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Abstract
Methyl tert-Butyl Ether (MTBE) is one of the common environmental contaminants that pose severe risks to human health 
and the environment. Due to the detrimental effects of MTBE, many efforts have been devoted towards decontamination 
of wastewater containing MTBE. Most of the reports on the treatment of MTBE are experimental based, which requires 
studying the effect of several factors such as dosage of the photocatalyst, pH of the medium, the initial concentration of 
contaminant and the contact time on degradation efficiency in MTBE contaminated waters. Although, this approach is 
highly dependable and often leads to new insights. However, because the degradation efficiency is influenced by multiple 
factors, performing experiments to investigate the effect of these factors often increases the experimental burden, thus 
requiring more time and materials consumption to achieve desirable results. Herein, we propose a computational intel-
ligent strategy to mitigate these challenges. In this contribution, the degradation efficiencies of MTBE in the presence 
of TiO2/UV were modeled under various experimental conditions using the support vector regression model. The model 
was built using experimental data comprising of inputs such as TiO2 dose, initial MTBE concentration, UV wavelength and 
contact time. Remarkably, the developed model exhibits significant accuracy as determined from the values of correla-
tion coefficient (98.27%) and root means square error (5.53). In addition, it was determined that the achievable optimum 
conditions for degradation of 0.5–100 ppm MTBE-contaminated water were 2.4 g/L of TiO2 dose with UV radiation, a 
solution pH of 3 and treatment time of 2 h. This study will be useful in the experimental design of treatment for MTBE, 
consequently reducing the time spent on running experiments and at the same time ensuring efficient use of resources 
for treatment of MTBE contaminated water.
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1  Introduction

Methyl tert-Butyl Ether (MTBE) is one of the common 
oxygenates used as an anti-knock agent to supplant envi-
ronmentally unsafe tetraethyl lead (TEL) in gasoline since 
1979 in the US [1–3]. Following the global ban of TEL by 
year 2000s, the use of MTBE as a cheap alternative fuel 
additive became widespread worldwide. MTBE is released 

into groundwater aquifer and surface water through leaks 
from underground storage tanks and through a direct spill 
of MTBE-containing gasoline. The prevalence of MTBE in 
water resources portends significant challenges to the 
safety of drinking water [4–6]. This problem is worsened 
because of MTBE’s uniquely low Henry’s constant, high 
water solubility and its inherently poor in situ anaero-
bic biodegradability [1, 7]. The ingestion of MTBE via 

Received: 16 January 2019 / Accepted: 26 March 2019 / Published online: 2 April 2019

Electronic supplementary material  The online version of this article (https​://doi.org/10.1007/s4245​2-019-0417-4) contains 
supplementary material, which is available to authorized users.

 *  T. A. Oyehan, tajudeenoyehan@kfupm.edu.sa | 1Geosciences Department (Environmental Program), College of Petroleum Engineering 
and Geosciences (CPG), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia. 2KFUPM Business School, 
King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-0417-4&domain=pdf
https://doi.org/10.1007/s42452-019-0417-4


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:386 | https://doi.org/10.1007/s42452-019-0417-4

consumption of contaminated water or any other route 
has severe health consequences. For instance, eye and skin 
irritancy in human have been linked genotoxically with 
the long exposure to MTBE [5, 8, 9]. Also, MTBE has been 
reported to induce mutagenic breakages of DNA strands 
and modification of oxidative base pair [10]. In lower ani-
mals, MTBE causes depression and disruption of the nerv-
ous system [11]. In fact, the US Environmental Protection 
Agency (USEPA) and the International Agency of Research 
on Cancer (IARC) classified MTBE as a potential human car-
cinogen [12, 13].

