fourth 
attributes tended toward zero, reflecting that the utility 
function is close to the additive form; therefore, a certain 
meaning concerning the  ki’s can be deduced. All three 
subjects gave greater importance to the attribute num-
ber of deaths. The first then gave more importance to the 
attribute cost and then finally to the downtime. The third 
then gave more importance to the attribute downtime 
and then finally to the cost, and the fourth subject gave 
similar importance to the attributes downtime and cost. 
For the second subject, K was close to 0.5, which is far from 
the additive form; therefore, nothing can be deduced con-
cerning the meaning of the  ki’s. The results are shown in 
Table 1.

Experienced civil engineers agreed that the suggested 
decision path reflected the way that they believe that they 
approach their practical decisions. Inexperienced students 
in civil engineering were happy to discover their risk pro-
file; they agreed that the results reflected what they had 
been trying to choose during the experiment.

More consistency emerged among practicing engineers 
than among student engineers (all 17 engineers were con-
sistent, whereas only nine out of 13 students were consist-
ent), which may pertain to the fact that the formers are 
used to and are more expert in handling such types of 
decisions.

Finally, we compared the results obtained using the 
classical expected utility theory (using Eq. 1) to the ones 
obtained by the rank-dependent utility theory (RDU) in 
multi-attribute utility theory MAUT (using Eqs. 2 and 3). 
This was only possible now due to the obtained joint 
weighting function using the method demonstrated 
in this paper. The results are given in Table 2 for all four 
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subjects. It can be deduced that subjects evaluated the 
project differently while applying the expected utility 
(EU) and the RDU. For example, subject 1 and subject 2 
have quite similar assessed values under the EU, since they 
have pretty identical joint weighting functions, and the 
VRDU obtained were nearly identical. While for subject 2 
and subject 3 even though they have alike assessed val-
ues under EU, the obtained VRDU are very different since 
their joint weighting functions are different. This will 
likely lead to subject 2 and subject 3, making different 
decisions since they have evaluated the joint weighting 
function differently as a result of their different perception 
of probabilities and their behavior in uncertain environ-
ments. If we had only used the expected theory, we would 
have skipped this notion and suggested that they would 
have a similar final evaluation, skipping to describe their 
decision-making process correctly. Therefore, the joint 
weighting function allowed to describe more accurately 
their behavior, which will likely help them embrace the 
suggested strengthening solution proposed through the 
PBEE method.

6  Conclusion

This paper proposes an innovative approach to directly 
encode a joint probability weighting function when 
probabilities are unknown (uncertainty) or transformed 
for the multi-attribute utility function under uncertainty 
conditions is suggested. A nonparametric elicitation 
method (point by point) was used at the level of indi-
vidual subjects, which allows accurately describing the 
decision-making process for each subject in the context 
of a specific decision situation. This method respects the 
axioms of Keeney and Raiffa, and the constant K was 

Fig. 2  Utility functions of the attributes cost, downtime, and 
deaths, and the joint weighting function for the four subjects

Table 1  Coefficients  ki and K for four subjects

Subject k1 k2 k3 K

1 0.3839 0.1191 0.5265 − 0.0957
2 0.2508 0.2391 0.3980 0.4233
3 0.2710 0.3134 0.3717 0.1432
4 0.2573 0.2573 0.5356 -0.1489

Table 2  Results of the 
expected utility theory and the 
rank-dependent theory

Subject VEU VRDU

1 0.900674 0.428551
2 0.801895 0.651004
3 0.847332 0.428526
4 0.901146 0.428514
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elicited without using probability transformation in the 
computation. This method helps capture and describe 
the real attitude of the decision maker toward probabili-
ties when dealing with multi-attributes. The innovative 
decision analysis method is proposed to improve the 
decision process used in performance-based earth-
quake engineering methodology (PBEE), which aims 
to mitigate likely encountered seismic risk by a spe-
cific building. The decision-making process includes 
now the preferences of the owner while subjectively 
evaluating the low probability and catastrophic event 
of the earthquake. Thus, the decision maker can now 
recommend the optimal rehabilitation project accord-
ing to the owner’s preferences. By using this method, 
the owner is involved in the decision-making process, 
which will help him embrace his own decision analysis 
process. It allows him to select among projects of build-
ing rehabilitation, based on his personal and subjective 
elicited utilities and probability functions. Moreover, 
this method helps the engineering profession to shift 
from the paternalist pattern when dealing with seismic 
risk and involves the community of owners, which are 
the ones who are funding measures to mitigate those 
risks. Finally, the proposed decision analysis method is 
validated through the experimental economy applied 
to a real case study of performance-based earthquake 
engineering. It demonstrated that the joint weighting 
functions helped describe more adequately the deci-
sion-maker attitude and captured better its preferences 
than the expected utility model. Moreover, the decision 
analysis process presented in this paper, even though 
introduced to solve the problem of strengthening struc-
tures, is not restricted to the earthquake engineering 
field but can be used in any multi-criteria decision anal-
ysis application.
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