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Abstract
In this work, the homotopy structure (1 − p)L [f ] = −pN [f ] is considered to solve some newly developed nonlinear 
problems in fluid dynamics. In summary, deformation in homotopy series solutions occurs from the initial trial function 
to the actual solution. The main challenging part in many similarity equations associated with the boundary layer theory 
is to identify a certain quantity of the exact solution such as f ��(0) . This quantity is initially unknown and is automatically 
guessed through the zeroth function. Therefore, it makes sense that in the previous homotopy series solutions one would 
need at least another parameter i.e. the controlling parameter ( ℏ ) to handle the convergence through the so-called ℏ
-curves analysis and eventually get an approximate value for f ��(0) . Here it is accounted the basic homotopy structure 
with No controlling parameter ( ℏ ) and it is shown for the 1st time that the zeroth order solution in homotopy series may 
be potential to contain some certain quantities of the exact solution, here is to be f ��(0) ; i.e. f ��

0
(0) could be f ��(0) . This 

hypothesis is checked through a theorem, being totally linked to the Fixed Point Property (FPP), a topological invariant; 
i.e. being preserved by any homeomorphism. The theorem enables us Not only to check the validity of the hypothesis, 
but also to extract the value of the quantity as the unique description of the homotopy series solutions truncated at any 
order of approximation. The technique is initially introduced in a simple and straightforward manner and then it is applied 
to some fluid mechanical problems to be further compared with traditional homotopy analysis method, homotopy per-
turbation method and Numerical solutions. The outcomes indicated an excellent improvement by the present approach 
as only a few series terms were accounted to obtain highly accurate solutions.

Keywords  3-D MHD flow · 2-D flow of UCM fluids · Homotopy analysis method (HAM) · Homotopy perturbation 
method (HPM) · The homotopy contraction mapping technique (HCMT)
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1  Introduction

HAM in individual as described by Liao (e.g. [1–8]) contains 
several degrees of freedom; the choice for the initial guess 
(zeroth function, f

0
 ), the auxiliary linear operator (written 

as: L[f ] ), the controlling parameter ( ℏ ) and possibly addi-
tional homotopy functions. Indeed, as indicated by Liao 

himself in his numerous published papers (e.g. see [1–8]), 
these freedoms give the technique an excellent maneu-
verability to variety of nonlinear problems in a conveni-
ent manner. Later on, HPM is systematically described by 
He (e.g. [9–15]), in particular fixing the so-called control-
ling parameter (asserting that such a parameter has been 
heuristically introduced by Liao) to suggest (as He was 

Received: 14 May 2019 / Accepted: 16 August 2019 / Published online: 27 August 2019

Amin Jafarimoghaddam: Previously at the Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran.

 *  Amin Jafarimoghaddam, a.jafarimoghaddam@gmail.com | 1Independent Researcher, Tehran, Iran.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1114-z&domain=pdf


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1104 | https://doi.org/10.1007/s42452-019-1114-z

convinced with) a more compact algorithm. P.N. that, as 
argued by Liao [8], one still needs more rigorous math-
ematical proofs to distinguish HPM from HAM by the so-
called No-secular terms rules; and hence, HPM may not 
be considered as a more compact algorithm compared to 
HAM without this proof.

It should be mentioned that the controlling param-
eter is fixed in HPM and hence, the so-called No-secular 
condition is somewhat responsible for the convergence 
of homotopy terms; and without this condition, there 
would be No control on the convergence and therefore, 
HPM would become a subset of HAM (see [8, 12] to follow 
the arguments by Liao and He respectively about HPM).

In the present introduction, it is not intended to judge 
HPM and only the summary of some outcomes of this 
algorithm is placed to shortly review the literature.

As shown in many references such as [9–21], if the No-
secular term condition is successfully applied, the solution 
for the nonlinearity can be described in parametric forms 
(upon having any parameter in the problem) and free from 
the appearance of controlling parameter which needs fur-
ther analysis through ℏ-curves for the convergence issue.

Reviewing the above cited papers with regard to HPM, 
authors have mostly sought ways to ease obtaining higher 
orders of approximation mainly on the basis of parameter 
expansion methods (as a glance, parameter expansion 
method is a technique to somewhat manipulate the lin-
ear operator with additional parameters; enabling one to 
remove further secular terms occurring in higher orders 
of approximation) together with repeating the same rule 
(the condition of No-secular terms); and in this respect, 
functionalizing freedoms within the successful and easily-
iterative system of HAM has been less sought.

Parameter expansion method has been practiced previ-
ously by some authors and it appears that this technique 
is an advancement in HPM (e.g. see [16–21]); however, in 
most cases, dealing with complicated systems is the inher-
ent drawback of this technique to obtain higher orders 
of approximation (e.g. see [18, 21]). In addition, in some 
cases, this technique may reveal conditional solution and/
or the solution by this technique may Not be unique and 
it is Not even clear that the additional solutions are trivial 
or Not (e.g. see [21]).

By this research, the present author mainly wishes to 
introduce an open and masked topic in homotopy series 
analysis.

In homotopy, deformation occurs from the initial guess 
(zeroth series term) to the actual solution. Suppose that 
the trial function contains some certain target quantities 
of the exact solution, here is to be f ��(0) ; i.e. f ��

0
(0) is sup-

posed to be f ��(0) ; and hence, the induction that ‘the sum-
mation of this quantity generated due to the rest of the 
series terms should be zero’ is immediate. Indeed, this is an 

extension of the quote, initially postulated by Liao where 
he defines the initial guess in such a way satisfying the 
boundary conditions and hence, the boundary conditions 
for the subsequent linear equations are zero; P.N. that the 
boundary conditions are the certain quantities of the exact 
solution (see e.g. [1–8]).

By developing a theorem, it is shown that the above 
hypothesis is totally linked to the Fixed Point Property 
(FPP). The theorem Not only assesses the validity of the 
hypothesis, but also gives the value of the target quantity, 
being regarded as the unique description of the homotopy 
series solution at any order of approximation.

