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Abstract
Computational development of novel triazole-based aromatase inhibitors (AIs) was carried out followed by investigation 
of the possible interaction modes of these compounds with the enzyme and prediction of the binding affinity by tools 
of molecular modeling. In doing so, in silico design of potential AIs candidates fully satisfying the Lipinski’s “rule of five” 
was performed using the concept of click chemistry. Complexes of these drug-like molecules with the enzyme were then 
simulated by molecular docking and optimized by semiempirical quantum chemical method PM7. To identify the most 
promising compounds, stability of the PM7-based ligand/aromatase structures was estimated in terms of the values of 
binding free energies and dissociation constants. At the final stage, structures of the top ranking compounds bound to 
aromatase were analyzed by molecular dynamic simulations and binding free energy calculations. As a result, eight hits 
that specifically interact with the aromatase catalytic site and exhibit the high-affinity ligand binding were selected for the 
final analysis. Six of eight compounds are shown to coordinate the aromatase heme group by the nitrogen–heme–iron 
interaction typical for triazole-based molecules. At the same time, two compounds form a coordination bond with the 
heme iron of the enzyme via the lone-pair electrons of their oxygen atoms, which is uncharacteristic for molecules with 
triazole moieties. All the identified compounds are also involved in multiple van der Waals contacts with the critically 
important residues of the enzyme hydrophobic pocket, such as Arg-115, Ile-133, Phe-134, Trp-224, Thr-310, Val-370, 
Met-374, Leu-477, and Ser-478. In addition, most of these compounds form hydrogen bond with Met-374 mimicking the 
interaction of aromatase with the natural substrate androstenedione, and individual ligands participate in specific π- or 
T-stacking interactions with the pyrrole rings of the enzyme heme group as well as in hydrogen bonding with Thr-310, 
Leu-372, Leu-477, and Ser-478. The selected AIs candidates show strong attachment to the enzyme active site, in line 
with the low values of dissociation constant and binding free energy. Taken together, the data obtained suggest that 
the identified compounds may present good scaffolds for the development of novel potent drugs against breast cancer.
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1  Introduction

In women organism during the fertile phase, estrogen 
synthesis occurs mainly in the ovaries. However, the 
intensity of estrogen synthesis in the ovaries decreases 

in postmenopause associated with about a third of cases 
of breast cancer [1–3]. At this phase, estrogens synthe-
sized in the peripheral tissues using the cytochrome P450 
complex, called aromatase. This complex consists of the 
heme-containing cytochrome P450 (CYP19A1) protein 
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and flavoprotein NADPH-cytochrome P450 reductase 
[1–3]. Aromatase that is encoded by a single large gene, 
CYP19A1, catalyzes conversion of androgens to estrogens 
and exhibits biological activity in both peripheral target 
tissues and in the mammary tumor tissues, providing a 
high level of estrogen concentration [1–3]. In estrogen-
dependent malignant neoplasms, estrogens act as growth 
factors for tumor development. Therefore, inhibition of 
aromatase results in a decrease in the level of estrogen in 
the organism and prevention of the growth and spread of 
cancer cells [1–3].

In most cases, breast cancer is hormone-dependent. 
Endocrine therapy of breast cancer is targeted at elimi-
nating the effect of estrogen on a tumor, and its efficacy 
depends on the expression of estrogen and progesterone 
receptors by tumor cells. Selective estrogen receptor mod-
ulators block the binding of estrogens to their receptors 
[1–4]. However, they can act as partial agonists or have an 
estrogenic effect in other tissues, leading to an increased 
risk of endometrial cancer, gynecological concerns, and 
thrombotic events. As an alternative strategy, aromatase 
inhibitors (AIs) that do not have estrogenic effects and 
cause fewer side effects are used currently in clinical prac-
tice for therapy of breast cancer [1, 2, 5]. Catalytic mecha-
nism of aromatase consists in three consecutive hydroxy-
lations of the androgen C-19 methyl group followed by 
the splitting off formiate and aromatization of the steroid 
A-ring [2]. Aromatase inhibitors block the aromatization 
reaction that is a key step in the biosynthesis of estro-
gens, resulting in suppression of the estrogen synthesis, 
reduction their level in women body and prevention of the 
breast cancer development [3–5].

There are three generations of AIs among the drugs for 
treating hormone-dependent breast cancer [5]. The disad-
vantage of the drugs of the first two generations (amino-
glutethimide, fadrozole, formestane) is the lack of selec-
tivity of action: besides aromatase, these drugs inhibit a 
number of other enzymes. The third-generation AIs voro-
zole, letrozole, anastrozole, and exemestane approved 
for clinical use by the USA Food and Drug Administration 
(http://www.fda.gov) show greater specificity and effi-
cacy [5]. These inhibitors include drugs of two categories, 
namely (i) irreversible steroidal inhibitor exemestane that 
is an androstenedione derivative and (ii) reversible non-
steroidal inhibitors vorozole, anastrozole and letrozole [2, 
5]. Steroidal AIs and, in particular, exemestane are trans-
formed by aromatase into compounds that irreversibly 
bind to the enzyme active site, completely disrupting its 
activity as a biocatalyst [2, 5]. After the termination of the 
action of these inhibitors, aromatase needs considerable 
time to be synthesized in the tissues again. Reversible 
nonsteroidal AIs vorozole, letrozole and anastrozole are 
triazole compounds that bind to the catalytic site of the 

enzyme by coordinating the iron atom of the CYP19A1 
heme group through a heterocyclic nitrogen lone pair 
[3–5]. These third-generation AIs can inhibit aromatase 
in vivo by > 99% [6], substantially reducing the concentra-
tion of estrogens (often down to non-detectable level) [6, 
7] and decrease tumor proliferation [8, 9] and growth [10, 
11]. The third generation AIs are now the front-line drugs 
for treating the early and advanced stages of breast cancer 
in postmenopausal women.

