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Abstract
In this work, different approaches to fibre-metal laminates modelling are presented. Micromechanical, mesomechanical 
and macromechanical models are discussed. The application of these approaches for exemplary fibre-metal laminate 
made of aluminium and epoxy resin/glass fibre layers are shown. The classical laminate theory was used to obtain engi-
neering constants for the macroscopic solid model and Puck criterion to obtain material data about epoxy resin/glass 
fibre layer. Various simulations using different simulation techniques were carried out in Simulia ABAQUS environment 
and results were compared with experimental data found in the literature. In conclusions, described approaches from the 
viewpoint of numerical simulation and experiment were evaluate. Research proves that mesoscopic (with distinguished 
layers of material) approach along with solid model gives the best results.
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1  Introduction

Fibre-metal laminates (labelled often as FML) are a rela-
tively new group of materials. FMLs are structural compos-
ites that have the form of a laminate. The key characteristic 
of this material is the fact that this is composed of both 
metal and composite layers, which is the reason why they 
are often called hybrid composites. In present aluminium 
and ordinary composites materials (i.e. matrix reinforced 
with fibres) can be used in constructions instead of steels 
for cost and weight reduction purposes. However, the use 
of these materials also has some disadvantages such as 
poor fatigue strength in aluminium, low impact strength, 
and low residual strength. To minimize these disadvan-
tages, it was proposed to use both materials at the same 
time. Researchers from Delft University of Technology 
showed that the rate of crack growth is lower in the mate-
rial formed by bonded layers than in a homogeneous 
material [1].

Fibre-metal laminates as relatively new materials are 
not yet widely used in all branches of industry. The main 
obstacle is the high price and technical difficulties in pro-
cessing, which is the reason why they are currently only 
used on a larger scale in the aviation industry. In the Airbus 
A-380 version, 800 large sections of the plating are made 
of a fibre-metal laminate called Glare [1] [2]. Other FML 
material called ARALL was used in Boeing C-17 Cargo and 
Fokker 27 constructions [1] [3].

Initially, research in aircraft industry was conducted 
i.e. [4]. In the last few years, an increasing number of 
research projects in the area of fibre-metal laminates can 
be observed. Papers are focused on various issues i.e. 
delamination process [5], low-velocity impact behaviour 
[6] or fatigue [7].
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2 � Approaches to modelling fibre‑metal 
laminates in simulation using the finite 
element method

The problem of numerical analysis of laminates can be 
approached in various ways. Soltani et al. in their work 
[8] they distinguish three approaches:

•	 Micromechanical—in this approach individual mate-
rials are differentiated in the model including fibres 
and matrix. This is the most complex approach of all 
described. Potentially, it is the most realistic as well, 
but it requires partitioning model into a lot of very 
small parts. This can be unfavourable so it is usually 
better to consider the next two approaches.

•	 Mesomechanical—in this approach a laminate was 
considered as a system of independent layers with 
specific mechanical properties. Similar to the previ-
ous approach there is some simplification in skipping 
the issue of layers boundary. But in fact, we don’t con-
sider it until delamination process occurs, so within 
the scope of the application, it is not a critical prob-
lem. The criteria of decohesion is another important 
issue in describing fibre-metal laminates and will be 
the subject of future works.

•	 Macromechanical—in this approach it was described 
the laminate as a homogeneous body with aniso-
tropic mechanical properties. This approach can be 
described as a generalization. A very simple model of 
material is generated—whole fibre-metal laminate is 
described using a few engineering constants.

Further, the environment used in the simulation from 
the Simulia ABAQUS user point of view will be described. 
The application of the macroscopic model is the sim-
plest solution in ABAQUS. It is possible to use built-in 
types of an elastic constitutive model called respectively 
Lamina and Engineering Constant. As described before 
in this approach we treat laminate as a homogene-
ous anisotropic material. This is possible by providing 
9 engineering constants during the material creation 
(Young’s modulus in all three directions, three Kirchhoff 
modules, and three Poisson numbers), i.e. by defining 
material behaviour in each direction. Due to the layered 
structure (sometimes symmetric), laminates do not show 
anisotropy in all directions, so some of these constants 
will be equal. In ABAQUS, the type of material Lamina 
can also be used, which requires six constants—Young’s 
modulus in the plane of laminate layers, Poisson’s num-
ber and three Kirchhoff modules. The problem with this 
approach is obtaining the data of this imaginary homog-
enous material which would be a replacement for our 

lamina. One of the possible solutions is the use of Clas-
sical Laminate Theory which will be further described in 
the next chapter.