In the following, the new approach is systematically 
defined. Later, the 3-D Magnetohydrodynamics (MHD) 
flow due to an exponentially stretching surface and the 
2-D flow of Upper Convected Maxwell (UCM) fluids over a 
linearly stretching sheet are solved via various analytic and 
numeric techniques. Examples illustratively show that the 
proposed approach is extremely straightforward, highly 
accurate and promising.

2 � Methodology

2.1 � The homotopy contraction mapping technique 
(HCMT)

The basic idea is to hypothesize that the leading term 
(series zeroth term) is potential to contain any certain 
quantity of the exact solution (such as f ��(0) ; i.e. f ��

0
(0) could 

be f ��(0) ). This hypothesis is checked in a detailed manner 
through a theorem as comes later (denoted as Theorem 2 
in this paper).

For this purpose it is initially referred to the following 
theorem.

Theorem  1  (Banach’s Contraction Principle) Let (X , d) 
represent a complete metric space and f ∶ X → X  be a 
contraction, i.e. there exists k ∈ (0, 1) such that for each 
x, y ∈ X ∶ d(fx, fy) ≤ kd(x, y) . Then, f  has a unique fixed 
point in X  , say x∗ and for each x

0
∈ X  the infinite sequence 

of function composition converges to this fixed point {
f n→∞x

0

}
= fofof … fx

0
= x∗ [22]. For more information 

regarding the proof of the theorem and further extensions 
interested readers are referred to the in-depth study of Ref. 
[23–28].

Definitions  Consider a nonlinear problem in a general 
form as: N[u(r)] = 0, r ∈ � and the boundary conditions 

as: B
(
u,

�u

�n

)
= 0, r ∈ � .
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Where N is a general differential operator, u(r) is a solu-
tion defined in r ∈ � , B is a boundary condition operator 
and �  is a boundary of domain �.

Consider the homotopy (1 − p)L[u(r), �] = −pN [u(r)] ; 
with L being an auxiliary linear operator, p the embed-
ding artificial parameter ( p ∈ [0, 1] ) and � , an ini-
tially unknown parameter. P.N. that L is arbitrary, e.g. 
L[(⋅), �] =

�
n(⋅)

�rn
+ �

�
m(⋅)

�rm
 . In accordance with the above 

homotopy set-up, the initial solution is linked to p = 0 
and p = 1 recovers the actual solution and hence, on using 
the standard expansion u(r) = u

0
(r) + pu

1
(r) + p2u

2
(r) +⋯ 

the solution is described as u =
∑n→∞

i=0
ui . P.N., as dictated 

by Liao, the expansion method in HAM is normally Taylor 
method; however, as suggested by Sajid et al. [29], Taylor 
method works equivalently as the standard expansion 
method denoted above.

Lemma  Let �∗,m be the unique description of a certain 
quantity of the exact solution (say � ; e.g. � = f ��(0) ) after the 
mth order of approximation generated due to the homot-
opy construction defined above, and �∗

0
 the corresponding 

zeroth guess; i.e. 
∑m

i=0
�
∗
i
= �

∗,m ; then, �∗,m = �
∗
0

 holds if, 
∃� =

�
�
0
�
∑m→∞

i=0
�i = �

�
∶ � ∈ �.

Proof  The homotopy series is convergent on � implying 
the existence of a unique series solution for the nonlin-
earity. It follows that there exists a unique description of 
the solution for the mth order of approximation, i.e. �∗,m , 
satisfying � ∗,m→∞ = �  , and �∗,m has No dependency on 
�
0
 . With � = �

∗,m→∞ ∈ � , we can write �
0
= �

∗,m→∞ ; by 
induction, this also holds for �∗,m i.e. � ∗,m ∈ � and we can 
write �

0
= �

∗,m . Since �∗,m is unique, it follows that �
0
 is also 

unique, say �∗
0

 . � □

Theorem 2  Let Tm
�
�
0

�
=

m∑
i=0

�i be a mapping function.

If Tn→∞
m≥1

�
0
= TmoTmoTmo… Tm

(
�
0

)
= Cm holds for some 

�
0
 , then � = Cm→∞ ∈ � and Cm = �

∗,m is the non-trivial real 
solution of 

∑m

i=1
�i = 0.

Proof  Let the condition holds true. Suppose that 
Tm is invertible in a neighborhood of �∗,m . This gives 
Tm

(
Cm

)
= Cm . Since Cm is the unique fixed point of Tm , then 

by the lemma Cm = �
∗,m and it is the non-trivial real solu-

tion of 
∑m

i=1
�i = 0 . It follows that � = Cm→∞ ∈ � . � □

Remark  In fact, for the mth order of approximation by the 
homotopy construction defined earlier, whatever �

0
 is, it 

converges to the fixed value �∗,m through the recursive pro-
cess �

0,n+1 = Tm
(
�
0, n

)
, n = 0, 1, 2,… , ∶ �

0,n→∞ = �
∗,m = Cm ; 

meaning that the homotopy structure associated with 
the linear operator is self-corrector for � . Therefore, at this 

stage it is understandable that the strategy is indeed an 
insight into HAM preventing from unnecessary extra series 
terms and providing an optimized solution.

2.2 � Ex. 1: the 3‑D MHD flow due to an exponentially 
stretching surface

The basic equations and boundary conditions for such a 
flow can be found in several recent studies such as [30–35]:

Along with the following boundary conditions:

In Eqs.  1–3, M is the magnetic parameter and c is the 
stretching ratio. Moreover, c = 0 corresponds to the 2-D 
version, whilst c = 1 represents the axisymmetric flow.

Unlike the 3-D linearly stretching sheet flow, the above 
coupled system can be simply broken down (the system 
is scalable by g(�) = cf (�) ), a point which seems to be 
untapped in the literature. It can be easily shown that the 
above system is convertible to:

Therefore, it is sufficient to solve Eq. 4. P.N. that the solu-
tions by the above scheme only reveal one possible class 
of solutions for this nonlinearity; however, it will be com-
pared that these solutions are accurately those already 
established by other researchers employing numerical 
analysis and also agree well with the numerical analysis 
presented in this paper.