Despite significant progress in the treatment of hor-
mone-dependent breast cancer, this problem has not 
been completely resolved. Unfortunately, the third-gen-
eration AIs cause a number of serious side effects, such as 
inhibition of muscle growth, arthralgia, decreased bone 
strength, impaired blood lipid profile, drop in libido, as 
well as deterioration of the general condition [5–11]. In 
addition, resistance acquired after long-term therapy with 
these drugs also occurs [12]. In this context, development 
of novel, more effective and less toxic AIs is of great value.

Modern drug discovery presents the multifaceted 
process including the identification of small-molecule 
compounds with strong activity, high selectivity and 
low toxicity followed by their synthesis, characterization, 
screening, and assays for therapeutic efficacy [13, 14]. In 
addition, drug discovery process involves assessment of 
drug-like properties to identify those compounds that 
have acceptable ADME parameters (absorption, distribu-
tion, metabolism and excretion) and sufficiently accept-
able toxicity properties [15, 16]. Drug-like properties are 
of critical importance for successful design of promising 
drug candidates [15]. For this reason, one of a key role in 
drug development belongs to the stage of optimizing 
the properties of lead compounds that offers significant 
opportunities to increase their biological activity and phar-
macokinetic profile [15].

Until 2009, due to the absence of a crystal structure for 
human aromatase, new CYP19A1 inhibitors developed 
using indirect methods of computer-aided drug design 
based on the identification of common structural ele-
ments responsible for the biological activity of known 
enzyme ligands [17–19]. Determination of the high-reso-
lution X-ray aromatase structure [2, 20] laid the foundation 
not only for understanding the function and molecular 
mechanism of the enzyme action, but also for develop-
ing new effective CYP19A1 inhibitors by direct methods 
of computer-aided drug design (e.g., [21–32]).

In the last decade, the methods of molecular modeling 
have played an ever-increasing role in the design of novel 
drug compounds [33–37]. The use of computational mod-
eling techniques significantly decreases the time for devel-
oping new drug candidates and substantially reduces 
the average cost of bringing a new drug to market [38]. 
Computer-aided design of new bioactive compounds can 

http://www.fda.gov
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be performed by virtual screening of molecular databases 
allowing one to find molecules with the required structural 
and pharmacophoric features [39–41]. However, the val-
ues of their bioactivity usually turn out to be low [40, 41]. 
Nevertheless, these molecules may serve as good scaffolds 
for their further optimization aimed at the development 
of lead compounds with desirable efficiency and pharma-
cological profile. Furthermore, they also may be used as 
modular units for the design of novel drug compounds 
based on the methodology of click chemistry [42–45]. 
Click-chemistry reactions are modular, stereospecific, wide 
in scope, result in high yields, and generate only safe by-
products [42–45]. These reactions may therefore greatly 
simplify mass parallel synthesis of drugs candidates and 
accelerate the development of novel, potent and safe ther-
apeutics. The concept of click chemistry recently has been 
implemented in a computer program AutoClickChem [46] 
that can perform click-chemistry reactions in silico and 
produce large combinatorial libraries of compounds for 
use in virtual screening. Since the click-chemistry products 
from such libraries can be easily synthesized for testing in 
biochemical assays, in silico modeling of these compounds 
may be very useful in rational drug design and drug opti-
mization [46].

An essential role in structure-based drug discovery 
belongs to molecular docking that is widely used to pre-
dict the ligand conformation and its position and orienta-
tion within the binding site of target proteins, assess the 
binding affinity and investigate the interaction profile of 
drug candidates [47]. The latest developments of semiem-
pirical quantum mechanical and density functional the-
ory methods as well as applications of explicit quantum 
mechanical calculations to structure-based drug design in 
the context of identification and optimization of drug can-
didates show the growing importance of quantum chem-
istry in the study of protein–ligand interaction [48–50]. 
Molecular dynamics (MD) is also a powerful approach for 
structure-based drug discovery [51]. Unlike molecular 
docking, MD simulates moving each atom separately in 
the field of the rest atoms and represents the flexibility of 
both the ligand and protein more effectively than other 
algorithms. Examples of successful applications clearly 
demonstrate the power of computational approaches to 
identify compounds with desired properties from large 
databases and design novel small-molecule drug candi-
dates [51].

In this study, computational development of novel 
triazole-based aromatase inhibitors was carried out 
followed by evaluation of their antitumor activity by 
tools of molecular modeling. In doing so, the following 
studies were performed: (i) in silico design of potential 
aromatase inhibitor candidates by the AutoClickChem 

techniques [46], (ii) identification of compounds sat-
isfying the Lipinski’s “rule of five” [52] that allows one 
to recognize molecules with drug-like properties, (iii) 
molecular docking of these drug-like compounds with 
the enzyme active site, (iv) refinement of the ligand-
binding poses by the PM7 semiempirical quantum 
chemical method [53], (v) prediction of the interaction 
modes dominating the binding; (vi) calculation of the 
values of binding free energy and dissociation constant 
(Kd) for the PM7-based ligand/CYP19A1 complexes, (vii) 
prediction of the binding affinity between the identi-
fied compounds and aromatase by molecular dynamic 
simulations and binding free energy calculations, and 
(viii) selection of molecules most promising for synthesis 
and biochemical trials.