Due to the various environmental and health implica-
tions of MTBE environmental contamination, different 
treatment and remediation strategies have been devel-
oped for its removal. Common examples of the technique 
employed include; adsorption, air stripping, bio-remedia-
tion and advanced oxidation processes (AOPs) [2, 14–17]. 
In recent years, the AOPs have emerged as an effective 
strategy for the treatment of MTBE. The AOPs involve the 
production of the hydroxyl radicals (•OH) of extreme oxi-
dation potential that disrupt the structure and the bonds 
of the target analyte (organic compound) and eventually 
mineralizes it into harmless products mainly carbon diox-
ide and water [18]. This oxidation process can be initiated 
by photolysis (O3/UV) [19], (UV/H2O2) [20], Fenton process 
[8] and photocatalysis [21]. The other remediation tech-
niques mentioned above have been reported to have cer-
tain limitation(s) when it comes to MTBE. For instance, 
adsorption has the advantage of generating little or no 
harmful by-products, but its performance in removing 
MTBE is limited by the fact that the saturated adsorbents 
are not regenerable [16, 22, 23]. Also, air stripping is cheap 
to operate and has been successfully applied to remedi-
ate many VOCs. However, the inherently low Henry’s Law 
constant of MTBE heightens the air–water ratio and resi-
dence time thereby reducing the air stripper’s efficiency 
[2]. Lastly, the bioremediation is a slow process that takes 
months which renders it less effective in the treatment of 
MTBE.

It is important to point out that photocatalytic oxida-
tion has a high reaction rate which is suitable for better 
treatment of MTBE. Several important studies have been 
undertaken towards photocatalytic decomposition of 
MTBE using TiO2/UV [24–30]. It is remarkable to highlight 
that these referenced studies revealed that a host of reac-
tion conditions (such as catalyst dose, solution pH, initial 
pollutant concentration, irradiation UV wavelength and 
treatment time) influence the efficiency of MTBE degra-
dation through the photocatalytic process. Practically, 
investigating all the various environmental conditions 
is uneconomical, time-consuming and laborious. In the 
same token, empirical modeling is quite challenging due 
to the multifactorial and complex nonlinear nature of the 

problem. Consequently, researchers tend to select sub-
jectively parameters’ values (especially initial MTBE con-
centrations) to work with based on their available reactor 
systems (batch, slurry, commercial reactor or self-designed 
system), their analytical instrument capability and sensitiv-
ity (injection system and GC detector type), and/or prior 
experimental experience [24, 25, 27, 31, 32]. As a result, a 
wide range of differing optimal experimental conditions is 
reported which makes systematic studies of optimal pho-
tocatalysis conditions very challenging [2]. Therefore, the 
development of a computational model that can exam-
ine the effect of the above-mentioned factors becomes 
highly necessary towards reducing the experimental bur-
dens encountered while finding optimal conditions for the 
degradation of MTBE using TiO2 as a photocatalyst.

So far, in pursuit of this goal, only a few studies have 
attempted to model photolytic AOP conditions using 
computational intelligent approaches. Few important 
examples include the development of an artificial neural 
network (ANN) model for the evaluation of MTBE concen-
tration degradation using UV/H2O2 by Salari et al. [33]. 
Also, Vaferi et al. [34] used ANN to model the photolytic 
treatment of MTBE and related aromatic hydrocarbons. 
Meanwhile, a computational approach called support 
vector regression (SVR) has been shown to have better 
prediction capability than ANN and adaptive neuro-fuzzy 
inference system (ANFIS) for some problems [35]. In this 
contribution, we investigated the influence of TiO2 as a 
photocatalyst on the treatment of MTBE under various 
experimental conditions using the SVR model. TiO2 is a 
well-studied photocatalyst for the treatment of organic 
contaminants [19]. However, to the best of our knowledge, 
modeling the performance of TiO2 on MTBE under various 
experimental conditions has not been undertaken. The 
proposed model was developed using as inputs, 5 impor-
tant factors which include; solution pH, TiO2 dose, initial 
MTBE concentration, UV wavelength and contact time. 
The proposed model exhibits a high correlation coeffi-
cient and low maximum absolute error of 98.3% and 0.02, 
respectively, which clearly indicates the reliability of the 
model. More importantly, the optimum experimental con-
ditions for degradation efficiency of MTBE using TiO2 was 
established.

