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Abstract
The mathematical model has been formulated using Lord-Shulman theory for transversely isotropic magneto thermoe-
lastic solid with two temperature and without energy dissipation due to inclined load. The entire thermo-elastic medium 
is rotating with a uniform angular velocity. The Laplace and Fourier transform techniques have been used to find the 
solution to the problem. The displacement components, stress components and conductive temperature distribution 
with the horizontal distance are computed in the transformed domain and further calculated in the physical domain 
using numerical inversion techniques. The effect of two temperature and angle of inclination of inclined load is depicted 
graphically on the resulting quantities.
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1  Introduction

During the past few years, wide spread attention has 
been given to thermoelasticity theories that defines the 
deformation and heat flow in continuum. The classical 
theory of elasticity deals with the systematic study of the 
stress and strain distribution that develops in an elastic 
body due to the application of forces or change in tem-
perature. The study of dynamical system whose interac-
tion with surroundings is restricted to external forces, 
mechanical work and thermal fields is one of the most 
extensive and productive areas of continuum dynamics. 
The proposed model is helpful for finding the type of inter-
action between mechanical and thermal forces, as most of 
the structural elements of heavy industries are frequently 
related to mechanical and thermal stresses at a higher 
temperature.

Chen et al. [1–3] formulated a two temperature ther-
moelasticity of deformable bodies for the conduction of 
heat depending on two types of temperatures. Ailawalia 
and Narah [4] had studied the deformation of a rotating 
generalized thermoelastic solid beneath the impact of 
gravity with a superimposing infinite thermoelastic fluid 
due to different forces acting along the interface. Ailawalia 
et al. [5] had studied a rotating generalized thermoelastic 
medium with two temperatures beneath hydrostatic stress 
and gravity with different types of sources using integral 
transforms. Marin [6] had proved the Cesaro means of the 
kinetic and strain energies of dipolar bodies with finite 
energy. Sharma and Kaur [7] presented the propagation of 
Rayleigh waves in a generalized thermoelastic half-space 
with voids. The surface chosen is stress-free and thermally 
insulated. They detected the elliptical paths during the 
Rayleigh wave motion without rotation. Abd-Alla et al. [8] 
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investigated the Rayleigh waves propagation in a homo-
geneous orthotropic elastic medium with impact of rota-
tion, initial stress and gravity field by Lame’s potentials and 
governing equations.

Singh and Yadav [9] solved the equations of transversely 
isotropic rotating magnetothermoelastic medium by cubic 
velocity equation of three plane waves without anisotropy, 
rotation, and thermal and magnetic effects. Banik and 
Kanoria [10] studied the thermoelastic interaction in an 
isotropic infinite elastic body with a spherical cavity for 
the three-phase-lag heat equation with two-temperature 
generalized thermoelasticity theory and has shown dis-
similarities between two models: the two-temperature 
Green-Naghdi theory with energy dissipation and two-
temperature three-phase-lag model and has shown the 
effects of ramping parameters and two-temperature. 
Mahmoud [11] had considered the influence of rotation, 
magnetic field, relaxation times, initial stress and gravity 
field on attenuation coefficient and Rayleigh waves in an 
elastic half-space of granular medium and obtained the 
analytical solution of Rayleigh waves velocity by using 
Lame’s potential techniques.

Abd-alla and Alshaikh [12] had discussed the effect of 
rotation and magnetic field on plane waves in transversely 
isotropic thermoelastic medium under the Green-Lindsay 
theory with two relaxation times of generalized thermoe-
lasticity to show the presence of three quasi plane waves 
in the medium. Marin et al. [13] had modelled a micro 
stretch thermoelastic body with two temperatures and 
eliminated divergences among the classical elasticity and 
research. Mahmoudet al. [14] studied the impact of the 
initial stress and rotation on harmonic waves propagation 
in a human long dry bone (transversely isotropic mate-
rial). They solved the equations of elastodynamic in terms 
of displacements. Sharma et al. [15] investigated the two 
dimensional deception in a homogeneous, transversely 
isotropic thermoelastic solids with two temperatures in 
Green-Naghdi -II theory with an inclined load (linear com-
bination of normal load and tangential load). Shaw and 
Mukhopadhyay [16] exemplified the generalized theory 
of thermoelasticity including the thermal relaxation time, 
electric displacement current, and the coupling of heat 
transfer and microrotation of the material to study the 
propagation of plane harmonic waves in an infinitely 
long, isotropic, micropolar plate with a uniform magnetic 
field. Two potential functions were used to determine the 
effect of the presence of thermal and magnetic fields on 
the phase velocity.