As a result, eight top ranked compounds that coor-
dinate the iron atom of the aromatase heme group and 
specifically interact with the catalytic site of the enzyme 
were identified. Based on the data obtained, these com-
pounds were suggested to present good scaffolds for the 
development of novel potent drugs against hormone-
dependent breast cancer.

2 � Methods and computational details

2.1 � In silico design of novel CYP19A1 inhibitor 
scaffolds

The algorithm scheme used in the study is shown in 
Fig. 1. In the first step, a Drug-Like subset of the ZINC 
database (http://zinc.docki​ng.org/) [54] was screened by 
the DataWarrior program (http://www.openm​olecu​les.
org/help/basic​s.html) [55] to generate two virtual com-
pound libraries. Library 1 comprised small molecules 
(molecular weight < 250 Da) containing 1,2,4-triazole, 
a popular drug-like azole moiety with a nitrogen atom 
able to coordinate the Fe3+ of the aromatase porphy-
rin ring [3–5]. In library 2, all low-molecular compounds 
(molecular mass < 250 Da) with functional groups associ-
ated with the current implementation of AutoClickChem 
[46] were collected. As a result of screening of the ZINC 
database, a total of 1519 and 2170 compounds were 
included in libraries 1 and 2, respectively. These small 
modular units were then used as reactants to mimic 
click-chemistry reactions by AutoClickChem, resulting 
in a combinatorial library of 4576 hybrid molecules in 
which 784 compounds fully satisfied the Lipinski’s “rule 
of five” [52]. These 784 drug-like compounds were fur-
ther screened by molecular docking and quantum chem-
ical calculations to evaluate the affinity of their binding 
to the target enzyme.

http://zinc.docking.org/
http://www.openmolecules.org/help/basics.html
http://www.openmolecules.org/help/basics.html
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2.2 � Molecular docking

The X-ray aromatase structure [2, 16] from the PDB file, 
3EQM (http://www.rcsb.org/pdb/) [56], was used for rigid 
receptor and flexible ligand docking with the designed 
CYP19A1 inhibitor scaffolds by the QuickVina 2 program 
[57]. At the same time, aromatase inhibitor letrozole was 
involved in the calculations as a positive control. The 3D 
letrozole structure from the DrugBank database, DB01006 
[58, 59], was used (Fig. 2). The aromatase and ligand struc-
tures were prepared by adding hydrogen atoms with the 
OpenBabel software [60] followed by their optimization 
in the UFF force field [61]. The designed AIs candidates 
were docked into the X-ray structure of aromatase [2, 16] 
using QuickVina 2 [57]. The grid box included the cata-
lytic site of the enzyme and was the region of its crystal 
structure [2, 16] with the following boundary X, Y, Z values: 
X ∈ (75 Å, 95 Å), Y ∈ (42 Å, 62 Å), Z ∈ (34 Å, 54 Å); i.e. the 
box volume was 20 Å × 20 Å × 20 Å = 8000 Å3. The value 
of “exhaustiveness” parameter defining number of indi-
vidual sampling “runs” was set to 50 [57]. In all cases, the 
complexes with the best scores were examined to identify 
molecules that target the CYP19A1 hydrophobic pocket. 
Based on the QuickVina 2 scoring function [57], 100 top 

ranking complexes were selected to be exposed to quan-
tum chemical calculations (Fig. 1). The docked letrozole/
CYP19A1 structure was also used in the calculations. 

2.3 � Quantum chemical calculations

The quantum chemical optimization of the 100 top-ranked 
docking models was performed by the PM7 semiempiri-
cal quantum chemical method [53] in the MOPAC2016 

Fig. 1   The algorithm scheme 
used for identification of 
potential aromatase inhibitors

Fig. 2   Chemical structure of letrozole. Atoms making hydrogen 
bonds with aromatase are marked by asterisks (see the text)

http://www.rcsb.org/pdb/
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package [62]. Before the calculations, hydrogen atoms 
were added to the complexes of interest followed by 
their energy refinement in the UFF force field [61]. In 
doing so, the Open Babel program [60] was employed. 
The calculations were carried out by the COSMO solva-
tion model (COnductor-like Screening MOdel) [63–65] 
using an implicit solvent with water’s dielectric constant 
of 78.4 [62]. The Localized Molecular Orbitals method [66, 
67] available in MOPAC in the form of the linear scaling 
SCF MOZYME algorithm [53, 62] was used to speed up the 
calculations. The value of RMS gradient was set to 10 kcal/
mol/Å [62].

2.4 � Analysis of intermolecular interaction profile

Hydrogen bonds, salt bridges, and π–π interactions 
between the selected compounds and CYP19A1 were ana-
lyzed by the BINANA program [68]. Hydrogen bonds were 
identified with a hydrogen_bond_angle cutoff of 40.0° and 
a hydrogen_bond_dist_cutoff of 4.0 Å. Salt bridges were 
detected when the two coordinates corresponding to 
charges that are opposite were within 5.5 Å of each other 
[68]. If the centers of two aromatic rings were within 7.5 Å 
of each other, and the angle between the two vectors 
normal to the planes of each ring was within 30° of being 
parallel, π–π stacking interactions were postulated [68]. 
To identify possible T-stacking interactions, the following 
criteria were applied: the centers of two aromatic rings are 
within 5.0 Å of each other, and the angle between the 
two vectors normal to the planes of each ring is within 
30° of being perpendicular [68]. Van der Waals contacts 
were determined with the use of the program LigPlot [69]. 
The poses of the molecules in the PM7-based ligand/aro-
matase structures were visualized by the software pack-
age Chimera [70]. The scoring functions of QuickVina 2 [57] 
and NNScore 2.0 [71] were used to calculate the values of 
the binding-ligand free energy and Kd, respectively. From 
the data obtained, 8 complexes with the best QuickVina 2 
scores were selected for molecular dynamics simulations 
and binding free energy calculations (Fig. 1).