2 � Description of the proposed support 
vector regression

2.1 � Brief descriptions of SVM theory

The conceptual framework of Support Vector Machine 
(SVM) was founded by Vapnik [36]. Since its introduction, 
there have been increasing interests in the use of SVM 
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across diverse fields of studies [37–42]. Originally, SVM was 
developed for classification tasks but was later extended 
to regression problems [43]. SVM used for classification is 
referred to as support vector classification (SVC) while SVM 
used for regression task is termed support vector regres-
sion (SVR) [36]. SVR was developed on the basis of struc-
tural risk minimization, which makes it to have improved 
generalization ability compared to the artificial neural net-
work and partial least squares that are based on empirical 
risk minimization [36]. In SVR, the input data is mapped 
into higher dimensional feature space by using a kernel 
function that allows the linear and non-linear problems 
to be solved by a linear regression function.

Assuming we have training dataset defined by 
 where χ denotes the space 

of the input patterns, for example, . In SVR, the main 
goal is to find a function f (x) that does not have more than 
ε deviation from the real value of targets (yi) for all the 
training data and such function should be as flat as possi-
ble [19, 44]. Simple case of a linear function is described by

where ⟨., .⟩ is the dot product in χ, y (x) is the target vari-
able, (x) is the input vector which consists of the design 
variables, w is the weight vector and b is the intercept 
vector. In order for the function to be flat as stated, w is 
required to be small, which necessitates the minimization 
of Euclidean norm i.e. |w|2.

This can be stated as convex optimization problem and 
the condition is given below:

The above holds if function f exists whereby all pairs of 
(xi, yi) are approximated with a precision, ε. In reality, some 
errors are introduced that violate the above condition. To 
deal with this, slacked variables �iand �∗

i
 were introduced 

to take care of the impractical constraints of the optimiza-
tion problem as shown below [45]

where C is a non-negative constant, referred to as box 
constraint. It controls data points that lie beyond the 
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ε-insensitive loss margin and also useful in preventing 
overfitting [46]. Small values of C lead to flat functions 
while higher values may result in overfitting problem.

The quadratic optimization problem above can be 
solved by constructing the Lagrangian (L) from (3) as 
shown below

where ɳi*, ɳi, ∝ i and ∝ i* are the Lagrange multipliers 
which are non-negative real numbers

By taking the partial derivatives of the variable L with 
respect to these variables ( � i, �i*, b, � ) in (4), and then 
setting the results to zero for optimality condition, we 
obtained dual optimization problem in (5). More details 
of the derivation is contained in the references [47–49].

From the above derivatives, the value of

It follows that the objective function y(x) can be 
expressed as shown in (7) as

The b value is evaluated from the Karuysh–Kuhn–Tucker 
(KKT) conditions [49]. The above treatment is for linear 
problems. However, it can be extended to nonlinear func-
tion by simply transforming the training patterns xi into 
some feature space, then apply Eq. 7 to the transformed 
xi patterns. This leads to a new expression for the weight 
and the objective function

The actual objective function then takes the form of
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where �
(
�
�
, �
)
 is the kernel parameter that transforms 

non-linear function into higher dimensional space.
Examples of common kernel parameters include:

•	 Gaussian or radial basis function (RBF): K (xi, 
xj) = exp(−γ.|xi, xj|

2).
•	 Linear; K (xi, xj) = (xi, xj)
•	 Polynomial; K(xi, xj) = [γ. (xi, xj) + 1]d, γ > 0

In this study, we employed the radial basis function due 
to its ability to give excellent results.

3 � Methodology

3.1 � Sources and description of the data

The experimental data used in this study were collected 
from nine (9) different literature sources listed in Table 1 
with their details. In the experiments, synthetic MTBE 
contaminated water was prepared from 97 to 99.9% 
pure MTBE and, treated with specific doses of anatase 
TiO2 in a batch [25, 28, 30] or slurry photocatalytic reac-
tor system equipped with UV lamps [24, 29]. The pH of 