Kumar et al. [17] investigated the effects of Hall cur-
rent in a transversely isotropic magnetothermoelastic 
with and without energy dissipation due to normal force. 
Bijarnia and Singh [18] studied the propagation of plane 
waves using Lord and Shulman theory of generalized 

thermoelasticity in a transversely isotropic thermoelas-
tic solid half-space with voids and rotation and solved to 
illustrate the existence of four plane waves and its reflec-
tion from thermally insulated stress free surface. Kumar 
et al. [19] illustrated the effect of Hall current and magnetic 
field due to thermomechanical sources on GN-II and GN-III 
theories in a rotating transversely isotropic homogeneous 
thermoelastic medium with two temperatures. Lata et al. 
[20] studied two temperature and rotation aspect for GN-II 
and GN-III theory of thermoelasticity in a homogeneous 
transversely isotropic magnetothermoelastic medium for 
the case of the plane wave propagation and reflection. 
Mona and SE [21] compared the theory of thermoelas-
ticity with two relaxation times and without energy dis-
sipation. Kumar et al. [22] considered a thick circular plate 
with axisymmetric heat supply with traction free lower and 
upper surfaces of the plate. Ezzat et al. [23] proposed a 
mathematical model of electro-thermoelasticity for heat 
conduction with memory-dependent derivative. Kumar 
et al. [24]. analyzed the Rayleigh waves in a homogeneous 
transversely isotropic magnetothermoelastic medium with 
two temperature, with Hall current and rotation.

Marin et al. [25] studied the GN-thermoelastic theory 
for a dipolar body using mixed initial BVP and proved a 
result of Hölder’s -type stability. Lata [26] studied the effect 
of energy dissipation on plane waves in sandwiched lay-
ered thermoelastic medium of uniform thickness, with 
combined effects of two temperature, rotation and Hall 
current in the context of GN Type-II and Type-III theory of 
thermoelasticity. Ezzat and El-Bary [27] gave mathematical 
model of phase-lag G-N magneto-thermoelasticty theo-
ries for perfectly conducting media based on fractional 
derivative heat transfer in the presence of a constant mag-
netic field. Abo-Dahab [28] analyzed the wave propaga-
tion in a microstretch elastic medium with GN theory with 
impact of gravity. Ezzat and El-Bary [29] had applied the 
magneto-thermoelasticity model to a one-dimensional 
thermal shock problem of functionally graded half-space 
based on memory-dependent derivative. Hassan et al. [30] 
investigated water base nanofluid flow over wavy surface 
in a porous medium (copper oxides particles) of spherical 
packing beds. Othman et al. [31] discussed the deforma-
tion in rotating infinite microstretch generalized thermoe-
lastic medium. Despite of this several researchers worked 
on different theory of thermoelasticity as Marin [32–34], 
Marin and Baleanu [33], Ezzat et al. [35–37], Marin and Stan 
[38], Ezzat and El-Bary [39, 40], Ezzat et al. [41], Chauthale 
et al. [42], Marin [43–45], Kumar et al. [46] and Lata and 
Kaur [47–49].

Inspite of these, not much work has been carried out in 
magneto-thermoelastic transversely isotropic solid with 
the combined effects of rotation and two temperatures in 
generalized thermoelasticity without energy dissipation. 
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Keeping these considerations in mind, analytic expres-
sions for the displacements, stresses and temperature 
distribution in two-dimensional homogeneous, trans-
versely isotropic magneto-thermoelastic solids with two 
temperatures and rotation due to inclined load have been 
obtained.

2 � Basic equations

For a general anisotropic thermoelastic medium, the con-
stitutive relations in absence of heat source and body 
forces following Green and Naghdi [50] are given by

Equation of motion as described by Schoenberg and Cen-
sor [51] for a transversely isotropic thermoelastic medium 
rotating uniformly with an angular velocity � = �n , where 
n is a unit vector representing the direction of axis of rota-
tion and taking into account Lorentz force

where Fi = 𝜇0

(
j⃗ × H⃗0

)
 are the components of Lorentz 

force, H⃗0 is the external applied magnetic field intensity 
vector, j⃗  is the current density vector, u⃗ is the displacement 
vector, �0 and �0 are the magnetic and electric permeabili-
ties respectively. The terms � × (� × u) and 2𝛺 × u̇ are the 
additional centripetal acceleration due to the time-varying 
motion and Coriolis acceleration respectively.

The heat conduction equation without energy dissipa-
tion using Lord-Shulman [52] model is

where

Here Cijkl are elastic parameters and having symmetry 
(Cijkl = Cklij = Cjikl = Cijlk). The basis of these symmetries of 
Cijkl is due to

1.	 The stress tensor is symmetric, which is only possible 
if 
(
Cijkl = Cjikl

)

(1)tij = Cijklekl − �ijT .