2.5 � Molecular dynamics simulations

The MD simulations of the ligand/aromatase complexes 
were carried out using Amber 11 with the implementa-
tion of the Amber ff10 force field [72]. The partial atomic 
charges for ligands were calculated by the Antechamber 
module of the AmberTools program package [72]. To pre-
pare the force field parameters for ligands, the general 
Amber force field (GAFF) [73] was applied. The heme pros-
thetic group was parameterized using the heme (all-atom) 
parameter set taken from the AMBER parameter database 
[74]. The tleap module of AmberTools was employed to 

add hydrogen atoms to aromatase [72]. The MD simula-
tions were performed in truncated octahedron box with 
periodic boundary conditions using TIP3P water [75] as 
an explicit solvent. Before the MD simulations, an energy 
minimization of the system was made with 500 steps of 
the steepest descent algorithm and 1000 steps of the con-
jugate-gradient method. An additional harmonic potential 
with the force constant of 1.0 kcal/mol was imposed on the 
system atoms and the complex assembly was subject to 
the equilibration phase. At first, the system was gradually 
heated from 0 to 310 K for 1 ns in NVT ensemble using a 
Langevin thermostat with a collision frequency of 2.0 ps−1, 
and then the pressure equilibration was carried out for 
1 ns at 1.0 bar in NPT ensemble using Berendsen barostat 
with a 2.0 ps characteristic time [72]. At the final stage, 
the constraints on the complex assembly were removed 
and the system was equilibrated again at 310 K over 2 ns 
under constant volume conditions. After equilibration was 
achieved, the MD simulations were carried out for 60 ns 
in NPT ensemble at temperature T = 310 K and P = 1 bar. 
Bonds involving hydrogen atoms were constrained using 
SHAKE algorithm [76] to achieve the integration time-step 
of 2 fs. Long-range electrostatic interactions were calcu-
lated using Particle Mesh Ewald (PME) algorithm [77]. 
Coulomb interactions and van der Waals interactions were 
truncated at 10 Å.

2.6 � Binding free energy calculations

The values of binding free energy were calculated with 
AMBER 11 [73] using the MM/GBSA method [78–80]. The 
calculations were made for 1000 snapshots extracted 
from the final 50 ns of the MD trajectories, by keeping the 
snapshots every 50 ps. The polar solvation energies were 
computed in continuum solvent using Poisson–Boltzmann 
continuum-solvation model with ionic strength of 0.1. The 
non-polar terms were estimated using solvent accessible 
surface areas [81]. The Nmode module in Amber 11 was 
applied to calculate the entropy term of the binding free 
energy [73].

3 � Results and discussion

Based on the analysis of the data obtained, eight top-
ranked compounds that exhibited the low values of bind-
ing free energy (< − 7 kcal/mol) in the PM7-based ligand/
aromatase complexes were selected for the final analysis. 
Depending on the mechanism of binding to the active 
site of CYP19A1, these compounds were divided into two 
structural groups designated as groups 1 and 2. Figure 3 
sheds light on a scheme of the computer-aided assembly 
of the hybrid molecules of group 1, and Table 1 presents 
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their ADME characteristics providing such important prop-
erties for a drug as absorption, distribution, metabolism 
and excretion. As follows from the data of Table 1, all the 
molecules of interest fully satisfy the criteria imposed on 
potential drug by Lipinski’s “rule of five” [52].  
Anaysis of the structural complexes of the identified com-
pounds with aromatase (Fig. 4) shows that one of the nitro-
gen atoms of the triazole ring forms a coordinate bond 
with the heme iron, as evidenced by the interatomic dis-
tances Fe–N (Table 2). The predicted Fe–N distances given 
in Table 2 are in good agreement with the crystallographic 
data on the lengths of coordination bonds between iron 
and nitrogen in six-coordinated iron binding sites [82]. 
From these data, typical Fe–N distances range between 1.9 
and 2.1 Å for sites with a low-spin iron, while they change 
from 2.1 to 2.3 Å for sites with a high-spin iron that occur 

upon substrate binding [82], indicating a high probability 
of realizing the nitrogen–heme–iron interaction between 
the analyzed compounds and the active site of aromatase. 
According to the predicted binding modes, compounds 
I, III–VI form hydrogen bond with residue Met-374 mim-
icking the interaction of aromatase with the natural sub-
strate androstenedione. According to the X-ray data [2, 20], 
one of the oxygen atoms of the androstenedione D-ring 
is involved in the H-bonding with Met-374 NH. In addi-
tion, ligand IV forms hydrogen bonds with the aromatase 
residues Thr-310 and Leu-372 as well as with the nitrogen 
atom of the heme. Besides, ligand III forms a salt bridge 
with Arg-115, and compound V participates in the H-bond-
ing with Leu-477 and Thr-310 (Table 2). In this context, it 
should be noted that Thr-310 is a highly conserved residue 

Fig. 3   The scheme of com-
puter-aided assembly of hybrid 
molecules I (a), II (b), III (c), IV 
(d), V (e), VI (f) from group 1. 
Reagents and reaction prod-
ucts are shown. Systematic 
names of these compounds 
are given. The molecule func-
tional groups forming hydro-
gen bonds with aromatase 
are indicated by superscripts * 
and **; π-conjugated systems 
of the ligands involved in π–π 
interactions with the pyrrole 
rings of the CYP19A1 heme 
group are marked by numerals 
1, 2, 3. These designations are 
used in Table 2 in which infor-
mation on the intermolecular 
interaction profile for the com-
pounds of group 1 is given (see 
also note to this Table). Com-
pounds I–VI were designed by 
computer-based simulation 
of the following reactions: 
esterification (a), amidification 
(b, c, d), transesterification (e), 
and thioesterification (f)
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in P450s and, together with Ala-306, plays an important 
role in the hydroxylation reactions [2, 20].