(9)f (x) =

l∑
i=1

(
∝∗
i
− ∝i

)
xi , x + b

the contaminated water was adjusted using 0.1 N NaOH 
or 0.1 N HCl [26]. The degradation reaction was allowed 
to run for a specified time from zero to a maximum of 
360 min (see Table 1). Initial and final MTBE concentrations 
in the solution were analyzed using gas chromatography 
(GC) equipped with either a flame ionization detector 
(FID) [28, 29, 50] or mass spectrometer (MS) [25, 27, 30]. 
During the analysis, samples are injected on to the GC 
via headspace [26, 28, 30, 31], purge and trap [24, 25] or 
solid-phase micro extraction (SPME) technique [27]. These 
sample injection methods are suitable for highly volatile 
water-soluble VOCs like MTBE. The degradation efficiency 
of the photocatalytic treatment was evaluated using the 
equation:

where Co and Cf are initial and final MTBE concentrations 
respectively.

3.2 � Statistical analysis of the datasets

Table 2 shows the basic statistics of the five input variables 
used in building the SVR model. The wide differences in 
the values of the mean and median of all the independent 
variables suggest that the sample data are not normally 
distributed. The standard deviation, mean and the range 
values also give an indication of wide variations in the data 
of all the parameters. In particular, the standard deviation 

(10)Degradation Efficiency(%) = [(Co − Cf )∕Co] × 100%

Table 1   Sources and details of the experimental data used for building the SVR model

Sample size (n) pH Catalyst dose (g/L) UV wavelength (nm) Initial MTBE con-
centration (ppm)

Contact time 
(mins)

% degradation 
efficiency

Refs.

10 7 2 254–365 0.5 0–120 0.0–95.8 [30, 31]
105 1–11 1.5–5 254–365 8.8–106 0–120 0.0–100 [28]
1 7 0.02 254 4.0 30.0 99.9 [27]
21 7 0.01–0.1 320 0.38–1 0–90 0.0–99.9 [24]
76 4–9 0.8–4.8 315 10–500 0–150 0.0–100 [26, 50]
13 6.8 0.125 300 88.15 0–360 0.0–100 [25]
23 7 0.25–5 333 1007–1460 0–240 0.0–98.4 [29]

Table 2   Basic statistics of the independent variables and their correlations with degradation efficiency

*Not significant at a p value of 0.05

Variable Unit Mean Minimum Maximum Standard 
deviation

Standard error Correlation (r) with 
dependent variable

Solution pH – 5.21 1.00 11.00 1.95 0.12 0.24
TiO2 dose g/L 2.06 0.00 5.00 1.26 0.08 − 0.10*
Initial MTBE concentration ppm 198.33 0.38 1460 315.22 19.98 − 0.05*
UV wavelength nm 293.23 254.00 365 35.35 2.24 0.23
Contact time mins 44.90 0.00 360 46.03 2.92 0.61
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of initial MTBE concentration is notably more (by almost 
twice) than the mean value. This wide variation is due to 
the detection limits of the analytical instruments used in 
measuring the MTBE concentration. In other words, while 
GCMS is capable of accurately measuring MTBE concentra-
tion from a very low sub-ppb range up to low ppm range, 
reliable results are obtainable from GCFID only in the low 
ppb to ppm range [51]. Our data come from researches 
that used both types of GC detectors. Hence, the wide 
dispersions are expected. Nevertheless, normally distrib-
uted datasets have better prediction ability than otherwise 
[40]. We, therefore, normalized the datasets to manage the 
wide dispersion using the equation;

The relationships between each of the independent 
variables and the target were investigated by finding their 
Pearson product-moment correlation coefficients (r). The 
values of r show that the predictors with significant corre-
lations have positive relationships with the target. In con-
trast, catalyst dose and contaminant initial concentration 
have a negative and non-significant relationship with the 
dependent variable. The implication of this observation 
is that these two parameters are possibly poor predictors 
of our output. In fact, traditional regression would likely 
exclude these parameters. Experimentally however, the 
solution pH and initial concentration indeed have a some-
what strong relationship with the degradation efficiency 
of the photo-catalysis. Moreover, one of the strengths of 
computational methods and SVR in particular is the ability 
to utilize hidden and nonlinear relationships (which tran-
ditional statistics may overlook) to make accurate predic-
tions [35].

