
Vol.:(0123456789)

SN Applied Sciences (2019) 1:551 | https://doi.org/10.1007/s42452-019-0557-6

Research Article

Non‑linear heat and mass transfer in a thermal radiated MHD flow 
of a power‑law nanofluid over a rotating disk

Nabil T. EL‑Dabe1 · Hazim A. Attia2 · Mohamed A. I. Essawy3,4 · Ibrahim H. Abd‑elmaksoud2 · Ahmed A. Ramadan4 · 
Alaa H. Abdel‑Hamid4

© Springer Nature Switzerland AG 2019

Abstract
The steady MHD flow of a power law nanofluid due to a uniform rotation of an infinite disk is studied with heat and 
mass transfer. The viscous dissipation has been comprised in the energy equation. The governing PDEs are reduced to a 
set of ODEs; using the generalized Von Karman similarity transformations; for which finite difference numerical scheme 
is implemented along with the associated boundary conditions. The non-Newtonian fluid characteristics affect the 
fluid velocity, temperature and concentration of suspended nanoparticles. The significant effects of thermal radiation, 
Brownian motion and thermophoresis diffusion are involved. The skin friction coefficients in addition to the heat and 
mass transfer rates are defined and calculated considering the variation of all flow parameters. The present results are 
verified and compared with literature.
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List of symbols
(r, φ, z)	� Cylindrical coordinates
(u, v, w)	� Radial, azimuthal and vertical velocity compo-

nents; respectively
(F, G, H)	� Non-dimensional velocity components
∂p/∂r	� Pressure gradient
p∞	� Pressure of the ambient fluid
υ	� Kinematic viscosity of the fluid
ζ	� Non-dimensional distance
ω	� Angular velocity of the disk
T	� The temperature of the fluid
Tw, T∞	� The temperatures of the disk and ambient 

fluid; respectively
C	� Nanoparticles concentration
Cw, C∞	� Nanoparticles concentration of the disk and 

ambient fluid; respectively
θ	� Dimensionless temperature
ϕ	� Dimensionless nanoparticles concentration

n	� The power-law index
µo	� Consistence coefficient
µ	� Coefficient of viscosity
m	� Magnetic parameter
ρF	� Fluid density
c	� Specific heat capacity of the fluid
k	� Thermal conductivity of the fluid
Bo	� Uniform magnetic field
σ	� Electric conductivity of the fluid
Pr	� Prandtl number
Ec	� Eckert number
Dt	� Thermophoretic diffusion coefficient
Db	� Brownian motion coefficient
Nb	� Brownian motion parameter
Nt	� Thermophoretic parameter
Le	� Lewis number
Rd	� Radiation parameter
qr	� Radiative heat flux
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Cft	� Tangential skin friction coefficient
Cfr	� Radial skin friction coefficient
qw	� Heat flux
qm	� Mass flux
Nur	� The local Nusselt number
Shr	� The local Sherwood number
Rer	� The rotational Reynolds number

1  Introduction

Rotating disk flows are of both theoretical and practical 
value. The boundary layer induced by a rotating disk is 
of great scientific importance owing to its relevance to 
applications in many areas such as rotating machinery, 
computer storage devices, viscometry, turbo-machinery, 
lubrication, oceanography, crystal growth processes, and 
chemical vapor deposition reactor [1]. The problem of 
the motion of a fluid due to the rotation of an infinitely 
extended disk was firstly illustrated by von Karman [2], 
who introduced a set of generalized similarity transforma-
tions to reduce the governing PDEs to ODEs.

Many authors studied the heat transfer behavior from a 
rotating disk in different ways [3–5]. Batista [6] succeeded 
in finding a closed form for the velocity components 
regarding the fluid flow between two uniformly co-rotat-
ing disks. Also, explicit solutions have been presented for 
generalized non-Newtonian fluids at different conditions 
with both mechanical and biological applications [7–9]. 
The flow of non-Newtonian power-law fluids considering 
the influence of a magnetic field has been studied [10–12] 
using the extensions of Karman analysis which discussed 
in [13, 14]. MHD flows regarding power-law fluids over a 
rotating disk are of great impact because of the absence 
of the magnetic force field outside the viscous boundary 
layer, which means that the fluid flow only affected inside 
the boundary layer. Applying an external uniform mag-
netic field on a power-law fluid flow over a rotating disk 
was proved to serve in the process of flow control [15–17].