Along with hydrogen bonds, all the identified com-
pounds are involved in multiple van der Waals interactions 
with the hydrophobic pocket lined by conservative resi-
dues Arg-115, Ile-133, Phe-134, Trp-224, Thr-310, Val-370, 
Met-374, Leu-477, and Ser-478 (Table 2, Fig. 5). In addition, 
individual compounds of group 1 participate in van der 
Waals interactions with the aromatase residues Leu-372 
(compounds I, II, IV, V, VI), Val-373 (compounds I–V), Phe-
221 (compounds I, II, III, VI), Ala-306 (compounds II–V) 
and Val-369 (compound I) (Table 2, Fig. 5). At the same 
time, the total number of van der Waals contacts of these 

ligands with the substrate-binding site of CYP19A1 varies 
from 32 (compound III) to 62 (compound II). It is known 
that the above residues are extremely important for the 
catalytic activity of CYP19A1 [5]. In particular, extensive 
site-directed mutagenesis experiments indicate that 
mutations of Ser-478 to alanine or threonine affect letro-
zole and anastrozole binding [83]. The data on the crystal 
structure of aromatase show [2, 20] that the Phe-221, Trp-
224 and Met-374 residues are of great importance for bind-
ing of the androgen substrate as well as AIs, which is also 
confirmed by site-directed mutagenesis [83]. Furthermore, 
the residue Trp-224 participates in the mechanism-based 

Fig. 3   (continued)

Table 1   Physicochemical 
parameters of the compounds 
of group 1 associated with the 
Lipinski’s “rule of five”

The data given are obtained by the DruLiTo software (http://www.niper​.gov.in/pi_dev_tools​/DruLi​
ToWeb​/DruLi​To_index​.html)
a The compound lipophilicity

Compound Chemical formula Molecular 
mass (Da)

LogPa Number 
of H-bond 
donors

Number of 
H-bond accep-
tors

Volume (Å3)

I C16H17N3O6 347.3 0.03 2 9 297.9
II C20H20N4O2 348.4 2.04 1 6 318.9
III C14H18N6O6 367.3 − 4.88 3 12 286.9
IV C15H18N4O5 334.3 − 1.03 3 9 292.1
V C16H15N3O4 313.3 1.38 1 7 269.6
VI C17H21N3O3S 347.4 2.07 0 6 316.0

http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html
http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html
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inhibition of activity by exemestane, as time-dependent 
inhibition is eliminated with mutation on this residue [84].

The data obtained suggest that the designed molecules 
(Fig. 3) may interact not only with the amino-acid residues 
of the aromatase active site, but also with the heme group 
of this enzyme. Except ligand III, these small molecules 
form van der Waals contacts with the CYP19A1 heme 
group, and π-conjugated systems of compounds II, IV, V, 
and VI (Fig. 3) are involved in specific π–π interactions with 
its pyrrole rings (Table 2).

Thus, analysis of the intermolecular interaction profile 
calculated for the ligand/aromatase structures indicates 
that the identified AIs candidates exhibit close mode 
of binding to the aromatase active site. This binding is 

generally provided by the nitrogen–heme–iron interac-
tion, multiple van der Waals contacts, hydrogen bonds 
(compounds I, III–VI), salt bridges (compound III) and 
π-stacking between π-conjugated systems of the ligands 
and pyrrole rings of the heme group (compounds II, IV, V, 
VI) (Table 2, Fig. 5). Among these binding modes, intermo-
lecular van der Waals interactions are the major contribu-
tors to the ligand/aromatase interface including both con-
servative amino-acid residues of the CYP19A1 active site 
and the structural elements of the enzyme heme group 
(Table 2, Fig. 5). The efficiency of intermolecular interac-
tions appearing in the ligand/aromatase structures is sup-
ported by the low values of binding free energy and Kd 
(Table 3).

Fig. 4   The PM7-based struc-
tures of compounds I (a), II 
(b), III (c), IV (d), V (e), and VI 
(f) from group 1 bound to 
aromatase. The compounds 
are shown using “ball-stick-
ball” model. The residues of 
CYP19A1 forming van der 
Waals contacts with ligands are 
located in rectangles (Table 2). 
The residues involved in the 
hydrogen bonding are marked 
by an ellipse
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In the case of letrozole used in the study as a control, 
the methods of molecular modeling predict a mechanism 
of binding to aromatase similar to that of described above 
for the designed 1,2,4-triazole-based compounds of group 
1. With the calculated data (Table 2, Fig. 6), this CYP19A1 
inhibitor coordinates the iron atom of the enzyme heme, 
forms hydrogen bonds with Met-374, Ser-478 and a large 
number of van der Waals contacts with such functionally 
important residues as Arg-115, Phe-134, Trp-224, Thr-
310, Val-370, Met-374, Leu-477, and Ser-478. It is those 
amino-acid residues of CYP19A1 that are also involved 
in the direct interatomic interactions with the analyzed 
compounds (Table 2, Figs. 5, 6). Importantly, the Kd value 
of 7.66 nM calculated for the letrozole/aromatase com-
plex (Table 3) is close to that of 3.03 nM measured for this 
supramolecular structure by differential spectrophotom-
etry [85], indicating good prediction accuracy of the com-
putational algorithm used in the calculations.