(2)tij,j + Fi = 𝜌
{
üi + (𝛺 × (𝛺 × u))i + (2𝛺 × u̇)i

}
,

(3)
Kij𝜑,ij + 𝜌

(
Q + 𝜏0Q̇

)
= 𝛽ijT0

(
ėij + 𝜏0ëij

)
+ 𝜌CE

(
Ṫ + 𝜏0T̈

)
,

(4)�ij = Cijkl�ij ,

(5)

eij =
1

2

(
ui,j + uj,i

)
, i, j = 1, 2, 3.

T = � − aij�,ij

�ij = �i�ij , Kij = Ki�ij , i is not summed.

2.	 If a strain energy density exists for the material, the 
elastic stiffness tensor must satisfy Cijkl = Cklij

3.	 From stress tensor and elastic stiffness tensor symme-
tries infer 

(
Cijkl = Cijlk

)
 and Cijkl = Cklij = Cjikl = Cijlk.

�ij is the thermal elastic coupling tensor, T  is the abso-
lute temperature, T0 is the reference temperature, � is the 
conductive temperature, tij are the components of stress 
tensor, eij are the components of strain tensor, ui are the 
displacement components, � is the density, CE is the spe-
cific heat, Kij is the materialistic constant, aij are the two 
temperature parameters, �ij is the coefficient of linear 
thermal expansion, �0 is the relaxation time, which is the 
time required to maintain steady state heat conduction 
in an element of volume of an elastic body when sudden 
temperature gradient is imposed on that volume element, 
�ij is the Kronecker delta and � is the angular velocity of 
the solid.

3 � Formulation and solution of the problem

We consider a homogeneous transversely isotropic mag-
neto-thermoelastic medium, permeated by an initial mag-
netic field H⃗0 =

(
0,H0, 0

)
 acting along y-axis. The rectan-

gular Cartesian co-ordinate system (x, y, z) having origin 
on the surface (z = 0) with z-axis pointing vertically into 
the medium is introduced. The surface of the half-space is 
subjected to an inclined load acting at z = 0.

We also assume that

In From the generalized Ohm’s law

The current density components J1 and J3 are given as

The components of displacement vector 
(
u⃗, v⃗, w⃗

)
 and 

conductive temperature � for the two dimensional prob-
lem have the form

Following Slaughter [53], using appropriate transforma-
tions, on the set of Eqs. (1)–(3) and using (8), we derive the 
basic equations for perfectly homogeneous transversely 
isotropic magneto-thermoelastic solid as,

� = (0,�, 0).

J2 = 0.

(6)J1 = −�0�0H0

�2w

�t2
,

(7)J3 = �0�0H0

�2u

�t2
.

(8)
u⃗ = u(x, z, t), v⃗ = 0, w⃗ = w(x, z, t) and 𝜑 = 𝜑(x, z, t).
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and

where

We assume that medium is initially at rest. The undis-
turbed state is maintained at reference temperature. Then 
we have the initial and regularity conditions as given by

To facilitate the solution, following dimensionless quan-
tities are introduced:

(9)

C11
�2u

�x2
+ C13

�2w

�x�z
+ C44

(
�2u

�z2
+

�2w

�x�z

)

− �1
�

�x

{
� −

(
a1

�2�

�x2
+ a3

�2�

�z2

)}

− �0J3H0 = �

(
�2u

�t2
−�2

u + 2�
�w

�t

)
,

(10)

(
C13 + C44

) �2u

�x�z
+ C44

�2w

�x2
+ C33

�2w

�z2

− �3
�

�z

{
� −

(
a1

�2�

�x2
+ a3

�2�

�z2

)}

+ �0J1H0 = �

(
�2w

�t2
−�2

w − 2�
�u

�t

)
,

(11)
K1

𝜕2𝜑

𝜕x2
+ K3

𝜕2𝜑

𝜕z2
+ 𝜌

(
Q + 𝜏0Q̇

)
= 𝜌CE

(
Ṫ + 𝜏0T̈

)

+ T0
𝜕

𝜕t

{
𝛽1

(
1 + 𝜏0

𝜕

𝜕t

)
𝜕u

𝜕x
+ 𝛽3

(
1 + 𝜏0

𝜕

𝜕t

)
𝜕w

𝜕z

}
,

(12)t11 = C11e11 + C13e13 − �1T ,

(13)t33 = C13e11 + C33e33 − �3T ,

(14)t13 = 2C44e13,

T = � −

(
a1

�2�

�x2
+ a3

�2�

�z2

)
,

�1 =
(
C11 + C12

)
�1 + C13�3,

�3 = 2C13�1 + C33.

u(x, z, 0) = 0 = u̇(x, z, 0),

w(x, z, 0) = 0 = ẇ(x, z, 0),𝜑(x, z, 0) = 0

= 𝜑̇(x, z, 0) for z ≥ 0,−∞ < x < ∞,

u(x, z, t) = w(x, z, t) = 𝜑(x, z, t) = 0 for t > 0when z → ∞.