First assume M = 0:

Suppose that f̄ (𝜂) is the solution for the 2-D version of the 
above equation, then if the general solution is sought in 
the form of Af̄ (B𝜂) , one reaches:

Equation  8 is a consistent solution. Therefore, in the 
absence of magnetic effect, one should only solve the 2-D 
version of the flow:

(1)

f ���(�) + (f (�) + g(�))f ��(�) − 2
(
f �(�) + g�(�)

)
f �(�) −Mf �(�) = 0

(2)

g���(�) + (f (�) + g(�))g��(�) − 2
(
f �(�) + g�(�)

)
g�(�) −Mg�(�) = 0

(3)
f (0) = 0, f �(0) = 1, f �(∞) = 0, g(0) = 0,

g�(0) = c, g�(∞) = 0

(4)
f ���(�) + (c + 1)f (�)f ��(�) − 2(c + 1)f �2(�) −Mf �(�) = 0

(5)f (0) = 0, f �(0) = 1, f �(∞) = 0

(6)g(�) = cf (�)

(7)f ���(�) + (c + 1)f (�)f ��(�) − 2(c + 1)f �2(�) = 0

(8)f (𝜂) =
1

√
c + 1

f̄
�√

c + 1 𝜂

�
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Therefore, for 3-D flow due to an exponentially stretching 
surface:

The same fundamental tricks are also applicable to 3-D 
flow due to a nonlinearly stretching surface (linearly 
stretching surface is an exception); however, for the sake 
of the scope of the present study further analysis in this 
respect is deferred to the future studies.

For M ≠ 0 Eq. 4, in its original form, is preserved and is 
to be solved via several methods.

2.3 � Solution by homotopy analysis method (HAM)

The auxiliary linear operator and the initial guess are cho-
sen as (see e.g. [36–40] to see how HAM may work):

Principally, the problem satisfies:

with

In Eq. 15, the nonlinear operator is:

In addition, ℏ is the so-called controlling parameter and 
p ∈ [0, 1] is the homotopy embedding parameter. Clearly:

When the embedding parameter p deforms from 0 to 1, 
the initial guess f

0
(�) approaches f (�) (P.N. that this is an 

artificial topological parameter; and No value between 0 
and 1 appears in the HAM calculation process).

Upon using the straightforward expansion technique 
(Taylor method):

where

(9)f̄ ���(𝜂) + f̄ (𝜂)f̄ ��(𝜂) − 2f̄ �2(𝜂) = 0

(10)f̄ (0) = 0, f̄ �(0) = 1, f̄ �(∞) = 0

(11)f ��(0) = f̄ ��(0)
√
c + 1

(12)g��(0) = f̄ ��(0) c
√
c + 1

(13)f
0
(�) = 1 − e−�

(14)L(f ) = f ���(�) − f �(�)

(15)(1 − p)L[f̄ (𝜂, p) − f
0
(𝜂)] = p�N[f̄ (𝜂, p)]

(16)f̄ (0, p) = 0, f̄ �(0, p) = 1, f̄ (∞, p) = 0

(17)

N[f̄ ] =
𝜕
3 f̄

𝜕𝜂3
+ (c + 1)f̄ (𝜂, p)

𝜕
2 f̄

𝜕𝜂2
− 2(c + 1)

(
𝜕f̄

𝜕𝜂

)2

−M
𝜕f̄

𝜕𝜂

(18)f̄ (𝜂, 0) = f
0
(𝜂), f̄ (𝜂, 1) = f (𝜂)

(19)f̄ (𝜂, p) = f
0
(𝜂) +

∞∑

m=1

fm(𝜂)p
m

(20)fm(𝜂) =
1

m!

𝜕
mf̄

𝜕pm
|||p=0

Since the series converge for p = 1:

For the mth-order deformation:

with the boundary conditions:

where

The above system was solved by developing a symbolic 
code in MATLAB.

Figure 1 represents the so-called ℏ-curves in differ-
ent order of approximations for the 2-D case ( c = 0 ) 
with M = 0 . The algorithm was truncated at the 15th 
order of approximation and it was firmly confirmed 
f ��(0) = −1.2818 (As a comparison, Liu et  al. [30] have 
reported, employing numerical analysis, that for this case 
f ��(0) = −1.28180856 ). Hence, e.g. for c = 0.5 and c = 1 
we obtain, from Eq. 10 and 11, f ��(0) = −1.5699 (Liu et al. 
[30]: f ��(0) = −1.5698884 ), g��(0) = −0.7849 (Liu et al. [30]: 

(21)f (�) = f
0
(�) +

∞∑

m=1

fm(�)

(22)L[fm(�) − �mfm−1(�)] = ℏℜm(�)

(23)fm(0) = f �
m
(0) = f �

m
(∞) = 0

(24)𝜒m =

{
0 m ≤ 1

1 m > 2

(25)

ℜm(�) = f
�

m−1
(�) + (c + 1)

m−1∑

k=0

{(
fm−1−k(�)

)
f
�

k
(�)

}

− 2(c + 1)

m−1∑

k=0

{(
f
�

m−1−k
(�)

)
f
�

k
(�)

}
−Mf

�

m−1
(�)

Fig. 1   ℏ-curves in different orders of approximation for c = 0 , 
M = 0 : X-axis and Y-axis are ℏ and f ��(0) respectively
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g��(0) = −0.78494423 ) and f ��(0) = −1.8127 (Liu et al. [30]: 
f ��(0) = −1.8127510 ), g��(0) = −1.8127 (Liu et  al. [30]: 
g��(0) = −1.8127510 ) respectively.

Employing ℏ-curves analysis for other cases, we could 
obtain reliable solutions for this problem.

For other cases, having c ≠ 0 and M ≠ 0 , Table 1 is pro-
vided to indicate the behavior of the significant engineer-
ing quantity of interest, being secured to the 4th decimal 
place.

2.4 � Solution by 1st‑order homotopy perturbation 
method (HPM)

To indicate the basic idea of this method, the following 
form for a nonlinear equation is considered (see e.g. [41]):

Boundary conditions are defined as:

In above, A is a general function operator, B is a boundary 
condition operator and �  is a boundary of domain � and 
f (r) is a known function.