Figure 7 shows a scheme of the computer-aided assem-
bly of the compounds of group 2, and Table 4 presents 
brief information on these molecules. Analysis of the 

data in Table 4 indicates that these potential ligands of 
CYP19A1 are also small molecules exhibiting drug-like 
properties [52]. However, unlike the ligands of group 1, 
the triazole ring of these compounds does not form a 
coordinate bond with the iron atom of the enzyme heme 
(Table 5, Figs. 8, 9). In this case, the coordination occurs by 
the donor–acceptor interactions of the heme iron atom 
with the oxygen atoms of the analyzed molecules (Table 5, 
Fig. 8). For these molecules, van der Waals contacts of their 
triazole ring with conservative residues of the aromatase 
hydrophobic pocket are likely to be more energetically 
preferable than the nitrogen–heme–iron interaction 
typical for triazole-based compounds [e.g., 84, 86]. Really, 
inspection of Table 5 and Fig. 8 reveals a wide network of 
van der Waals contacts between triazole cycle of the mol-
ecules of interest and the pivotal residues of the CYP19A1 
catalytic site, such as Arg-115, Ile-133, Phe-221, Trp-224, 
Thr-310, Val- 370, Met-374, Leu-477, Ser-478 (Table 5) [2, 
20, 83, 84]. In addition, compound II is involved in specific 
π–π interactions with the pyrrole rings of the CYP19A1 
heme, makes T-stacking with the π-conjugated system 

Table 2   Intermolecular interaction profile calculated for the compounds of group 1 and letrozole bound to aromatase

a Donors and acceptors of the hydrogen bonds relating to the ligands are shown first, followed by the corresponding functional groups of 
the aromatase amino-acid residues. The residues of aromatase are in square brackets in one-letter code. Superscripts * and ** for oxygen, 
nitrogen and hydrogen atoms match their designations in Fig. 3
b Amino acids of aromatase forming van der Waals contacts with the ligands. The number of the contacts is shown in round brackets
c The ligand functional groups and numbers of their aromatic rings marked as shown in Fig. 3 are given first for salt bridges and π–π interac-
tions, respectively
d The length of the coordinate bond between a heterocyclic nitrogen and the iron atom of the heme group of the enzyme. The number of 
nitrogen atom is indicated in round brackets

Compound Hydrogen bondsa Van der Waals contactsb Salt bridges and π–π interactionsc Length of the 
N–Fe bondd 
(Å)

I OH*…N[M374] R115(3), I133(4), F134(3), F221(3), W224(3), T310(4), 
V369(6), V370(2), L372(3), V373(1), M374(1), L477(3), 
S478(1), HEME (8)

– 1.99 (4)

II – R115(3), I133(1), F134(1), F221(1), W224(2), A306(3), 
T310(2), V370(8), L372(1), V373(6), M374(1), L477(7), 
S478(4), HEME (22)

1…HEME
2… HEME
3… HEME (π-stacking)

2.01 (4)

III O*…NH[M374]
O**…NH[M374]

R115(4), I133(2), F134(2), F221(1), W224(2), A306(3), 
T310(5), V370(1), V373(1), M374(1), L477(7), S478(3)

OCO…R115 (salt bridge) 2.38 (2)

IV O*…NH[M374]
O**…OH[T310]
OH**…N[HEME]
NH*…O[L372]

R115(3), I133(4), F134(1), W224(2), A306(2), T310(1), 
V370(2), L372(4), V373(1), M374(1), L477(5), S478(2), 
HEME (14)

1… HEME (π-stacking) 2.01 (4)

V O*…NH[M374]
O**…NH[M374]
OH*…O[L477]
N*…OH[T310]

R115(2), I133(4), F134(2), W224(1), A306(1), T310(4), 
V370(4), L372(2),V373(5), M374(1), L477(4), S478(6), 
HEME (17)

1… HEME
2… HEME (π-stacking)

1.81 (2)

VI N*…NH[M374] R115(6), I133(2), F134(4), F221(3), W224(4), T310(2), 
V370(5), L372(1), M374(6), L477(5), S478(2), HEME (18)

1… HEME (π-stacking) 2.01 (4)

Letrozole N*…OH [S478]
N**…NH [M374]

R115(2), F134(2), F221(7), W224(6), A306(1), D309(8), 
T310(6), V369(2), V370(1), M374(2), L477(3), S478(3), 
H480(1), HEME (6)

– 1.95 (4)
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Fig. 5   The aromatase residues 
making van der Waals contacts 
with compounds I (a), II (b), III 
(c), IV (d), V (e), and VI (f) from 
group 1. Residues involved 
in van der Waals interactions 
in all of the cases of interest 
are marked by an ellipse. The 
total number of van der Waals 
contacts is: 45 (a), 62 (b), 32 
(c), 42 (d), 53 (e) and 58 (f). The 
nitrogen–heme–iron interac-
tion is shown by dotted line

Table 3   Values of binding free 
energy (∆G) and Kd for the 
compounds of group 1 and 
letrozole bound to aromatase