(15)
x� =

x

L
, z� =

z

L
, t

�

=
c1

L
t, u

�

=
�c2

1

L�1T0
u, w

�

=
�c2

1

L�1T0
w, T � =

T

T0
, t

�

11
=

t11

�1T0
,

t
�

33
=

t33

�1T0
, t

�

31
=

t31

�1T0
, �� =

�

T0
, a

�

1
=

a1

L2
, a

�

3
=

a3

L2
, h� =

h

H0

, �� =
L

C1
�.

Making use of (15) in Eqs. (9)–(11), after suppressing 
the primes, yield

where

Apply Laplace and Fourier transforms defined by

On Eqs. (16)–(18), we obtain a system of equations

(16)

�2u

�x2
+ �4

�2w

�x�z
+ �2

(
�2u

�z2
+

�2w

�x�z

)

−
�

�x

{
� −

(
a1

�2�

�x2
+ a3

�2�

�z2

)}

=

(
�0�

2

0
H2

0

�
+ 1

)
�2u

�t2
−�2

u + 2�
�w

�t
,

(17)

�1
�2u

�x�z
+ �2

�2w

�x2
+ �3

�2w

�z2

−
�3
�1

�

�z

{
� −

(
a1

�2�

�x2
+ a3

�2�

�z2

)}

=

(
�0�

2

0
H2

0

�
+ 1

)
�2w

�t2
−�2

w + 2�
�u

�t
,

(18)

�2�

�x2
+

K3

K1

�2�

�z2
+ �

(
1 + �0

c1

L

�

�t

)
Q

= �5
�

�t

(
1 + �0

c1

L

�

�t

)[
� − a1

�2�

�x2
− a3

�2�

�z2

]

+ �6
�

�t

(
1 + �0

c1

L

�

�t

)[
�1

�u

�x
+ �3

�w

�z

]
,

�1 =
c13 + c44

c11
, �2 =

c44

c11
, �3 =

c33

c11
, �4 =

c13

c11
,

�5 =
�CEC1L

K1
, �C2

1=
C11, �6 =

T0�1L

�C1K1
.

(19)f̃ (x, z, s) =

∞

∫
0

f (x, z, t)e−stdt,

(20)f̂ (𝜉, z, s) =

∞

∫
−∞

f̃ (x, z, s)ei𝜉xdx.
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where �7 =
�0�

2
0
H2
0

�
+ 1 , �8 = 1 + �0

C1

L
s.

Without considering internal heat source and setting 
Q̂(𝜉, z, s) = 0 we yield a set of homogeneous equations 
which will have a non trivial solution if determinant of 
coefficient (û, ŵ, 𝜑̂) vanishes and we obtain the following 
characteristic equation

where

The roots of the Eq. (24) are ± λi, (i = 1, 2, 3), the solution 
of the Eq.  (24) satisfying the radiation condition that 
ũ, w̃, 𝜑̃ → 0 as z → ∞, yields

(21)

[
−𝜉2 + 𝛿2D

2 − 𝛿7s
2 +𝛺2

]
û(𝜉, z, s)

+
[
𝛿4Di𝜉 + 𝛿2Di𝜉 − 2𝛺s

]
ŵ(𝜉, z, s)

+ (−i𝜉)
[
1 + a1𝜉

2 − a3D
2
]
𝜑̂(𝜉, z, s) = 0,

(22)

[
𝛿1Di𝜉 + 2𝛺s

]
û(𝜉, z, s) +

[
−𝛿2𝜉

2 + 𝛿3D
2 − 𝛿7s

2 +𝛺2
]
ŵ(𝜉, z, s)

−
𝛽3
𝛽1

D
[
1 + a1𝜉

2 − a3D
2
]
𝜑̂(𝜉, z, s) = 0,

(23)

[
𝛿6s𝛿8𝛽1i𝜉

]
û(𝜉, z, s) +

[
𝛿6s𝛿8𝛽3D

]
ŵ(𝜉, z, s)

+

[
𝜉2 −

K3

K1
D
2 + 𝛿5𝛿8s

(
1 + a1𝜉

2 − a3D
2
)]
𝜑̂(𝜉, z, s)