The mesomechanical model can be realised in ABAQUS 
in various ways. For thin objects, it is possible to use the 
shell model. In such a model structure of laminate is 
represented by Composite Layup. In this layup, there are 
defined all layers and their parameters such as orientation, 
thickness, material data, and relative location. Another 
possibility is to use a solid model. Using partitioning tool 
separated layers were extracted and all material data was 
defined for each of these layers separately. Regardless 
of the model choice, it is crucial to define local material 
orientation.

3 � Classical laminate theory

The classic theory of laminates [9], [10] enables the 
description of their behaviour under the external loads 
based on engineering constants of particular laminate 
layers assuming some simplifications listed below:

•	 Perfect joint with no thickness between layers,
•	 No inter-layer shear effect,
•	 No slip between layers,
•	 Meeting the assumptions of the thin plate theory, i.e.:

•	 No length and deformation change of the central 
plane,

•	 Points contained in the normal direction to the 
plane also contained in this direction after defor-
mation,

•	 Stresses in the normal direction to the central plane are 
insignificantly smaller compared to in-pane stresses.

The external loads work on a single layer of the 
laminate:

•	 In the plane of this layer determined by the directions x, 
y, i.e. tensile or compressive forces 

(
Nx ,Ny

)
 and shearing 

forces 
(
Nxy

)
,

•	 Bending (moments Mx ,My ) and twisting ( Mxy).

For the whole material, the column vector of forces {N} 
and the column vector of moments {M} were defined. The 
load on the laminate leads to the existing deformations 
and curvatures. To describe them a strain tensor ε and 
tensor curvature κ was used. The occurrence of deforma-
tions and curvatures is tantamount to the occurrence of 
stresses in the material. Linking these quantities for a sin-
gle layer is possible by using Eq. (1) [9] where the thickness 
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is denoted as z and a matrix Q′ is the matrix of proportional 
coefficients.

Using the relationships between forces along with 
moments and stress showed in Eq. (1), the following equa-
tions can be written for the entire laminate using some 
auxiliary matrixes A, B and D as [9]:

Matrixes A, B, and D have been introduced for clarifica-
tion purposes and can be defined as:

•	 Matrix A—stiffness tensile matrix, it is the only one hav-
ing non-zero components when the material is in the 
membrane state of stress. The definition of its compo-
nents is given in the formula (4). Summation by lay-
ers (with thickness denoted as zk ) makes it possible to 
reproduce the structure of the material;

•	 Matrix B—connection stiffness matrix or Coupling Stiff-
ness Matrix. It allows determining the mutual influence 
of tensioning (compression) and bending. Components 
of this matrix are zero when there is no bending at per-
fect stretching. This is possible for objects that are sym-
metrical in relation to their central plane both in geom-
etry and material. The definition of its components is 
given by formula (5);

•	 Matrix D—bending matrix. It is the only one that has 
non-zero components when the material is loaded with 
only bending and torsional moments. The definition of 
its components is given by the formula (6).

In formulas 4–6 [9]: zn denote thickness of nth layer, (
Q′
ij

)

k
 means individual item in Q′ matrix for kth layer, cal-

culated from formula 1.

To simplify Eqs.  (2) and (3), it can be written as one 
matrix equations. This way is shown in Eq. 7. The character-
istic matrix which is presented in this equation is called the 

(1)[�] =
[
Q�
][
�
0
]
+ z

[
�i

]

(2){N} = [A]
[
�
0
]
+ [B][�]

(3){M} = [B]
[
�
0
]
+ [D][�]

(4)Aij =

N∑

k=1

(
Q�
ij

)

k

(
zk − zk−1

)
=

N∑

k=1

(
Q�
ij

)

k
zk

(5)Bij =

N∑

k=1

(
Q�
ij

)

k

(
zk − zk−1

)
=

N∑

k=1

(
Q�
ij

)

k
zk

(6)Dij =
1

3

N∑

k=1

(
Q�
ij

)

k

(
zk − zk−1

)
=

N∑

k=1

(
Q�
ij

)

k
zk

Matrix ABD. This matrix has rank equal to six and consist of 
matrixes A, D and two matrixes B.

Engineering constants (Young Modulus E, Kirchhoff 
Modulus G and Poisson coefficient � ) of laminates in 
the membrane state of stress in various direction can be 
obtained from the following formulas [9]:

Engineering constants (Young Modulus E, Kirchhoff 
Modulus G and Poisson coefficient � ) of laminates in 
the bending state of stress in various direction can be 
obtained from the following formulas [9]:

The assignation of engineering constants enables the 
presentation of a laminar material in the form of a homo-
geneous material with anisotropic properties defined by 
these constants.