Compound I II III IV V VI Letrozole

∆G (kcal/mol) − 7.8 − 9.2 − 8.8 − 8.1 − 8.7 − 8.0 − 8.7
Kd (nM) 12.21 38.35 43.24 51.07 64.39 73.72 7.66
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Fig. 6   The PM7-based letrozole/aromatase structure (a) and resi-
dues of CYP19A1 involved in van der Waals interactions (b). a Letro-
zole is shown using “ball-stick-ball” model. The residues of CYP19A1 
forming van der Waals contacts with ligands are located in rectan-
gles (Table 2). The residues involved in the hydrogen bonding are 

marked by an ellipse. b The residues of aromatase participating 
in van der Waals interactions both with letrozole and the ligands 
of group 1 are marked by an ellipse. The total number of van der 
Waals contacts is 50. The nitrogen–heme–iron interaction is shown 
by dotted line

Fig. 7   The scheme of 
computer-aided assembly of 
the hybrid molecules I (a) and 
II (b) from group 2. Reagents 
and reaction products are 
shown. Systematic names of 
these compounds are given. 
Oxygen and nitrogen atoms 
of compound II forming 
hydrogen bonds with CYP19A1 
are indicated by superscript 
*; π-conjugated systems 
of ligand II involved in π–π 
interactions with the pyrrole 
rings of the CYP19A1 heme 
group are marked by numerals 
1, 2, 3. These designations are 
used in Table 5 in which the 
information on the intermolec-
ular interaction profile for the 
compounds of group 2 is given 
(see also note to this Table). 
Compounds were designed by 
an amidification reaction

Table 4   Physicochemical 
parameters of the compounds 
of group 2 associated with the 
Lipinski’s “rule of five”

a The compound lipophilicity

Compound Chemical formula Molecular 
mass (Da)

LogPa Number 
of H-bond 
donors

Number of 
H-bond accep-
tors

Volume 
(Å3)

I C11H10N8O4 318.2 3.80 2 12 251.7
II C20H20N4O2 348.4 2.04 1 6 314
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Table 5   Intermolecular interaction profile calculated for the compounds of group 2 bound to aromatase

a Acceptors of the hydrogen bonds relating to the ligands are shown first, followed by the corresponding H-bond donors of the aromatase 
amino-acid residues. The residues of aromatase are in square brackets in one-letter code. Superscripts of oxygen and nitrogen atoms match 
their designations in Fig. 7
b Amino acids of aromatase forming van der Waals contacts with the ligands. The number of the contacts is shown in round brackets
c Numerals of the aromatic rings of ligand II as marked in Fig. 7 are shown first
d The length of the coordinate bond between the iron atom of the heme group and the oxygen atoms in compounds I and II. The type of the 
ligand atom bonded to the heme iron is indicated in round brackets

Compound Hydrogen bonds Van der Waals contactsb Salt bridges and π–π
interactionsc

Length of the 
coordinate 
bondd (Å)

I – R115(3), F134(2), I133(2), F221(1), W224(2), A306(1), T310(4), 
V370(2), M374(4), L477(2), S478(1), HEME(15)

CO2…HEME (salt bridge) 2.15 (O)

IIa N*…NH[M374]
O*…OH[T310]

R115(1), F134(1), I133(5), F221(5), W224(8), E302(1), I305(2), 
A306(8), T310(5), V370(4), L372(1), M374(2), L477(2), S478(2), 
HEME(1)

1…HEME (π-stacking)
2…F134
3…HEME (T-stacking)

1.87 (O)

Fig. 8   The PM7-based structures of compounds I (a) and II (b) from 
group 2 bound to aromatase. The compounds are shown using 
“ball-stick-ball” model. The residues of CYP19A1 forming van der 

Waals contacts with ligands are located in rectangles (Table 5). The 
residues involved in hydrogen bonding are marked by an ellipse

Fig. 9   The aromatase residues 
making van der Waals contacts 
with compounds I (a) and II 
(b) from group 2. Residues 
involved in van der Waals 
interactions in both cases are 
marked by an ellipse. The total 
number of van der Waals con-
tacts is 39 (a) and 48 (b). The 
donor–acceptor interaction is 
shown by dotted line
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of the Phe-134 side chain and hydrogen bonds with resi-
dues Met-374 and Thr-310. Besides, compound I forms 
a salt bridge with the aromatase heme (Table 5). Finally, 
analysis of the data of Table 6 indicates that, like the mol-
ecules from group 1, the compounds of group 2 exhibit a 
high binding affinity in the complexes with aromatase, as 
evidence with the low values of dissociation constant and 
binding free energy.     

Molecular dynamics insights into the ligand/aromatase 
complexes validate the main findings derived from the 
analysis of their static structures. These complexes are 
relatively stable during the MD simulations, which is sup-
ported by the averages of binding free energies, their 
enthalpic components, and corresponding standard 
deviations (Table 7). Given the accuracy of the MM/GBSA 
method evaluated in studies [78–80], one can suppose 
that the averages of binding free energy predicted for the 
designed compounds in the complexes with aromatase 
are comparable with the value calculated for the letro-
zole/aromatase complex by the identical computational 
protocol (Table 7). Furthermore, these averages are also 
comparable with the values estimated by QuickVina 2 [59] 
for the static models of the ligand/aromatase complexes 
(Tables 3, 6) as well as to that of -12.06 kcal/mol obtained 
with the formula ∆G = R × T × ln(Kd) at temperature 

T = 310 K) [87] using the experimental value of Kd for letro-
zole bound to aromatase [85].