= 𝜌𝛿8Q̂(𝜉, z, s),

(24)AD6 + BD4 + CD2 + E = 0,

D =
d

dz
,

A = �2�3�7 − �5�2
�3
�1

a3,

B = �3�1�7 − a3�1�5
�3
�1

+ �2�3�6 + �2�7�3 − �5�9�2 − �8�1i��7 + �8�4
�3
�1

a3 − a3�
2�5�1 − a3�3�4i�

C = �3�1�6 + �1�3�7 − �1�5�9 + �2�6�3 + �4�8�9 − �8�1i��6 + 4Ω2s2�7 + �2�1i��5 − �2�4�3 − a3�4i��3

E = �3�1�6 + 4�2s2�6 − �2�4�3

�1 = �2 − �7s
2 +�2, �2 = −i�

(
1 + a1�

2
)
, �3 = −�2�

2 − �7s
2 +�2, �4 = �6�8s�1i�,

�5 = �6�8s�3, �6 = �2 + �5�8s
(
1 + a1�

2
)
, �7 = −

K3

K1
− a3�5�8s, �8 = �1i�, �9 = −

(
1 + a1�

2
)�3
�1

.

(25)ū(𝜉, z, s) =

3∑

i=1

Aie
−𝜆i z ,

(26)w̄(𝜉, z, s) =

3∑

i=1

diAie
−𝜆i z ,

(27)𝜑̄(𝜉, z, s) =

3∑

i=1

liAie
−𝜆i z ,

where Ai,i = 1, 2, 3 being undetermined constants and di 
and li are given by

4 � Boundary conditions

We consider a normal line load F1 per unit length acting in 
the positive z-axis on the plane boundary z = 0 along the 
y-axis and a tangential load F2 per unit length, acting at 
the origin in the positive x-axis. The appropriate boundary 
conditions are

1.	

2.	

3.	

di =
�2�7�

4
i
+
(
�7�1 − a3�4i� + �2�6

)
�2
i
+ �1�6 − �4�2(

�3�7 −
�3
�1
a3�5

)
�4
i
+
(
�3�6 + �3�7 − �5�9

)
�2
i
+ �3�6

,

li =
�2�3�

4
i
+
(
�2�3 + �1�3 − �1�8i�

)
�2
i
+ 4�2s2 + �3�1(

�3�7 −
�3
�1
a3�5

)
�4
i
+
(
�3�6 + �3�7 − �5�9

)
�2
i
+ �3�6

.

(28)t33(x, z, t) = −F1�1(x)H(t),

(29)t31(x, z, t) = −F2�2(x)H(t),

(30)�(x, z, t) = 0,

where F1 and F2 are the magnitude of the forces applied, 
�1(x) and�2(x) specify the vertical and horizontal load 
distribution function along x-axis, and H(t) is the Heaviside 

unit step function and is given by H(t) =
{

1, t ≥ 0

0, t < 0
.

Applying the Laplace and Fourier transform defined by 
(19) and (20) on the boundary conditions (28)–(30), (13)-
(14) and with the help of Eqs. (25)–(27), we obtain the com-
ponents of displacement, conductive temperature normal 
stress and tangential stress as,

(31)

û =
F1𝜓̂1(𝜉)

s𝛬

[
3∑

i=1

𝛬1ie
−𝜆i z

]
+

F2𝜓̂2(𝜉)

s𝛬

[
3∑

i=1

𝛬2ie
−𝜆i z

]
,
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where

5 � Special cases

5.1 � Concentrated force

The solution due to concentrated normal force on the half 
space is obtained by setting

where �(x) is dirac delta function.
Applying Fourier transform defined by (20) on (37), we 

obtain

(32)

ŵ =
F1𝜓̂1(𝜉)

s𝛬

[
3∑

i=1

di𝛬1ie
−𝜆i z

]
+

F2𝜓̂2(𝜉)

s𝛬

[
3∑

i=1

di𝛬2ie
−𝜆i z

]
,

(33)

𝜑̂ =
F1𝜓̂1(𝜉)

s𝛬

[
3∑

i=1

li𝛬1ie
−𝜆i z

]
+

F2𝜓̂2(𝜉)

s𝛬

[
3∑

i=1

li𝛬2ie
−𝜆i z

]
,

(34)

�t11 =
F1𝜓̂1(𝜉))

s𝛬

[
3∑

i=1

Si𝛬1ie
−𝜆i z

]
+

F2𝜓̂2(𝜉)

s𝛬

[
3∑

i=1

Si𝛬2ie
−𝜆i z

]
,

(35)

�t13 =
F1𝜓̂1(𝜉)

s𝛬

[
3∑

i=1

Ni𝛬1ie
−𝜆i z

]
+

F2𝜓̂2(𝜉)

s𝛬

[
3∑

i=1

Ni𝛬2ie
−𝜆i z

]

(36)

�t33 =
F1𝜓̂1(𝜉)

s𝛬

[
3∑

i=1

Mi𝛬1ie
−𝜆i z

]
+

F2𝜓̂2(𝜉)

s𝛬

[
3∑

i=1

Mi𝛬2ie
−𝜆i z

]
,

�11 = −N2l3 + l2N3,

�12 = N1l3 − l1N3,

�13 = −N1l2 + l1N2,

�21 = M2l3 − l2M3,

�22 = −M1l3 + l1M3,

�23 = M1l2 − l1M2,

� = −M1�11 −M2�12 −M3�13,

Nj = −�2�j + i�dj ,

Mj = i� − �3dj�j −
�3
�1

lj

[(
1 + a1�

2
)
− a3�

2
j

]
,

Sj = −i� − �4dj�j − lj

[(
1 + a1�

2
)
− a3�

2
j

]
.