4 � Numerical analysis of three‑point bending 
of fibre‑metal laminates

In this article, there are presented different approaches 
that vary in complexity and accuracy. To present the dif-
ference between these approaches numerical simulations 
in Abaqus Simulia environment were conducted. In the 
work of Ostapiuk et al. [11] results of three-point bending 
experiments are presented. The subject of this research 
was fibre-metal laminates based on aluminium (2024 T3) 
and carbon fibre in epoxy resin. It was chosen the same 
material, so results of numerical simulations using differ-
ent methods can be compared with the experimental one.

Figures 1, 2 and 3 different composition of FML, which 
are the subject of research are presented.

In Table 1 important mechanical properties of alumin-
ium 2024 T3 and carbon reinforced composites are shown. 
Data for composite was calculated based on properties 
of the epoxy matrix and carbon fibre obtained from Hex-
cel company. Materials from this producer were used in 

(7)

[
N

M

]
=

[
A B

B D

][
�

�

]

(8)

E1 =
1

(A−1)11h
E2 =

1

(A−1)22h
G12 =

1

(A−1)66h

�12 =

(
A−1

)
12(

A−1
)
11
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12(
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)
22

(9)
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12
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12
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3
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experimental research by Ostapiuk et al. Afterwards based 
on this information, parameters for the composite layer 
are calculated using the rule of mixture (ROM) and Puck 
methods. Both gave very similar results. In the case of alu-
minium, besides elastic properties, it is equally important 
the characteristic plastic part. True stress—true strain data 
from work was used [12]. In Table 2 typical chemical com-
position of 2024 T3 alloy is presented.

For the homogeneous model, Classical Laminate 
Theory was used to obtain the data. A computer pro-
gram—eLamX (version 2.3), which is developed at the 
Technische Universität Dresden, was used [15]. This 
program lets to describe laminate layer by layer using 
engineering constants and as the effect ABD matrixes 
are provided as well as a reverse matrix. Mechanical 
properties shown above in Table 1 were used. Table 3 
contains the ABD matrix for [��2024�3|0CFRP

2
]
s
 with a 

thickness of aluminium layer equal to 0.3 mm. In the 
Table 4, the reverse matrix is presented. Submatrices are 
highlighted by different colours – respectively blue col-
our for A Matrix, yellow colour for B Matrices and finally 
green colour for Matrix D. As expected, matrix B has all 
the components equal zero. Also the components A16 
and A26 are equal zero. This is the result of the symmetri-
cal structure of the laminate, so bending does not cause 
stretching and vice versa. 

Fig. 1   Structure of 
[��2024�3|0CFRP

2
]
s
 with a thick-

ness of aluminium layer equal 
to 0.3 mm

Fig. 2   Structure of 
[��2024�3|0CFRP

2
]
s
 with a thick-

ness of aluminium layer equal 
to 0.5 mm

Fig. 3   Structure of 
[��2024�3|45CFRP

2
]
s
 with a 

thickness of aluminium layer 
equal to 0.3 mm

Table 1   Mechanical properties of used material

Material\property Young modu-
lus—E (MPa)

Poisson 
coeffi-
cient—� (–)

Kirchhoff 
modulus—G 
(MPa)

E1 E2, E3

Aluminium 2024 
T3 [12]

68,700 0.35 –

CFRP (Hexcel) [13] 150,840 10,014 0.298 4317.6

Table 2   Chemical composition 
of 2024 T3 alloy [14]

Component Al Cu Mg Mn Si Fe Zn Ti Cr

Wt[%] 90.7–94.7 3.8–4.9 1.2–1.8 0.3–0.9 max. 0.5 max. 0.5 max. 0.25 max. 0.15 max. 0.1

Table 3   Matrix ABD of laminate [��2024�3|0CFRP
2

]
s
 with a thickness 

of aluminium layer equal to 0.3 mm

122841 17942 0 0 0 0

17942 52011 0 0 0 0

0 0 17425 0 0 0

0 0 0 9448 2785 0

0 0 0 2785 7973 0

0 0 0 0 0 2602
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Using 8 and 9 formulas it is possible to calculate engi-
neering constants. In these formulas, it is needed to use 
components from the reverse matrix (Table 4). Three-point 
bending is, in fact, the problem of complex loading, but 
one of the basic states must be chosen. In this case, load-
ing is much more similar to the bending state of loading 
so Eq. 9 will be used. In the numerical simulation, the fol-
lowing unit system was used: N −mm −MPa −

t

mm3
 , so 

obtained modulus of shear and elasticity are expressed in 
megapascals. All mechanical properties of substitutional 
homogenous material are shown in the Table 5. For other 
cases procedure is analogous.