3.3 � Computational methodology and SVR 
parameter optimization

We carried out the computational processing using MAT-
LAB, version R2015b. Libsvm, a Matlab tool-box containing 
the necessary SVR function for the model development 
and simulation, was used. The data were normalized prior 
to data training to enhance computational efficiency. The 
249 experimental data were divided randomly into two 
portions, namely; training and testing datasets. The train-
ing dataset (224 datapoints) was used to develop the SVR 
model, while the remaining were used as testing datasets 
to validate the performance of the model. We applied 
10-fold test-set-cross validation for the model develop-
ment. The prediction accuracy of the proposed SVR model 
depends on selecting the optimum values of the SVR 
turning parameters. In our case, the four (4) SVR model 
parameters that modulate support vector learning system 

(11)xnew =
x − xmin

xmax − xmin

include C, λ, k-option and ε. Each of the parameters was 
separately optimized. For example, for the optimization of 
C, the values of λ, ε and k-option were kept constant while 
C is varied. The values of the coefficient of correlation (CC) 
and the root mean square error (RMSE) were monitored 
during each computational run. The value of C (regulariza-
tion parameter) that gives the highest coefficient of cor-
relation and the lowest RMSE was taken as the optimized 
C value. The approach is repeated for other parameters 
and the final SVR optimized parameters are presented in 
Table 3 and Figures S1–S4.

4 � Results and discussions

4.1 � Validation of the SVR model

Figures 1 and 2 are the correlation plots used to compare 
the values of SVR predicted degradation efficiency and 
their corresponding experimental values. The correlation 
coefficients (r) of the regression lines of fit (shown in the 
plots) are 0.9885 and 0.9828 for training and testing data-
sets respectively. A good model has the value of r closer to 
1, whereas if the value of r is closer to 0, the model is poor. 

Table 3   Optimized SVM parameters

Parameter Optimized value

C 800
Lambda 5 × 10−5

Epsilon 2.85
K-option 0.142
Kernel function RBF

Experimental degradation efficiency (%)
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)
%(

ycneiciffe
noitadarged

detciderP
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100
Cor = 0.9885 

Fig. 1   Correlation plot between experimental and SVR predicted 
results for the photocatalytic degradation efficiency of MBTE in the 
presence of TiO2 as the photocatalyst (training data)



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:386 | https://doi.org/10.1007/s42452-019-0417-4

The proposed SVR model is therefore suitable for mod-
eling the photocatalytic degradation of MTBE since the 
values of ‘r’ are close to unity. Moreover, since the regres-
sion line of fit is assumed linear, it is essential to examine 
the randomness of the error term in order to confirm the 
model’s validity. The residual plot of testing data (Fig. 3) 
shows that the data are well dispersed around the zero 
line and, has no particular pattern. These further affirms 
the validity of the SVR model.

4.2 � Evaluation of prediction capability 
of the proposed model

After establishing the validity of the model, we investi-
gated its prediction capability in terms of accuracy. We 

compared the experimental testing data with the SVR 
predicted results from testing data to check the model’s 
accuracy. As shown in Fig.  4, the SVR model correctly 
predicts the pattern and points of the experimental 
data. This close match confirms the accuracy of the SVR 
model. Even though the model line deviates slightly from 
a few experimental points, the deviation still falls within 
acceptable experimental error. Still, the estimation of this 
error gives information about the reliability of the model. 
The statistical parameters used for the evaluation of the 
model’s prediction ability include the root mean square 
error, mean absolute error and the Pearson’s correlation 
coefficient. These indices are expressed mathematically in 
Eqs. (12–14). Table 4 shows the correlation coefficients and 
error estimates obtained during the training and testing 
phase of the model development. The RMSE obtained for 
both training and testing datasets are less than 6% and fall 
within the analytical QC acceptable criteria which could 
be up to 20% [52]. Similarly, the MAE values obtained are 
very small. These confirm the accuracy and reliability of 
the proposed SVR model.