(37)�1(x) = �(x),�2(x) = �(x),

(38)𝜓̂1(𝜉) = 1, 𝜓̂2(𝜉) = 1.

Using (38) in (31)-(36), the components of displacement, 
stress and conductive temperature are obtained.

5.2 � Uniformly distributed force

The solution due to uniformly distributed force applied on 
the half space is obtained by setting

The Fourier transforms of �1(x) and �2(x) with respect to 
the pair (x, ξ) for the case of a uniform strip load of non-
dimensional width 2 m applied at origin of co-ordinate 
system x = z = 0 in the dimensionless form after suppress-
ing the primes becomes

Using (40) in (31)–(36), the components of displace-
ment, conductive temperature and stress are obtained.

5.3 � Linearly distributed force

The solution due to linearly distributed force applied on 
the half space is obtained by setting

Here 2 m is the width of the strip load, using (15) and 
applying the transform defined by (20) on (41), we get

Using (42) in (31)-(36), the components of displacement, 
stress and conductive temperature are obtained.

(39)𝜓1(x),𝜓2(x) =

{
1 if |x| ≤ m

0 if |x| > m
.

(40)𝜓̂1(𝜉) = 𝜓̂2(𝜉) =

{
2sin(𝜉m)

𝜉

}
, 𝜉 ≠ 0.

(41)
{
𝜓1(x),𝜓2(x)

}
=

{
1 −

|x|
m

if |x| ≤ m

0 if |x| > m
.

(42)𝜓̂1(𝜉) = 𝜓̂2(𝜉) =

{
2{1 − cos(𝜉m))

𝜉2m

}
, 𝜉 ≠ 0.

Fig. 1   Inclined load over a transversely isotropic magneto-ther-
moelastic solid
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6 � Applications

Inclined line load Suppose an inclined load, F0 per unit 
length is acting on the y-axis and its inclination with z-axis 
is � , we have (Fig. 1) 

(43)F1 = F0 cos � and F2 = F0 sin �.

8 � Numerical results and Discussion

In order to illustrate our theoretical results in the proceed-
ing section and to show the effect of two temperature and 
rotation, we now present some numerical results. Follow-
ing Dhaliwal and Singh [56], cobalt material has been 
taken for transversely isotropic thermoelastic material as

Using the above values, the graphical representations 
of displacement component u, normal displacement w, 
conductive temperature � , stress components t11 , t13 and 
t33 for transversely isotropic thermoelastic medium have 
been investigated and the effect of inclination with two 
temperature has been depicted.

1.	 The black solid line with square symbols corresponds 
to transversely isotropic magneto-thermoelastic 
medium with � = 0.5, � = 0◦ and a1 = 0.0, a3 = 0.0 i.e. 
without two temperature.

2.	 The red solid line with circle symbols corresponds to 
transversely isotropic magneto-thermoelastic medium 
with � = 0.5,� = 45◦ and a1 = 0.0, a3 = 0.0 i.e. without 
two temperature.

3.	 The green solid line with circle symbols corresponds to 
transversely isotropic magneto-thermoelastic medium 
with � = 0.5,� = 0◦ and a1 = 0.02, a3 = 0.040 i.e. with 
two temperature.

c11 = 3.07 × 1011 Nm−2, c33 = 3.581 × 1011 Nm−2, c13 = 1.027 × 1010 Nm−2,

c44 = 1.510 × 1011 Nm−2, �1 = 7.04 × 106 Nm−2deg−1, �3 = 6.90 × 106 Nm−2deg−1,

� = 8.836 × 103 Kgm−3, CE = 4.27 × 102 jKg−1 deg−1, K1 = 0.690 × 102Wm−1 K deg−1,

K3 = 0.690 × 102 Wm−1K−1, T0 = 298 K, H0 = 1 Jm−1nb−1, ε0 = 8.838 × 10−12 Fm−1, L = 1.