So, the analysis of the obtained results shows that 
all identified compounds (Figs.  3, 7) may specifically 
and effectively block the structural elements of the aro-
matase active site critical for its catalytic activity, which is 
confirmed by the low values of binding free energy and 
Kd (Tables 3, 6, 7). However, when analyzing the data of 
Tables 3, 6 and 7, it is necessary to keep in mind that all 
computational approaches for estimating the binding 
affinity involve various approximations. They vary from 
simplified forms of the first-principles equations that are 
easier or faster to solve, to approximations limiting the size 
of the system (for example, periodic boundary conditions), 
to fundamental approximations to the underlying equa-
tions that are required to achieve any solution to them at 
all. However, the accuracy of the recent quantum chemical 
method PM7 [53], the only semiempirical method taking 
into account corrections for intermolecular dispersion 
interactions and hydrogen bonds [53, 88], gives reason 
to assume that the values of binding free energy and Kd 
(Tables 3, 6) enable one to make a correct prediction of the 
binding affinity between the designed compounds and 
aromatase. This assumption is also supported by the data 
on the accuracy of binding affinity prediction provided by 
QuickVina 2 [57], NNScore 2.0 [71] and MM/GBSA [78–80] 
as well as by the results of a recent study [89], whereby the 
use of quantum chemical semiempirical method PM7 for 
optimization of the ligand/protein complexes simulated 
based on classical force field significantly improves the 
ligands positioning accuracy.

Table 6   Values of binding free 
energy (∆G) and Kd for the 
compounds of group 2 bound 
to aromatase

Compound I II

∆G (kcal/mol) − 8.7 − 8.6
Kd (nM) 22.38 30.30

Table 7   Averages of binding free energy ( ⟨ΔG⟩ ) for the complexes of the AIs candidates and letrozole with aromatase and their standard 
deviations (ΔGSTD)

⟨ΔH⟩ and ⟨TΔS⟩ are the mean values of enthalpic and entropic components of free energy, respectively; (ΔH)STD and (TΔS)STD are standard 
deviations corresponding to these values

Compound ⟨ΔH⟩ (kcal/mol) (ΔH)STD (kcal/
mol)

⟨TΔS⟩ (kcal/mol) (TΔS)STD (kcal/
mol)

⟨ΔG⟩ (kcal/mol) ΔGSTD 
(kcal/
mol)

Compounds of group 1
 I − 32.2 4.0 − 22.6 2.9 − 9.6 3.4
 II − 28.3 5.7 − 16.4 4.0 − 11.9 4.8
 III − 35.2 5.6 − 23.9 6.2 − 11.3 5.9
 IV − 26.8 4.5 − 17.9 3.4 − 8.9 3.9
 V − 25.7 5.5 − 16.1 3.6 − 9.6 4.4
 VI − 28.4 4.6 − 19.7 3.6 − 8.7 4.0

Compounds of group 2
 I − 27.9 3.5 − 18.5 3.7 − 9.4 3.6
 II − 24.8 3.6 − 16.5 5.5 − 8.3 4.5

Letrozole
− 37.3 4.3 − 27.0 9.6 − 10.3 6.4
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4 � Conclusions

The data of molecular modeling indicate that each of the 
identified compounds of group 1 shows peculiar interac-
tions with the enzyme binding pocket, the interaction 
being realized between the triazole ring and the heme 
iron, van der Waals interactions with the hydrophobic 
pocket lined by Arg-115, Ile-133, Phe-134, Trp-224, Thr-
310, Val-370, Met-374, Leu-477, Ser-478, and, except 
compound II, the hydrogen bond with Met-374, which 
is also involved in hydrogen bonding with the natural 
substrate androstenedione. In addition, some identified 
compounds form van der Waals contacts with the heme 
of CYP19A1, and π-conjugated systems of individual 
molecules participate in specific π–π interactions with 
the pyrrole rings of the heme group. Finally, the selected 
AIs candidates expose strong attachment to the enzyme 
active site, in line with the low values of binding free 
energy and Kd. In summary, the conclusions that can be 
made by the new identified AIs are that, in addition to 
the interaction between the triazole rings and the heme 
iron, hydrophobic contacts play a pivotal role in the 
ligand binding, and hydrogen bond involving Met-374 
is also essential for the ligand recognition.

Unlike the molecules of group 1, the ligands of group 
2 demonstrate a mechanism of binding to aromatase 
uncharacteristic for triazole-based compounds gener-
ally coordinating the iron atom of the heme via a het-
erocyclic nitrogen lone pair. According to the calculated 
data, the ligands of interest coordinate the iron atom 
of the CYP19A1 heme group through the lone pairs of 
their oxygen atoms. Similarly to the molecules of group 
1, all these compounds target the well-conserved hot-
spots of the aromatase catalytic site using multiple van 
der Waals interactions with the critically important resi-
dues of this hydrophobic pocket. Besides, compound II 
participates in specific π–π interactions with the pyrrole 
rings of the CYP19A1 heme group and form hydrogen 
bonds with residues Met-374 and Thr-310, and com-
pound I forms a salt bridge with the enzyme heme.

Finally, analysis of the ligand/aromatase complexes 
indicates a high binding affinity between the identified 
compounds and the enzyme, in agreement with the 
low values of binding free energy calculated both for 
their static and dynamic models. Certainly, the above 
computational findings are a prediction and their final 
confirmation can be obtained only after testing the 
designed compounds for antitumor activity. Unfor-
tunately, synthetic methodologies still limit the com-
pounds that computational chemists can design [90]. 
However, eight compounds identified in this study can 
be synthesized by quite simple click chemistry reactions 

using commercially available modular units as reactants 
(Figs. 3, 7) [46]. This work is now in progress and its fur-
ther advancement proposes to use these AIs mimetic 
candidates as the fixed scaffolds for computer-based 
generation of their modified forms with improved bio-
logical activity and drug-like properties (e.g., [91, 92]) 
followed by synthesis and detailed biochemical assays.
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