The steady flow of a nanofluid due to a rotating disk was 
studied by Bachok et al. [18]. The thermal radiation effect 
on the motion of an electrically conducting fluid over an 
infinite rotating porous disk was studied with heat and 
mass transfer [19]. Ming et al. [20] gave extreme illustra-
tions to the steady flow and heat transfer of an incom-
pressible viscous fluid of a power-law type over a rotating 
infinite disk. They assumed that the thermal conductiv-
ity obeys the same nonlinear formula as the definition of 
the viscosity function. Osalusi [21] provided a continuum 
of the fluid motion over a rotating disk considering the 
Reiner–Rivlin model. Andersson et al. [22] demonstrated 
the characteristics of the power-law fluid flow over a rotat-
ing disk by introducing the boundary layer approximations 

and extending the power-law index in the range of (1.5, 
2). Later, Andersson and de Korte [15] expanded their 
research work to account for the MHD flow; they obtained 
asymptotic solutions and solved numerically for magnetic 
parameter values up to 4.0. They concluded that imposing 
the magnetic field is more effective for shear-thinning than 
for shear-thickening fluids where a distinctive behavior has 
been obtained compared with the non-magnetic case.

Nanofluids provide an important class of fluids because 
of their enormous energetic applications. This kind of flu-
ids composes of a base liquid with suspended nanoparti-
cles. The fluid thermal conductivity is enhanced because 
of the addition of small amount of nanoparticles according 
to the experimental verification made by Choi [23]. Buon-
giorno [24] worked out his famous mathematical model 
that addresses the flow of nanofluids along with the incor-
poration of both the Brownian motion and thermopho-
retic diffusion of nanoparticles. Nanofluids aroused a great 
interest because of enhancing the thermal conductivity of 
the base fluid which is necessary for several applications; 
especially in nuclear reactors [25–27].

Bachok et al. [18] interpreted the nanofluid flow and 
heat transfer characteristics because of the rotation of an 
infinitely extended porous disk. The steady magnetohy-
drodynamic flow of a nanofluid due to a rotating porous 
disk has been richly discussed considering the entropy 
generation phenomenon [28]. This simulation proved the 
high impact of using a magnetic rotating disk in novel 
nuclear space propulsion engines in addition to its several 
applications in heat transfer enhancement. Turkyilmazoglu 
[29] illustrated the flow and heat transfer of many water-
based nanofluids over a rotating disk. The phenomenon of 
nanoparticles precipitation; accompanying to the arising 
motion of power-law nanofluids due to a rotating disk has 
been studied numerically using the Homotopy analysis 
method (HAM) [30]. The obtained solutions agreed with 
the experimental results; which reflects the importance 
of such mathematical formulations. Mustafa et al. [31] pro-
posed a numerical study of a two-phase Bödewadt nano-
fluid flow with heat transfer over a stationary stretching 
disk. Later, many authors [32–35] have presented extensive 
research work regarding the flow of nanofluids between 
two rotating disks under different physical assumptions. 
The usage of such nanofluids enhancing the heat trans-
fer performance and leads to many updatable energetic 
applications [36].

The present work ventilates the effectiveness of thermal 
radiation on the nonlinear heat and mass transfer across a 
steady MHD flow of a power-law nanofluid over a rotating 
disk; as a continuation of the problems discussed previ-
ously in [15, 22]. The governing nonlinear PDEs of fluid 
flow, temperature and nanoparticles concentration in the 
prescribed boundary layer are solved numerically using 
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finite differences. The effects of characteristics of non-
Newtonian power-law fluid have been accentuated and a 
full parametric study has been conducted.