Fig. 2   Variations of displacement component u with distance x

Using Eq.  (43) in Eqs.  (31)–(36) and with aid of 
Eqs. (37)–(42) we obtain the expressions for displacements, 
conductive temperature and stresses for concentrated 
force, uniformly distributed force and linearly distributed 
force on the surface of transversely isotropic magneto-
thermoelastic body without energy dissipation.

7 � Inversion of the transformation

To find the solution of the problem in physical domain, 
we must invert the transforms in Eqs. (31)–(36),. Here the 
displacement components, normal and tangential stresses 
and conductive temperature are functions of z, the param-
eters of Laplace and Fourier transforms s and ξ respectively 
and hence are of the form f̂(ξ, z, s) . To find the function 
f̃(x, z, t) in the physical domain, we first invert the Fourier 
transform using

where fe and fo are respectively the odd and even parts 
of f̂ (𝜉, z, s). Following Honig and Hirdes [54], the Laplace 
transform function f̃ (x, z, s) can be inverted to f(x, z, t) by

The last step is to calculate the integral in Eq. (44). The 
method for evaluating this integral is described in Press 
et al. [55]. It involves the use of Romberg’s integration with 
adaptive step size. This also uses the results from succes-
sive refinements of the extended trapezoidal rule followed 
by extrapolation of the results to the limit when the step 
size tends to zero.

f̃ (x, z, s) =
1

2𝜋

∞

∫
−∞

e−i𝜉x f̂ (𝜉, z, s)d𝜉 =
1

2𝜋

∞

∫
−∞

||cos(𝜉x)fe − isin(𝜉x)fo
||d𝜉

(44)f (x, z, t) =
1

2𝜋i

e+i∞

∫

e−i∞

f̃ (x, z, s)e−stds.
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4.	 The blue solid line with diamond symbols corresponds 
to transversely isotropic magneto-thermoelastic 
medium with � = 0.5,� = 45◦ and a1 = 0.02, a3 = 0.040 
i.e. with two temperature.

8.1 � Event 1: Concentrated force due to inclined 
load and with and without two temperature 
and with rotation

Figures 2 and 3 shows the variations of the displacement 
component u and w for transversely isotropic magneto-
thermoelastic medium with and without two temperature 
and rotation respectively. The values of displacement com-
ponent u and w decreases for without two temperure and 
increases for with two temperature for the initial values of 

distance and follow oscillatory pattern for rest of the range 
of distance. Figure 4 represents the variations of the con-
ductive temperature � for transversely isotropic magneto-
thermoelastic medium with and without two temperature 
and with rotation. The values of conductive temperature � , 
first increases for the range 0 ≤ x ≤ 2 and then follow small 
oscillatory pattern for rest of the range of distance for both 
with and without two temperature. Figure 5 represents the 
values of stress component t11 ., the values of t11 f or � = 0◦ 
follow oscillatory pattern with smaller amplitude whereas 
for � = 45◦ it follows oscillatory pattern with larger ampli-
tude. Figure 6 describes the variations of stress compo-
nent t13 . Near the loing surface, the values of t13 decrease 
sharply and then somehow oscillates. Figure 7 interprets 

Fig. 3   Variations of displacement component w with distance x

Fig. 4   Variations of conductive temperature φ with distance x

Fig. 5   Variations of stress component t11 with distance x

Fig. 6   Variations of stress component t13 with distance x



Vol.:(0123456789)

SN Applied Sciences (2019) 1:426 | https://doi.org/10.1007/s42452-019-0438-z	 Research Article

the variations of stress component t33 . The values decrease 
sharply near the loading surface with � = 0◦ and increase 
sharply near the loading surface with � = 45◦ and then fol-
low small oscillatory pattern for rest of the range for both 
with and without two temperature.

8.2 � Event 2: Uniformly distributed force due 
to inclined load and with and without two 
temperature and with rotation

Figure 8 shows the variations of the displacement com-
ponent u for uniformly distributed force for transversely 
isotropic magneto-thermoelastic medium with and with-
out two temperature and with fixed rotation. The values 
of displacement component u, first increases for the range 

0 ≤ x ≤ 2 and for � = 0◦, a1 = 0.0, a3 = 0.0 while for this 
range it first decreases for � = 45◦ , a1 = 0.0, a3 = 0.0 and 
� = 0◦ , a1 = 0.02, a3 = 0.04; � = 45◦, a1 = 0.02, a3 = 0.04 for 
the initial values of distance and then for all four cases fol-
lows oscillatory pattern, for rest of the range of distance. 
Figure 9 depicts variations of the displacement compo-
nent w for transversely isotropic magneto-thermoelastic 
medium with and without two temperature and with 
rotation. For the range 0 ≤ x ≤ 3 , the values of displace-
ment component w, increases for � = 0◦ and for both with 
and without two temperature and then oscillates; while 
it decreases for � = 45◦ and for both with and without 
two temperature for the initial values of distance and 
then follow small oscillatory pattern for rest of the range 