Depending on the case, specimens were modelled 
as a solid body or shell component. The stamp and 
the support roller were modelled as the rigid body so 
they cannot deform but they have discrete elements. 
Between specimen and rollers (as well as a stamp) 

proper contact behaviour was made so it is possible to 
imitate three-point bending test by the controlled move 
of the stamp. All degrees of freedom were taken from 
the rollers but the degrees of freedom for specimen 

Table 4   Reverse matrix to matrix ABD of laminate 
[��2024�3|0CFRP

2
]
s
 with a thickness of aluminium layer equal to 

0.3 mm

8.57E-06 –2.96E-6 0 0 0 0

–2.96E-6 2.02E-05 0 0 0 0

0 0 5.74E-05 0 0 0

0 0 0 1.18E-4 –4.12E-5 0

0 0 0 –4.12E-5 1.40E-04 0

0 0 0 0 0 3.84E-4

Table 5   Mechanical properties of the homogeneous model

E1 (MPa) E2 (MPa) G12 (MPa) �12 (–) �21 (–)

[��2024�3|0CFRP
2

]
s
− Al3mm 76,417 64,482 23,460 0.345 0.295

[��2024�3|0CFRP
2

]
s
− Al5mm 71,743 67,097 24,662 0.35 0.327

Fig. 4   View of the assembly 
(shell model case). The speci-
men is lied on fixed support 
rollers and pressed by moving 
the stamp

Fig. 5   Detailed view of finite elements mesh (solid model case)

Fig. 6   Stress in function of beam center deflection for specimen 
made of [��2024�3|0CFRP

2
]
s
 with a thickness of aluminium layer 

equal 0.3 mm
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were taken into consideration. In all cases, high order 
finite elements were used for specimens. For shell mod-
els, quadratic quadrilateral elements of type S8R were 
chosen. For solid models, quadratic hexahedral ele-
ments of type C3D20R were used. For a rigid body in 
both cases, quadrilateral elements of type R3D4 were 
chosen. An exemplary view of the assembly (shell model 

case) with finite element mesh is presented in Fig. 4. 
In Figs. 5 and 6 more detailed finite elements mesh is 
presented (solid model case).

5 � Results and discussion

In this section, the results of the simulation are prepared 
as described in the previous section. In Figs. 5, 6, 7 and 8 
stress in function of centre beam deflection is presented 
for three different structure of fibre-metal laminates. For 
every type of structure various simulation were carried 
out taking into consideration the different approaches 
described in the theoretical part of this work. Stress 
curves obtained as a result of this simulation are com-
pared with experimental results based on work by 
Ostapiuk et al. [11]. 

Analysing above charts it is clear that the best pro-
jection is ensured by applying mesoscopic solid model. 
For [��2024�3|45CFRP

2
]
s
 specimen stress-displacement 

curve obtained from FEM analysis is nearly the same as 
this obtained from experiment. For other specimens, 
this results are in good compliance too. In Figs. 9 and 10 
Huber-Mises stress map is shown for [��2024�3|45CFRP

2
]
s
 

and [��2024�3|0CFRP
2

]
s
 specimens. Analysis of this charts 

gives a clue about difference in compliance for differ-
ent composition of discussed fibre-metal laminate. For 
[��2024�3|0CFRP

2
]
s
 specimen it is observed high stresses 

region on boundary between aluminium and CFRP lay-
ers. This may lead to delamination and in consequence 
decrease of stress response, as it was observed in the 
experiment. However, in [��2024�3|45CFRP

2
]
s
 specimen 

high stress region is located in aluminium so simulation 
is a good reflection of real behaviour of specimen under 
three-point bending.

Numerical simulations were conducted for the 
medium-fine mesh. Minimum 4 elements in case of thin 
layer and minimum 2 elements in case of thick layer were 
used. In the case of shell models, 5 integration points 

Fig. 7   Stress in function of beam centre deflection for specimen 
made of [��2024�3|0CFRP

2
]
s
 with a thickness of aluminium layer 

equal 0.5 mm

Fig. 8   Stress in function of beam centre deflection for specimen 
made of [��2024�3|45CFRP

2
]
s

Fig. 9   Huber-Mises stress map 
(MPa) of [��2024�3|45CFRP

2
]
s
 

specimen for 10 mm beam 
centre deflection—mesoscopic 
solid model
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in each layer were used. It was researched that in this 
case using more fined mesh gives only slightly more 
smooth curves and no apparent difference in results. 
Results were acquired every 0.05 mm displacement of 
the stamp.

6 � Conclusions

Different methods of fibre-metal laminates modelling in 
the numerical environment were shown in this article. 
The mesoscopic approach gives better results (i.e. more 
convergent with experimental results) than the macro-
scopic approach. However, both of these methods are in 
good compliance with real measurement in the elastic 
range, so in the area of applicability of described materi-
als. In some cases, proposed models become divergent 
with experimental results in case of large displacement 
of the stamp. It is caused by a decohesion process which 
occurs in the real specimen—especially delamination 
process. The issue of modelling destruction process will 
be examined by authors in future works.
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