2 � Physical model and governing equations

This problem considers the arising steady motion of a 
fluid due to the rotating behavior of an insulated infinite 
disk about the z-axis with angular velocity ω. The cylin-
drical polar coordinates (r, φ, z) are used in modeling this 
phenomenon as presented in Fig. 1. The disk has been 
positioned in the plane z = 0. The utilized non-Newto-
nian power law nanofluid occupies the space z > 0. The 
pressure gradient in the z-direction vanishes (∂p/∂z = 0) 
according to the boundary layer derivation represented 
by Andersson and de Korte [15]. In addition, the similarity 
transformations of Karman implied (∂p/∂r = 0), which pro-
vides a constant pressure inside the boundary layer. The 
disk is maintained at a constant temperature Tw, while, 
the fluid out of the boundary layer is kept at a uniform 
ambient temperature T∞. The concentration of the nano-
particles at the disk is set to a constant value Cw differs 
from that far from the disk C∞. This physical geometry can 

be found in many realistic situations such as rotating and 
turbo-machinery.

The governing PDEs of continuity, momentum, energy 
and concentration are given; respectively, as follows:

The non-Newtonian fluid considered in the present work 
obeys the power law model, where, the viscosity has been 
assumed to depend on the velocity gradients as follows 
[15]:

In the last term of the right hand side of Eq. (4), qr accounts 
for the radiated heat flux [37],

where, σ* is the Stefan–Boltzmann constant and k* is the 
mean absorption coefficient. The term T4 is expressed as 
a linear Taylor expansion of temperature about T∞ with 
neglecting the second and higher order terms,

The boundary conditions are given by:

The following Von Karman generalized transformations 
are modified in order to fit the present power law flow 
problem [13, 15]:
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Fig. 1   Rotating disk flow configuration
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With the definitions illustrated in (6) and (11); the Eqs. (1–5) 
are transformed to Eqs. (12–16):

where, the differentiation is with respect to the variable �.
The dimensionless boundary conditions are expressed 

as:

The parameters that govern the fluid flow are defined in 
the following manner:

Below, One can find the definitions of the interesting phys-
ical quantities Cft , Cfr , Nur and Shr [38]:

where, the tangential and radial skin frictions τt and τr; as 
well as the heat and mass fluxes qw and qm are expressed, 
respectively, as follows:
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The quantities Cft , Cfr , Nur and Shr are given in their dimen-
sionless forms as below:

where, Rer =
r2 �2−n

�o∕ �
 is the rotational Reynolds number.

3 � Numerical solution

Equations (12–16) are solved numerically using finite dif-
ferences [39] under the boundary conditions given by 
Eqs. (17) and (18) to determine the velocity, temperature 
and nanoparticles concentration distributions for different 
values of the governing parameters n, m, Rd, Nt and Nb with 
various values of Pr, Ec and Le numbers. The Crank–Nicol-
son implicit method [40] is applied.

The variables D = −0.5(dF/dζ),  E = −0.5(dG/dζ), 
M = d�∕d� and N = d�∕d� have been defined to reduce 
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the second order differential Eqs. (12–16) to first order 
ones as follows;
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The finite difference scheme is implemented by writ-
ing Eqs. (23–27) at the mid-point of the computational cell 
and then replacing the difference terms by their second 
order central difference approximation in ζ direction. A 
quasi-linearization technique is firstly applied to replace 
the non-linear terms at a linear stage, with the corrections 
incorporated in subsequent iterative steps until conver-
gence. Finally, the resulting block tri-diagonal system is 
solved using the generalized Thomas-algorithm [39–41].

The finite difference representations for the resulting 
first order differential Eqs. (23–27) take the form:
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2
−
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The bars in the above equations refer to the previous 
iteration.

The computational domain 0 < ζ < ζ ∞ can be divided 
into intervals of 0.001 step size each. The independence 
of the results from the length of the finite domain and the 
grid density was ensured and successfully checked by vari-
ous trial and error numerical experimentations. The value 
ζ∞ = 20 is adequate for all the ranges of the studied param-
eters. The scheme convergence is satisfied when the vari-
ables H, F, G, D, E, θ, ϕ, M and N; have an absolute difference 
of 10−6 for the last two approximations for all values of ζ in 
the specified interval 0 < ζ < ζ ∞. These results are found to 
be reduced to those given in [14, 15, 20, 22] considering 
a clear fluid with different flow modes; which, assures the 
solutions accuracy and correctness.