Fig. 7   Variations of stress component t33 with distance x

Fig. 8   Variations of displacement component u with distance x

Fig. 9   Variations of displacement component w with distance x

Fig. 10   Variations of conductive temperature φ with distance x
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of distance for both with and without two temperature. 
Figure  10 represents the variations of the conductive 
temperature � for transversely isotropic magneto-ther-
moelastic medium with and without two temperature 
and with rotation. The values of conductive temperature 
� , first decreases for � = 0◦ , a1 = 0.0, a3 = 0.0 then follow 
small oscillatory pattern for rest of the range of distance 
and for rest of three cases it first increases and then follows 
small oscillatory pattern. Figure 11 represents the values of 
stress component t11 . Near the loading surface, the values 
of t11 decrease and then follows oscillatory pattern. Fig-
ure 12 describes the variations of stress component t13 . 
Near the loading surface, and for � = 0◦ , a1 = 0.0, a3 = 0.0 
the values of t13 sharply decreases and for rest cases it 
increases for the range 0 ≤ x ≤ 2 and then somehow 

oscillates for all the cases. Figure 13 interprets the varia-
tions of stress component t33 . Near the loading surface, the 
values of t33 decrease and then follows oscillatory pattern 
for all the four cases considered above.     

8.3 � Event 3: Linearly distributed force due 
to inclined load and with and without two 
temperature and with rotation

Figure 14 shows the variations of the displacement com-
ponent u for transversely isotropic magneto-thermoelastic 
medium with linearly distributed force and with and with-
out two temperature and with rotation. The values of dis-
placement component u, increases somehow for � = 0◦ , 
a1 = 0.0, a3 = 0.0 and it decreases for rest all the cases in 

Fig. 11   Variations of stress component t11 with distance x

Fig. 12   Variations of stress component t13 with distance x

Fig. 13   Variations of stress component t33 with distance x

Fig. 14   Variations of displacement component u with distance x
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the initial values of distance and then follow an oscillatory 
pattern. Figure 15 shows the variations of the displace-
ment component w for transversely isotropic magneto-
thermoelastic medium with linearly distributed force and 
with and without two temperature and with rotation. The 
values of displacement component w, sharply increases 
for � = 0◦ in the initial values of distance and decreases 
for � = 45◦ and follow small oscillatory pattern for rest of 
the range of distance. Figure 16 represents the variations 
of the conductive temperature � for transversely isotropic 
magneto-thermoelastic medium with linearly distributed 
force and with and without two temperature and rota-
tion. The values of conductive temperature � , decreases 

for � = 0◦, a1 = 0.0, a3 = 0.0 sharply increases for rest of the 
three cases in the initial values of distance and follow small 
revere oscillatory pattern for � = 0◦and� = 45◦ in rest of 
the range of distance. Figure 17 represents the values of 
stress component t11 . From the initial range if distance, t11 
show the large oscillation. Figure 18 describes the varia-
tions of stress component t13 . Near the loading surface, 
the values of t13 decrease sharply and then somehow 
oscillates. Figure 19 interprets the variations of stress com-
ponent t33.The values increase sharply near the loading 
surface when � = 45◦ and decrease for � = 0◦ with all the 
values of two temperatures then small oscillatory pattern 
for rest of the range.

Fig. 15   Variations of displacement component w with distance x

Fig. 16   Variations of conductive temperature φ with distance x

Fig. 17   Variations of stress component t11 with distance x

Fig. 18   Variations of stress component t13 with distance x
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9 � Conclusions

From above investigation, it is observed that the magnetic 
effect of two temperature, rotation as well as the angle of 
inclination of the applied load plays a major role in the dis-
tribution of all the physical quantities. The amplitude of all 
the physical quantities differ (either increase or decrease) 
with and without two temperature as well as the angle of 
inclined load. Two temperature plays a major role for the 
oscillation of physical quantities near the point of appli-
cation of source as well as away from the source. In pres-
ence and absence of two temperature and inclined load, 
the displacement components and stress components 
show an oscillatory nature with respect to x. The inclined 
load plays a significant role in the distribution of all the 
physical quantities. The concentrated and uniformly dis-
tributed force show more effect on stress component. The 
result gives an inspiration to study magneto-thermoelastic 
materials as an innovative domain of applicable thermoe-
lastic solids. The results of this paper become useful for 
those researchers who works in material science, invent-
ers of new materials, in addition to those working on the 
magneto-thermoelasticity and in real life as in geophysics, 
acoustics, geomagnetic etc. The proposed methods in this 
research is relevant to a wide range of problems in ther-
modynamics and thermoelasticity.
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