(12)RMSE =

√√√√1

n

{
n∑
i

(De(pr) − De(ex))
2

}

(13)MAE =

∑n

i

���(De(pr) − De(ex)
���

n
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Fig. 2   Correlation plot between experimental and SVR predicted 
results for the photocatalytic degradation efficiency of MBTE in the 
presence of TiO2 as the photocatalyst (testing data)
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Fig. 3   Distribution of residuals from the predicted values of MTBE 
photodegradation efficiency using testing dataset
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Fig. 4   Comparison of the experimental and SVR model prediction 
for degradation efficiency of MBTE in the prescience of TiO2

Table 4   Estimation of model reliability using estimates of errors

Training Testing

Correlation 0.988505 0.982767
RMSE 5.069307 5.535019
MAE 0.002292 0.021592
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where n is the total number of the dataset. De(ex) and De(pr) 
refers to the experimental and the predicted values of deg-
radation efficiency, respectively. While De(ex) and De(pr) refer 
to their respective mean.

4.3 � Effects of experimental input variables on MTBE 
degradation

As mentioned earlier, five experimental parameters were 
considered as independent variables in building the SVR 
model. These parameters influence MTBE photocatalysis 
differently. It is, therefore, imperative to study how they 
affect the photocatalytic process. We compared the SVR 
model with experimental data and used graphical rep-
resentation to investigate their effects on MTBE photo 
degradation.

4.4 � Effect of catalyst dosage

Figure 5 summarizes the influence of catalyst dosage on 
the degradation of MTBE in wastewater. The SVR model 
accurately captures the experimental observations. 
Although the model appears to slightly underestimate 
the observed data at dosages beyond 2.4 g/L, the differ-
ence is not significant and, probably, the model results are 
approximation of experimental/instrumental errors that 
could not be detected during the experiments. As shown 
in the figure, the optimum dosage is around 2.4  g/L. 
Lower dosages (< 2 g/L) are not enough for generation of 

(14)r =

∑n

i

�
De(ex) − De(ex)

��
(De(pr) − (De(pr)

�
�∑n

i

�
De(ex) − De(ex)

�2��
De(pr) −

�
De(pr)

���2

sufficient hydroxyl radicals. In addition, dosages above the 
optimum do not result in any significant improvement in 
MTBE degradation. It is important to mention that both UV 
and catalyst must be present before photo-degradation 
can occur. This is because TiO2 does not adsorb MTBE sig-
nificantly and MTBE is inert to UV radiation [30, 53–56]. 
The mechanism of photo-degradation is such that the 
photons of UV light generate energy greater than 3.2 eV 
which is enough to excite an electron (e−) in the valence 
band of TiO2 semiconductor, promoting it to the conduc-
tion band and leaving a positive hole behind. The e− in the 
conduction band rapidly reduces the adsorbed water on 
TiO2 surface into hydroxyl radicals while the positive hole 
oxidizes the water and converts to •OH radicals. Insufficient 
amount of the semiconductor photo-catalyst translates to 
short supply of •OH radicals and eventually results in poor 
degradation efficiency. Therefore, it is important to have a 
good dose of catalyst. Conversely, if the TiO2 is excessive, 
its surfaces bounce off UV radiation lowering the produc-
tion of •OH radicals. Our SVR model gives a good estima-
tion of these observations.

4.5 � Effect of contaminated solution pH

Figure 6 shows the effect of solution pH on MTBE minerali-
zation. The SVR model gives a good approximation of the 
experimental observations, implying good performance 
of the model. From Fig. 6, the solution at pH 3 resulted in 
better MTBE degradation. Two important factors account 
for this; first, the solubility of MTBE in water is lowest at pH 
3 (as our numerous laboratory experiments show). MTBE 
is thereby more readily available to •OH radicals for deg-
radation at around pH 3 than at any other pH values. The 
second factor is due to the influence of interference from 
inorganic species present water. Anions such as carbonate 
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form layer on TiO2 surfaces hindering the photocatalytic 
formation of •OH radicals and also interfering the reactivity 
of inefficiently produced •OH radicals with MTBE [32]. This 
phenomenon occurs mainly at higher pH values because, 
at acidic pH, the anions are unstable and therefore cannot 
compete well with the •OH radicals and MTBE. Extreme low 
pH values such as ≤ 1.0 lead to the dissolution of TiO2 [28] 
and reduced photocatalytic activity of the semiconductor.