4 � Results and discussion

Figures 2, 3 and 4 show that the augmentation of the mag-
netic parameter m results in reducing the radial, tangen-
tial and axial velocities F, G and H; respectively, where the 
movement of the rotating disk axially draws the surround-
ings toward the surface to compensate the radial outflow. 
Also, it is extremely obvious that the boundary layer thick-
ness becomes thinner with increasing the power-law index 
n. The inclusion of the magnetic force field provides the 
same influence of velocity reduction considering differ-
ent values of n expressed for shear-thinning fluids (n < 1), 
Newtonian fluids (n = 1) and shear-thickening fluids (n > 1). 
It is worthwhile to infer that raising m causes the boundary 
layer to be thinner; and that the variations of the velocities 
F, G and H with m is more pronounced in case of non-New-
tonian shear-thinning fluids. Moreover, Fig. 5 indicates that 
the values of the temperature θ(ζ) and the nanoparticles 
concentration ϕ(ζ) increase with boosting m for different 
n values. This influence is due to the presence of Lorentz 
force caused by the acting magnetic field that decelerates 
the flow around the disk.

Figure 6 exhibits a raise in the temperature profiles; 
while, a depression is obtained in the concentration pro-
files with increasing Ec for different kinds of fluids. This 
illustrates the fact that when the friction increases due to 
fluid viscosity, a large amount of heat is obtained where 
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the viscous dissipation provides an important internal 
heat source because of the viscous stresses action; and 
hence, the nanofluid temperature increases. Figure 7 dis-
plays the influence of the thermal radiation parameter Rd 
on both θ(ζ) and ϕ(ζ) for different n. Increasing Rd elevates 
the behavior of ϕ(ζ) but, decreases θ(ζ) and the thickness of 
the thermal boundary layer due to the reduction of energy 
transport into fluid.

Figure 8 accentuates the reduction behavior of both 
θ(ζ) and ϕ(ζ) with increasing Pr; which is physically veri-
fied due to the dependence of Pr on the ratio of the fluid 
kinematic viscosity to thermal diffusivity. In this study, the 
values of Pr have been chosen according to the catego-
ries; (Pr ≪ 1) for liquid metals which have high thermal 
conductivity but low viscosity and (Pr ≫ 1) for high-vis-
cosity oils. It should be mentioned that the specific used 
values Pr = 0.72, 1.0 and 7.0 correspond to air, electrolyte 
solution, and water; respectively. Figure 9 elucidates that 
increasing Le; increases the Newtonian fluid temperature, 
while, a lessening in the temperature values is recognized 
for non-Newtonian fluids (n ≠ 1). Nevertheless, a diminish-
ment attitude of ϕ(ζ) is obtained due to the increase of Le. 
This may be attributed to the physical definition of Le as 
the ratio of thermal diffusivity to nanoparticle mass diffu-
sivity; where it is used to characterize the heat and mass 
transfer through nanofluids flows.

Figure 10 clarifies that the distributions of θ(ζ) and ϕ(ζ) 
put up with increasing the thermophoretic parameter Nt 
and that the influence of thermophoresis phenomenon 
is the same for different values of n. Physically; enhanc-
ing the thermophoretic effect results in a larger mass 
flux due to temperature gradient which in turn raises the 
concentration. This mechanism therefore, assists the diffu-
sion of the nanoparticles and elevates the concentration 
profile. On the other hand, Fig. 11 is prepared to present 
the effect of the Brownian motion on both θ(ζ) and ϕ(ζ). 
The temperature of the fluid decreases with increasing Nb 
for Newtonian fluids; while, an elevation in θ(ζ) profiles is 
obtained with increasing Nb regarding the class of non-
Newtonian fluids (n ≠ 1). Furthermore, ϕ(ζ) decreases with 
increasing Nb for all n values. This reflects the great impact 
of following up the influence of the Brownian motion of 
the particles at nanoscale level; which highly affects the 
thermal behaviors of the surrounding liquids by transport-
ing energy directly by nanoparticles. The parameters Nb 
and Nt may vary in (0, ∞); however, the distinctive profiles 
can be obtained in the range (0, 2) [42].