The general operator in Eq. 26 may be decomposed into 
a linear and a nonlinear operator as:

On using the homotopy U(r, p) ∶ � × [0, 1] → R satisfying:

or

In above, p is an embedding artificial parameter (with the 
same deformation property as dictated in HAM) and U

0
 

is an initial approximate solution to Eq. 26. The following 
properties can be deduced:

According to HPM, we normally employ the standard 
expansion as:

On choosing p = 1 , the solution of Eq. 26 can be approxi-
mated as:

(26)A(U) − f (r) = 0, r ∈ �

(27)B
(
u,

�u

�n

)
= 0, r ∈ �

(28)L(U) + N(U) − f (r) = 0, r ∈ �

(29)

H(U, p) = (1 − p)
(
L(U) − L(U

0
)
)

+ p(A(U) − f (r)) = 0,

p ∈ [0, 1], r ∈ �

(30)

H(U, p) =
(
L(U) − L(U

0
)
)
+ p

(
L(U

0
) + N(U) − f (r)

)
= 0

(31)H(U, 0) =
(
L(U) − L(U

0
)
)
= 0

(32)H(U, 1) = (A(U) − f (r)) = 0

(33)U = U
0
+ pU

1
+ p2U

2
+ p3U

3
+ p4U

4
+⋯

As it can be seen, the HPM is quite similar to HAM with 
ℏ = −1 ; however, as indicated by He (see e.g. [9–15]), HPM 
can be distinguished from HAM by e.g. implementing the 
No-secular term rule as being initially proposed by Light-
hill [42], that any term in the series occurring in the solu-
tion should be No more singular than the preceding term; 
however, as discussed in the introduction section, in order 
to present HPM as a completely distinguished nonlinear 
solver, one still needs more mathematical proofs.

In the following we apply HPM for the present nonlinear 
example.

Let us set up the following homotopy equation:

The operators are assumed as:

Therefore, one reaches:

Taking into accounting the standard expansion, f (�) is 
described as:

Since, at p = 1 the original system is recovered, the solu-
tion is:

On substituting Eq. 39 into Eq. 38 and collecting terms 
with like powers of p , the following zeroth and 1st-order 
systems are obtained:

(34)U = U
0
+ U

1
+ U

2
+ U

3
+ U

4
+⋯

(35)(1 − p)L[f (�)] = −pN[f (�)]

(36)L[f (�)] = f ���(�) − �
2f �(�)

(37)
N[f (�)] = f ���(�) + (c + 1)f (�)f ��(�) − 2(c + 1)f �2(�) −Mf �(�)

(38)
f ���(𝜂) − 𝛽

2f �(𝜂) + p
(
(c + 1)f (𝜂)f ��(𝜂) − 2(c + 1)f �2(𝜂)

−Mf �(𝜂) + 𝛽
2f �(𝜂)

)
= 0, 𝛽 > 0

(39)f (�) = f
0
(�) + f

1
(�)p + f

2
(�)p2 +⋯

(40)f (�) = f
0
(�) + f

1
(�) + f

2
(�) +⋯

Table 1   f ��(0) by HAM in different cases

M c = 0 c = 0.5 c = 1

0.1 − 1.3211 − 1.6021 − 1.8407
0.2 − 1.3590 − 1.6336 − 1.8682
0.3 − 1.3958 − 1.6644 − 1.8952
0.4 − 1.4316 − 1.6946 − 1.9219
0.5 − 1.4664 − 1.7242 − 1.9481
0.6 − 1.5005 − 1.7533 − 1.9739
0.7 − 1.5337 − 1.7819 − 1.9994
0.8 − 1.5662 − 1.8100 − 2.0246
0.9 − 1.598 − 1.8377 − 2.0494
1 − 1.6292 − 1.8649 − 2.0739
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Solution to Eq. 41 reads:

Equation 42 gives:

The no-secular terms condition requires:

Obviously, in the 1st-order HPM, once the secular terms 
(such as �ne(−m�) ) are removed, the control is lost on the 
appearance of these terms in higher orders of approxima-
tion. Therefore, it is obtained with ease:

The results will be compared later.

2.5 � Solution by 2nd‑order homotopy perturbation 
method (HPM)

Employing the parameter expansion method (see e.g. 
[16–21]), the operators in Eq. 35 are defined as:

By substitution:

(41)
p0 ∶ f ���

0
(�) − �

2f �
0
(�) = 0

f
0
(0) = 0, f �

0
(0) = 1, f �

0
(∞) = 0

(42)

p1 ∶ f ���
1
(�) − �

2f �
1
(�) +

(
(c + 1)f

0
(�)f ��

0
(�)

−2(c + 1)f �2
0
(�) −Mf �

0
(�) + �

2f �
0
(�)

)
= 0

f
1
(0) = 0, f �

1
(0) = 0, f �

1
(∞) = 0

(43)f
0
(𝜂) =

1

𝛽

(
1 − e−𝛽𝜂

)
, 𝛽 > 0

(44)

f
1
(�) = e

(−��)

(
3M + 5c + 5

6�3
−

1

2�

)
− e

(−2��)

(
c + 1

6�3

)

+ � e
(−��)

(
M + c + 1

2�2
−

1

2

)
+

1

2�
−

2c +M + 2

3�3

(45)� =
√
c +M + 1

(46)f (�) = f
0
(�) + f

1
(�)

(47)f ��(0) = f ��
0
(0) + f �

1
(0) = −

3M + 4c + 4

3

√
M + c + 1

(48)L[f (�)] = f ���(�) +
(
−�2

0
+ p�

1

)
f �(�)

(49)
N[f (�)] = f ���(�) + (c + 1)f (�)f ��(�) − 2(c + 1)f �2(�) −Mf �(�)

(50)
f ���(�) +

(
−�2

0
+ p�

1

)
f �(�) + p

(
(c + 1)f (�)f ��(�)

−2(c + 1)f �2(�) −Mf �(�) −
(
−�2

0
+ p�

1

)
f �(�)

)
= 0

The following zeroth, 1st and 2nd order systems are then 
immediate:

Therefore, one reaches:

(51)
p0 ∶ f ���

0
(�) − �

2

0
f �
0
(�) = 0

f
0
(0) = 0, f �

0
(0) = 1, f �

0
(∞) = 0

(52)

p1 ∶ f ���
1
(�) − �

2

0
f �
1
(�) +

(
(c + 1)f

0
(�)f �

0
(�)