4.6 � Effect of treatment contact time

Treatment time affects the extent and kinetics of photocat-
alytic degradation of organic compounds. Figure 7 shows 
that the proposed SVR model correctly modeled the trend 
of the experimental data to a large extent. Importantly, the 
model indicates that the degradation kinetics progressed 
at three different rates. The reaction rate was fastest within 
the first 20 min, reaching a degradation efficiency rate of 
2.32 percent per minutes on average. A previous study [32] 
showed that the production of the first intermediate prod-
uct of MTBE oxidation, tert-Butyl formate (TBF), is peaked 
at 20 min of contact time. Typically, MTBE degrades to 
organic intermediates which are mainly tert-Butyl alcohol 
(TBA), TBF and acetone [25, 57, 58]. These products com-
pete with MTBE for OH radicals and slow down MTBE deg-
radation efficiency rate significantly to about 0.60 min−1. 
During this stage, the contaminant and its intermediates 
are photodegraded to final products, water, and CO2. After 
100 min, the SVR model predicted a maximum MTBE deg-
radation efficiency of about 98%. Then, during the last 
stage of the quasi-static reaction rate of ~ 0.00 min−1, the 
intermediates are mineralized completely [30]. This sug-
gests that the treatment time of 2 h is optimum for com-
plete mineralization of MTBE and intermediates.

4.7 � Effect of initial MTBE concentration

The type of GC detector used in analyses of MTBE concen-
trations before and after treatment limits the concentra-
tion range that researchers are able to investigate. Support 
vector machine (SVM) produces a global solution to prob-
lems like this. The effect of MTBE concentration on the effi-
ciency of photo-degradation is shown in Fig. 8. From the 
figure, the SVR model gives an accurate estimation of the 
experimental observations. Under the same experimen-
tal conditions, MTBE initial concentration in water has an 
inverse relationship with degradation efficiency. Degrada-
tion rate, on the other hand, increases with increasing con-
centration [24] suggesting appreciable degradation even 
at high MTBE concentration. Accordingly, the proposed 
SVR model showed that while about 96% of up to 20 ppm 
MTBE can be photodegraded within 60 min, the degrada-
tion efficiency of ~70% is attainable within the same time 
when the initial MTBE concentration is high (≥ 100 ppm). 
It is therefore instructive to increase treatment time and/
or catalyst dosage when the MTBE initial concentration is 
greater than 20 ppm. As discussed under the previous sub-
section, the contact time of 2 h could give optimal MTBE 
treatment.

5 � Conclusion

In this study, photocatalytic degradation efficiency of 
Methyl tert-Butyl Ether (MTBE) in the presence of TiO2/
UV as photocatalyst were accurately modeled using sup-
port vector regression model (SVR). The model was devel-
oped using as inputs the following parameters; TiO2 dose, 
initial MTBE concentration, UV wavelength and contact 
time. The developed SVR model successfully modeled 
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the efficiencies of degrading MTBE using TiO2/UV and 
under various experimental conditions. The prediction 
performance of the SVR model was very high as meas-
ured by correlation coefficients of 98.85% and 98.28% for 
training and testing dataset, respectively. Furthermore, 
root means square errors were calculated as 5.07% and 
5.54% for training and testing dataset, respectively. More 
importantly, the effects of experimental conditions such 
as catalyst dose, solution pH, initial pollutant concentra-
tion and treatment time indicate that excellent treatment 
of 0.5–100 ppm MTBE-contaminated water is achievable 
using 2.4 g/L catalyst dose with UV radiation and maintain-
ing a solution pH 3 and treatment time of 2 h. These com-
putationally determined optimal experimental conditions 
can be useful for upscaling of photocatalysis for industrial 
water treatment applications.
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