Table 1 provides a comparison between the present 
values of the flow characteristics F′(0), − G′(0) and − H(∞) 
with those obtained in [15, 43]. These numerical results 
have been calculated for the particular case of a New-
tonian fluid (n = 1). The wall gradient F′(0) and the axial 
inflow − H(∞) showed a reduction behavior with respect 
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Fig. 2   Variation of the radial 
velocity F with different values 
of m and n 
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Fig. 3   Variation of the tangen-
tial velocity G with different 
values of m and n 
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Fig. 4   Variation of the axial 
velocity H with different values 
of m and n 
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Fig. 5   Variation of both 
θ(ζ) and ϕ(ζ) with different 
values of m and n (Ec = 0.2, 
Rd = Pr = Le = 1, Nt = Nb = 0.5)
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Fig. 6   Variation of both θ(ζ) 
and ϕ(ζ) with different values 
of Ec and n (m = Rd = Pr = Le = 1, 
Nt = Nb = 0.5)
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Fig. 7   Variation of both 
θ(ζ) and ϕ(ζ) with different 
values of Rd and n (Ec = 0.2, 
m = Pr = Le = 1, Nt = Nb = 0.5)
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Fig. 8   Variation of both 
θ(ζ) and ϕ(ζ) with different 
values of Pr and n (Ec = 0.2, 
Rd = m = Le = 1, Nt = Nb = 0.5)
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Fig. 9   Variation of both 
θ(ζ) and ϕ(ζ) with different 
values of Le and n (Ec = 0.2, 
Rd = Pr = m = 1, Nt = Nb = 0.5)
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Fig. 10   Variation of both 
θ(ζ) and ϕ(ζ) with different 
values of Nt and n (Ec = 0.2, 
m = Rd = Pr = Le = 1, Nb = 0.5)
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Fig. 11   Variation of both 
θ(ζ) and ϕ(ζ) with different 
values of Nb and n (Ec = 0.2, 
m = Rd = Pr = Le = 1, Nt = 0.5)
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to the growth of m; while an increase in − G′(0) is obtained. 
Tables 2, 3 and 4 clarify the variation of both the radial 
and tangential skin frictions F′(0), − G′(0) as well as the 
axial inflow − H(∞) with varying n. The calculations agree 
with those presented in [14, 20, 22] for the non-magnetic 
flow (m = 0). It is shown that the values of the wall gradi-
ent F′(0) increase with increasing n, while a diminishment 
attitudes are obtained for both − G′(0) and − H(∞). Table 5 
indicates the effectiveness of thermal radiation on the heat 
and mass transfer for different values of Pr considering a 
magnetic Newtonian fluid flow with n = m = Le = 1, Ec = 0.2 
and Nt = Nb = 0.5. Increasing Rd and Pr has a marked influ-
ence in enhancing the magnitudes of both the Nusselt and 
Sherwood numbers.

Table 6 elucidates the variations of the radial and tan-
gential skin frictions, in addition to the Nusselt and Sher-
wood numbers for different m considering different types 
of fluids with Pr = Rd = Le = 1, Ec = 0.2 and Nt = Nb = 0.5. It is 
obvious that the radial skin friction coefficient decrease 
with increasing m for all n values, while, a raise in the mag-
nitude of the tangential skin friction coefficient is recog-
nized with increasing m and decreasing n. Also, increasing 
n, enhances the value of the radial skin friction coefficient 
for (m > 0) and reduces it in the nonmagnetic flow case 
(m = 0). It is observed that for different kind of fluids, the 
magnitudes of both the local Nusselt number and the 
local Sherwood number increase with increasing the 
magnetic parameter (m > 1), while a reduction is obtained 
with increasing m, where (m < 1). Table 7 accentuates the 
variation of Shr for different values of Le, Nt and Nb where, 
m = Pr = Rd = 1 and Ec = 0.2. It is shown that Shr increases 
with increasing the parameters Le, Nt and Nb which accom-
pany the flow of a nanofluid with simultaneous heat and 
mass transfer.