−2(c + 1)f �2
0
(�) −Mf �

0
(�) +

(
�
2

0
+ �

1

)
f �
0
(�)

)
= 0

f
1
(0) = 0, f �

1
(0) = 0, f �

1
(∞) = 0

(53)

p2 ∶ f ���
2
(�) − �

2

0
f �
2
(�)

+

⎛
⎜
⎜
⎝

(c + 1)
�
f0(�)f

��
1
(�) + f1(�)f

��
0
(�)

�
− 2(c + 1)

�
2f �

0
(�)f �

1
(�)

�
−Mf �

1
(�)

+
�
�
2

0
+ �1

�
f �
1
(�) − �1 f

�
0
(�)

⎞
⎟
⎟
⎠
= 0

f2(0) = 0, f �
2
(0) = 0, f �

2
(∞) = 0

(54)f
0
(𝜂) =

1

𝛽
0

(
1 − e−𝛽0𝜂

)
, 𝛽

0
> 0

(55)

f
1
(�) = e

(−�0�)

(
5 + 5c + 3M − 3�

1

6�
3

0

−
1

2�
0

)
− e

(−2�0�)

(
c + 1

6�
3

0

)

+ � e
(−�0�)

(
−1

2
+

1 + c +M − �
1

2�
2

0

)
+

(
3�

1
− 3M − 4c − 4

6�
3

0

+
1

2�
0

)

(56)

f
2
(�) = − �

2
e
(−�0�)

(
−�2

0
+M − �

1
+ c + 1

)2

8�
3

0

− e
(−3�0�)

(c + 1)
2

48�
5

0

+ e
(−2�0�)

(c + 1)
(
−9�2

0
+ 9M − 9�

1
+ 11c + 11

)

36�
5

0

+
1

72�
5

0

(
K
1

)
−

� e(−�0�)

24�
4

0

(
K
2

)
−

e(−�0�)

144�
5

0

(
K
3

)

+ � e
(−2�0�)

(c + 1)
(
−�2

0
+M − �

1
+ c + 1

)

6�
4

0

K
1
= 27M

2 − 54M�
1
− 54M�

2

0
+ 72Mc + 72M + 27�

2

1

+ 18�
1
�
2

0
− 72�

1
c − 72�

1
+ 27�

4

0
− 72�

2

0
c

− 72�
2

0
+ 52c

2 + 104c + 52

K
2
= 9M

2 − 18M�
1
− 18M�

2

0
+ 22Mc + 22M + 9�

2

1

+ 6�
1
�
2

0
− 22�

1
c − 22�

1
+ 9�

4

0
− 22�

2

0
c

− 22�
2

0
+ 15c

2 + 30c + 15

K
3
= 54M

2 − 108M�
1
− 108M�

2

0
+ 180Mc + 180M

+ 54�
2

1
+ 36�

1
�
2

0
− 180�

1
c − 180�

1

+ 54�
4

0
− 180�

2

0
c − 180�

2

0
+ 145c

2 + 290c + 145
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Removing the secular terms requires:

where

The approximate solution reads:

Finally, the engineering quantity of interest is obtained as:

2.6 � Solution by the homotopy contraction mapping 
technique (HCMT)

Let us take � = f ��(0) . The basic homotopy structure is:

We choose:

Substituting Eqs. 63 and 62 into Eq. 61 and further employ-
ing the standard expansion technique and collecting 
terms with like power of p (or Taylor method and in HAM) 
the following systems are reduced:

(57)
�
0
=

√√√√(
3K − 1

6

)
+

√
(
3K − 1

6

)2

+

(
−22 − 44M + 44K (c + 1) − 44Mc + 36MK − 30c2 − 18K2 − 60c − 18M2

)

24

(58)K = c + 1 +M, �
1
= K − �

2

0

(59)f (�) = f
0
(�) + f

1
(�) + f

2
(�)

(60)

f
��(0) = f

��

0
(0) + f

��

1
(0) + f

��

2
(0)

=

(
9M2 − 18M�

1
− 54M�

2

0
+ 30Mc + 30M + 9�

2

1
+ 18�

1
�
2

0
− 30�

1
c

−30�
1
− 27�

4

0
− 90�

2

0
c − 90�

2

0
+ 26c2 + 52c + 26

)

72�
3

0

(61)(1 − p)L [f , �] = −pN [f ]

(62)L [f , �] =
�
3f

��3
− �

2 �f

��

(63)
N[f (�)] = f ���(�) + (c + 1)f (�)f ��(�) − 2(c + 1)f �2(�) −Mf �(�)

(64)
p0 ∶ f ���

0
(�) − �

2f �
0
(�) = 0

f
0
(0) = 0, f �

0
(0) = 1, f �

0
(∞) = 0

(65)
p1 ∶ f ���

1
(�) − �

2f �
1
(�) +

(
(c + 1)f

0
(�)f ��

0
(�) − 2(c + 1)f �2

0
(�) −Mf �

0
(�) + �

2f �
0
(�)

)
= 0

f
1
(0) = 0, f �

1
(0) = 0, f �

1
(∞) = 0

(66)
p2 ∶ f ���

2
(�) − �

2f �
2
(�) +

(
(c + 1)

(
f
1
(�)f ��

0
(�) + f

0
(�)f ��

1
(�)

)
− 2(c + 1)

(
2f �

0
(�)f �

1
(�)

)
−Mf �

1
(�) + �

2f �
1
(�)

)
= 0

f
2
(0) = 0, f �

2
(0) = 0, f �

2
(∞) = 0

and so on (P.N. that the higher deformation equations are 
exactly those in the equivalent HAM system).

The technique is to apply the following mapping 
scheme (see Theorem 2) with

or

�
0

(
= f ��

0
(0)

)
, �

1
, �

2
,… are functions of � ; hence, if there exist 

some �
0
= g(�) convergent to a certain value through (67) 

or (68), the value is regarded as the fixed point of Tm and is 
the unique description of the series solution for � = f ��(0) 
at the mth order of truncation; if not, the zeroth term/lead-
ing term is Not potential to contain the target quantity 
� = f ��(0) . In this situation, the linear operator and/or the 
target quantity should change.