5 � Conclusions

This research work deals with the analysis of a steady MHD 
flow of a non-Newtonian power law nanofluid due to the 
rotation of an infinite disk. The effect of thermal radia-
tion has been enrolled together with both the Brownian 
motion and thermophoretic diffusion phenomena. It 
is concluded that increasing the magnetic parameter 
reduces the radial, tangential and axial velocities for all 
n values and that the boundary layer thickness becomes 
thinner with increasing n. The augmentation of m causes 
the boundary layer to be thinner; and the velocities vari-
ation with m is more pronounced in case of non-Newto-
nian shear-thinning fluids. Moreover, θ(ζ) and ϕ(ζ) increase 
with boosting m and Nt for different n values. Increasing 
Pr and Rd decreases θ(ζ) and the thickness of the thermal 
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boundary layer, while, increasing Ec enhances the tem-
perature values.

Furthermore, the temperature of the fluid decreases 
with increasing Nb for Newtonian fluids; while, an elevation 
in θ(ζ) profiles is obtained with increasing Nb regarding the 
class of non-Newtonian fluids (n ≠ 1), which totally opposes 
the effect of Le on θ(ζ). On the other hand, a diminish-
ment attitude of ϕ(ζ) is obtained due to the increase of 
Ec, Pr, Le and Nb, while, an elevation of the behavior of ϕ(ζ) 
is observed with increasing Rd for different n values. The 
wall gradient F′(0) and the axial inflow − H(∞) decrease; 
while, the values of − G′(0) increase with increasing m. The 
values of F′(0) increase, while, a diminishment attitudes 
are obtained for both − G′(0) and − H(∞) with increasing 

n. Increasing Rd and Pr has a marked influence in enhanc-
ing the magnitudes of both Nur and Shr. The radial skin 
friction coefficient decreases with increasing m for all n 
values, while, the magnitude of the tangential skin fric-
tion coefficient raises with increasing m and decreasing 
n. Also, increasing n enhances the radial skin friction coef-
ficient for (m > 0) and reduces it in the nonmagnetic flow 
case (m = 0). The magnitudes of both Nur and Shr increase 
with increasing the magnetic parameter (m > 1), while a 
reduction is obtained with increasing m, where (m < 1). 
Moreover, increasing the parameters Le, Nt and Nb put up 
the values of Shr.

Table 2   Variation of F′(0) with 
n for (m = 0)

n Present work Reference [20] Reference [22] Reference [14]

0.5 0.493192308796122 0.50058 0.501 0.501
0.6 0.49759630965858 – 0.501 0.500
0.8 0.504218392738096 0.50381 0.504 0.504
0.9 0.507189214573548 – 0.507 0.507
1 0.510232626531152 0.51021 0.510 0.510
1.1 0.51338911702259 – 0.514 0.514
1.3 0.519894465021008 0.52150 0.522 0.521
1.5 0.526405459661366 0.52919 0.529 0.529

Table 3   Variation of − G′(0) 
with n for (m = 0)

n Present work Reference [20] Reference [22] Reference [14]

0.5 0.63258191586443 0.71322 0.712 0.713
0.6 0.62813774055592 – 0.676 0.677
0.8 0.621449576816618 0.63608 0.636 0.636
0.9 0.618427949901908 – 0.624 0.624
1 0.615921969120978 0.61591 0.616 0.616
1.1 0.614173278357886 – 0.610 0.610
1.3 0.612860027915832 0.60346 0.603 0.603
1.5 0.613704176064384 0.60099 0.601 0.601

Table 4   Variation of − H(∞) 
with n for (m = 0)

n Present work Reference [20] Reference [22] Reference [14]

0.5 1.46460907950617 1.54389 1.539 1.513
0.6 1.36013776301004 – 1.364 1.351
0.8 1.09399919164270 1.05929 1.089 1.052
0.9 0.975412633859303 – 0.969 0.958
1 0.884473506731271 0.88230 0.883 –
1.1 0.817372662809852 – 0.822 0.819
1.3 0.724913567797793 0.73591 0.735 0.735
1.5 0.663515470870505 0.67828 0.676 0.678
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