First assume that the series is truncated at the 1st order:

Therefore, the contraction mapping is checked through:

or

(67)

Tm
(
�
0

)
=

m∑

i=0

�i ∶ Tn→∞

m≥1
�
0
= TmoTmoTmo… Tm

(
�
0

)
= �

∗,m = Cm

(68)

�
0,n+1 = Tm

(
�
0, n

)
, n = 0, 1, 2,… , ∶ �

0, n→∞ = �
∗,m = Cm

(69)f ��
0
(0) = −�

(70)

1∑

i=0

f ��
i
(0) = f ��

0
(0) + f ��

1
(0) = �

1

(
f ��
0
(0)

)
=

(
3f ��

0
(0)2 + 3M + 5c + 5

)

6f ��
0
(0)

(71)Tn→∞

1
f ��
0
(0) = T

1
oT

1
oT

1
o… T

1

(
f ��
0
(0)

)
= f ��∗,1

0
(0) = C

1



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1104 | https://doi.org/10.1007/s42452-019-1114-z

In this particular example, it can be simply checked that 
(71) is convergent for any arbitrary choice for f ��

0
(0) (see 

Fig.  2). Moreover, for the 1st order of truncation, it is 
possible to establish an analytic relation for f ��(0) since ∑m

i=1
�i = 0 is solvable:

Therefore, for the 1st order solution:

As a comparison, one may check that for the case with 
c = M = 0  (  f ��(0) = −1.2818  ) ,  E q .   7 4  g i v e s : 
f ��(0) = −

√
5

3
≈ −1.29099 which is much better than the 

1st order HPM (Eq. 47 shows f ��(0) = −
4

3
= −1.3̄ ). Further 

it is notable that this accuracy is close to the 2nd order 
HPM (Eq. 60 gives: f ��(0) ≈ −1.2752).

In order to increase the accuracy, 5th order of approxi-
mation was computed. For this:

or

(72)
f ��
0,n+1

(0) = T
1

(
f ��
0,n
(0)

)
, n = 0, 1, 2,… , ∶ f ��

0,n→∞
(0) = f ��∗,1(0) = C

1

(73)

1∑

i=1

f
��

i
(0) = f

��

1
(0) =

(
−3f ��

0
(0)2 + 3M + 5c + 5

)

6f ��
0
(0)

= 0 ⇒ f
��

0
(0) = −

√
3M + 5c + 5

3

(74)f ��∗,1(0) = −

√
3M + 5c + 5

3

(75)Tn→∞

5
f ��
0
(0) = T

5
oT

5
oT

5
o… T

5

(
f ��
0
(0)

)
= f ��∗,5(0) = C

5

(76)
f ��
0,n+1

(0) = T
5

(
f ��
0,n
(0)

)
, n = 0, 1, 2,… , ∶ f ��

0,n→∞
(0) = f ��∗,5(0) = C

5

It was computed that:

with

The fixed point is one of the real polynomial roots 
( 
∑5

i=1
f ��
i
(0) = 0 ⇒ P

�
f ��
0
(0)

�
= 0 ) which certainly shows 

itself through the recursive process (see Fig. 3). By analy-
sis, 5th order of approximation in each certain values of c 

(77)
T
5

�
f ��
0
(0)

�
=

∑5

i=1
f ��
i
(0)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−P
�
f ��
0
(0)

�

108864000f ��
0
(0)9

+f ��
0
(0)

(78)
P
(
f ��
0
(0)

)
= A

0
+ A

1
f ��
0
(0)2 + A

2
f ��
0
(0)4

+ A
3
f ��
0
(0)6 + A

4
f ��
0
(0)8 + A

5
f ��
0
(0)10

(79)

A0 = −

⎛
⎜
⎜
⎝

2976750M5 + 24806250M4(1 + c) + 85995000M3(1 + c)2

+151814250M2(1 + c)3 + 135329670M(1 + c)4 + 48539791(1 + c)5

⎞
⎟
⎟
⎠

(80)

A
1
=

(
173995290(1 + c)4 + 19136250M4 + 127575000M3(1 + c)

+331695000M2(1 + c)2 + 390379500M(1 + c)3

)

(81)

A2 = −

(
53581500M3 + 267907500M2(1 + c) + 464373000M(1 + c)2

+273265650(1 + c)3

)

(82)
A
3
=
(
89302500M2 + 297675000M(1 + c) + 257985000(1 + c)2

)

(83)A
4
= −(133953750M + 223256250(1 + c))

(84)A
5
= (−26790750 + 108864000)

Fig. 2   f ��
0,n+1

(0) = T1

(
f ��
0,n

(0)

)
, n = 0, 1, 2,… , ∶ f ��

0,n→∞
(0) = f ��∗,1(0) = C1 , 

X-axis is the iteration ( n ): c = M = 0

Fig. 3   f ��
0,n+1

(0) = T5

(
f ��
0,n

(0)

)
, n = 0, 1, 2,… , ∶ f ��

0,n→∞
(0) = f ��∗,5(0) = C5 , 

X-axis is the iteration ( n ): c = M = 0
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and M gives solutions in which the maximum deviation, 
compared to the high-order HAM results, Does Not exceed 
0.03%.

2.7 � A perturbation solution valid for large M

Introducing the new variable � =
√
M� Eq. 4 and the asso-

ciated boundary conditions become:

Let us choose:

E m p l o y i n g  t h e  s t a n d a r d  e x p a n s i o n 
f (�) = f

0
(�) + �f

1
(�) + �

2f
2
(�) +⋯ the following zeroth 

and 1st order systems can be obtained:

By solution:

Retrieving the original variable it is obtained with ease:

2.8 � Numerical solutions

Equation 4 is initially considered in the following form:

(85)

f ���(�) − f �(�) + �
�
(c + 1)f (�)f ��(�) − 2(c + 1)f �2(�)

�
= 0

f (0) = 0, f �(0) =
1

√
M
, f �(∞) = 0

(86)� =
1

√
M

∶ M → ∞ ⇒ � → 0

(87)

f ���
0
(�) − f �

0
(�) = 0

f
0
(0) = 0, f �

0
(0) =

1
√
M
, f �

0
(∞) = 0

(88)

f ���
1
(�) − f �

1
(�) +

(
(c + 1)f

0
(�)f ��

0
(�) − 2(c + 1)f �2

0
(�)

)
= 0

f
1
(0) = 0, f �

1
(0) = 0, f �

1
(∞) = 0

(89)f (�) ≈ f
0
(�) + �f

1
(�) =

1
√
M

��
1 − e−�

�
+

5(c + 1)

6M
e−� −

2(c + 1)

3M
+

(c + 1)

2M
�e−� −

(c + 1)

6M
e−2�

�

(90)f ��(0) = −
√
M −

5(c + 1)

6

√
M

(91)F = f (�)

(92)F� = Y

(93)Y � = Z

(94)Z � + (c + 1)FZ − 2(c + 1) Y2 −MY = 0

(95)F(0) = 0, Y(0) = 1, Z(0) = �

� is initially missing; hence, a shooting procedure is required 
to treat the problem as an IVP. Besides, one of the basic chal-
lenges to obtain much more accurate results is to deal with 
the boundary condition as � → ∞ , namely, �∞ (usually a 
trial and error procedure is followed to handle this situa-
tion). In fact, changing the involved parameters will affect 
the boundary layer thickness; i.e. the real value of ||F�(�∞)|| 
in a fixed �∞ (e.g. �∞ = 10 ) is highly dependent on c and 
M , expressing rather drastic behaviors. Therefore, in order 
to retain the same representation of the real solution at 
the infinity while changing the engaged parameters and 
searching for a suitable zeroth correspondence ( � ), �∞ (with 
a fixed error tolerance) or the error tolerance (with a fixed �∞ ) 
should also change. Here, it is suggested using the 1st-order 
HPM results and following the former scenario to handle the 
uncertainties. In the present study, on using Eqs. 43–45, the 
following scheme was considered with ||F�(�∞)|| = 10−6:

5th order Runge–Kutta was employed for discretization 
purpose. An iterative shooting procedure (to the 5th deci-
mal place) was then pursued.

Table 2 shows a comparison between the methods.

2.9 � Ex. 2: The 2‑D flow of UCM fluid over a linearly 
stretching sheet

The basic equations for such a flow can be found in several 
studies e.g. [43–48]:

(96)�∞ =
1

(1 + c +M)
Ln

[
(2 + 2c + 3M)

3(1 + c +M)
(||F�(�∞)||

)

]

The associated boundary conditions are:

In above, � is Deborah number.

2.10 � Solution by homotopy analysis method (HAM)

The auxiliary linear operator and the initial guess are cho-
sen as before:

(97)
f ���(�) + f (�)f ��(�) − f �(�)2 + �

(
2f (�)f �(�)f ��(�) − f (�)2f ���(�)

)
= 0

(98)f (0) = 0, f �(0) = 1, f �(∞) = 0

(99)f
0
(�) = 1 − e−�

(100)L(f ) = f ���(�) − f �(�)
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Following Liao (see e.g. [1–8]), the homotopy is con-
structed as:

with

In above, the nonlinear operator is:

Following the same procedure, as in the previous problem, 
for the mth-order deformation one obtains:

With the boundary conditions:

where

Figures  4 and 5 show the behavior of the so-called ℏ
-curves for 2 different stages. In addition, Table 3 provides 
the behavior of this significant quantity of interest in vari-
ous stages.

(101)(1 − p)L[f̄ (𝜂, p) − f
0
(𝜂)] = p�N[f̄ (𝜂, p)]

(102)f̄ (0, p) = 0, f̄ �(0, p) = 1, f̄ (∞, p) = 0

(103)
N[f̄ (𝜂, p)] =

𝜕
3 f̄

𝜕𝜂3
+ f̄ (𝜂, p)

𝜕
2 f̄

𝜕𝜂2
−

(
𝜕f̄

𝜕𝜂

)2

+ 𝛽

(
2f̄ (𝜂, p)

(
𝜕f̄

𝜕𝜂

)
𝜕
2 f̄

𝜕𝜂2
− f̄ (𝜂, p)2

𝜕
3 f̄

𝜕𝜂3

)

(104)L[fm(�) − �mfm−1(�)] = ℏℜm(�)

(105)fm(0) = f �
m
(0) = f �

m
(∞) = 0

(106)𝜒m =

{
0 m ≤ 1

1 m > 2

(107)

ℜm(�) = f ���
m−1

(�) +

m−1∑

k=0

{(
fm−1−k(�)

)
f �
k
(�)

}
−

m−1∑

k=0

{(
f �
m−1−k

(�)
)
f �
k
(�)

}

+ �

m−1∑

k=0

{
(
fm−1−k(�)

) k∑

l=0

{
2f �

k−1
(�)f ��

l
(�) − fk−l(�)f

��

l
(�)

}
}

2.11 � Solution by 1st‑order homotopy perturbation 
method (HPM)

Let us consider the following classic homotopy 
transformation:

With the standard expansion:

The following zeroth and 1st order systems are then 
immediate:

(108)

f ���(𝜂) − k2f �(𝜂) + p
(
f (𝜂)f ��(𝜂) − f �(𝜂)2

+𝛽
(
2f (𝜂)f �(𝜂)f ��(𝜂) − f (𝜂)2f ���(𝜂)

)

+k2f �(𝜂)
)
= 0, k > 0

(109)f (�) = f
0
(�) + pf

1
(�) + p2f

2
(�) +⋯

(110)
f ���
0
(�) − k2f �

0
(�) = 0

f
0
(0) = 0, f �

0
(0) = 1, f �(∞) = 0

Table 2   Comparison of the 
applied methods for − f ��(0) 
where c = 0.5

M R-K/5th order HAM HCMT/5th HCMT/1st HPM/1st HPM/2nd

0.1 1.60209 1.6021 1.6024 1.6125 1.6602 1.6118
0.2 1.63357 1.6336 1.6338 1.6432 1.6873 1.6448
0.3 1.66439 1.6644 1.6646 1.6733 1.7143 1.6765
0.4 1.69459 1.6946 1.6947 1.7029 1.7411 1.7072
0.5 1.72423 1.7242 1.7243 1.7321 1.7678 1.7371
0.6 1.75333 1.7533 1.7534 1.7607 1.7942 1.7663
0.7 1.78192 1.7819 1.7819 1.7889 1.8203 1.7948
0.8 1.81002 1.8100 1.8100 1.8166 1.8463 1.8228
0.9 1.83769 1.8377 1.8377 1.8439 1.8719 1.8503
1 1.86493 1.8649 1.8649 1.8708 1.8974 1.8773

Fig. 4   ℏ-curve for � = 1∕10 in 10th order of approximation: X-axis 
and Y-axis are ℏ and f ��(0) respectively
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Upon solving the above systems and removing the secular 
terms it is eventually obtained with ease:

2.12 � Solution by HCMT

C o n s i d e r  t h e  b a s i c  h o m o t o p y  s t r u c t u r e 
(1 − p)L[f , �] = −pN[f ] with L [f , �] =

�
3f

��3
− �

2 �f

��
 and 

N[f ] = f ��� + ff �� − f �2 + �
(
2ff �f �� − f 2f ���

)
.

E m p l o y i n g  t h e  s t a n d a r d  e x p a n s i o n 
f = f

0
+ pf

1
+ p2f

2
+⋯ it is obtained:

and so on.
The contraction mapping is checked through:

(111)
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or:

Let us choose � = f ��(0) and the 1st order approximation 
reads:

Therefore:

or

Figure 6 shows the contraction mapping behavior.
By Theorem 2, since the 1st order system is solvable:

In order to increase the accuracy, 4th order of approxima-
tion was computed. For this:

(116)
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Fig. 5   ℏ-curve for � = 1 in 10th order of approximation: X-axis and 
Y-axis are ℏ and f ��(0) respectively

Fig. 6   f ��
0,n+1

(0) = T1

(
f ��
0,n

(0)

)
, n = 0, 1, 2,… , ∶ f ��

0,n→∞
(0) = f ��∗,1(0) = C1 , 

X-axis is the iteration ( n ): � = 1∕2
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or

It was computed that:

with

where
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The fixed point is one of the real polynomial roots 
( 
∑4

i=1
f ��
i
(0) = 0 ⇒ P

�
f ��
0
(0)

�
= 0 ) which certainly shows 

itself through the recursive process (see Fig. 7). By analy-
sis, 4th order of approximation in each given value of � 
shows solutions in which the maximum deviation (up to 
� = 5 ), compared to the high-order HAM results, Does Not 
exceed 0.1%; e.g. for � = 5 it was computed by HAM after 
handling the controlling parameter and from the 25th-
order of approximation that f ��(0) = −1.9424 , whist the 
new technique shows f ��(0) = −1.9443 which is indeed a 
good match, still below 0.1% error.

2.13 � Numerical solutions

Equation 97 is initially expressed as:

Following the instruction given in the previous section, 
from the 1st-order HPM solution the following scheme 
with ||F�(�∞)|| = 10−6 is considered:

5th order Runge–Kutta was employed for discretization 
purpose. An iterative shooting procedure (to the 5th deci-
mal place) was then pursued.

Table 4 shows a comparison between the methods. It 
should be also noted that for � = 0 , Eq. 97 shows a well-
known closed form solution in the form of f (�) = 1 − e−� ; 
having No secular terms, a point which provides advan-
tage for HPM in such a nonlinear problem, as well as serv-
ing as a suitable initial guess in HAM. Therefore, the non-
linearity seems to be quite simpler that the previous one.

3 � Conclusion

The aim of the present work was to account the easily-itera-
tive HAM system to be further analyzed for some novel and 
untapped insights. As a gist, the insight was that the zeroth 
order term may be potential to contain a certain quantity 
of the exact solution such as f ��(0) that is normally sought. 

(130)A
4
= −277830000 + 1016064000

(131)F = f (�)
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(134)
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Z � + (1 + 2� Y)FZ − Y2 = 0
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(136)�∞ =
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�

Table 3   f ��(0) in different stages, secured to the 4th decimal place 
after 15th-order of approximation

� f ��(0) � f ��(0) � f ��(0)

0.1 − 1.0262 0.6 − 1.1501 1.1 − 1.2637
0.2 − 1.0519 0.7 − 1.1736 1.2 − 1.2854
0.3 − 1.0771 0.8 − 1.1967 1.3 − 1.3067
0.4 − 1.1019 0.9 − 1.2194 1.4 − 1.3277
0.5 − 1.1262 1 − 1.2417 1.5 − 1.3484

Table 4   Comparison of the applied methods for −f ��(0)

� R-K/5th order HAM HCMT/4th HCMT/1st HPM

0.1 1.02617 1.0262 1.0262 1.0247 1.0250
0.2 1.05186 1.0519 1.0519 1.0488 1.0498
0.3 1.07708 1.0771 1.0771 1.0724 1.0744
0.4 1.10186 1.1019 1.1019 1.0954 1.0987
0.5 1.12619 1.1262 1.1262 1.1180 1.1227
0.6 1.15008 1.1501 1.1502 1.1402 1.1463
0.7 1.17357 1.1736 1.1737 1.1619 1.1696
0.8 1.19665 1.1967 1.1968 1.1832 1.1926
0.9 1.21935 1.2194 1.2195 1.2041 1.2152
1 1.24168 1.2417 1.2419 1.2247 1.2374
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Through examples we saw that f ��
0
(0) = −� . The new 

insight simply states that f ��
0
(0) could be f ��(0) truncated at 

any homotopy series order; i.e. f ��∗,m(0) . This hypothesis is 
checked through Theorem 2 and f ��(0) is extracted which is 
regarded as the unique description of the homotopy series 
solution for f ��(0) in an order of approximation.

It was shown that unique description of the homotopy 
series solutions is simply behind a topological feature, 
the Fixed Point Property, indicating that the homotopy is 
self-corrector for some certain quantities of the exact solu-
tion (here the target quantity was f ��(0) ). Examples were 
provided revealing that the present approach is indeed 
promising.
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