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Abstract
This paper proposes constant active and reactive power control of a wind farm during gust using the supercapacitor 
(SC) and static synchronous compensator (STATCOM). The proposed technique is applied to Gabal El-Zayt wind farm 
which located in Red Sea region of Egypt with a capacity of 200 MW and equipped with doubly fed induction generators 
(DFIGs) and analyzed during gust wind. As the nature of wind is varying all time, the output power is changing continu-
ously so energy storage system such as SC is required. SC is responsible for maintaining constant output active power 
by charging when there is excess in the output power of DFIG and discharging when there is a lack in the output power 
of DFIG. Reactive power compensation is achieved by connecting STATCOM to the power system. SC keeps reactive 
power constant however its value is improved by connecting STATCOM. Wind farm model is analyzed during gust with 
the proposed technique while active and reactive power performance is investigated. Firstly, the effect of connecting 
SC to each wind turbine is studied. Then the effect of connecting STATCOM to the electric power system is studied. Also, 
the effect of connecting SCs and STATCOM is studied. Finally, the impact of connecting additional STATCOM at different 
locations is investigated. Results show the proposed technique validity.
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1  Introduction

Nowadays, wind energy covers a large amount of utilized 
energy all over the world as it is a clean renewable energy 
source and available all day at different spaces. Wind tur-
bines convert the kinetic energy (KE) of air into mechanical 
energy which is converted by electric generator to electric 
power. Wind turbines recover only a part of KE, this part is 
called power coefficient (Cp) with a maximum theoretical 
value of 0.593. The maximum value of Cp is achieved by 
controlling the pitch angle and regulating the mechani-
cal speed. Wind turbines can be classified into two types, 
fixed speed wind turbines (FSWTs) and variable speed 
wind turbines (VSWTs). VSWT can track the maximum 
power point by varying mechanical speed that cannot be 

done in FSWTs. There are different techniques used with 
VSWT such as full converter system that uses a permanent 
magnet or wound rotor synchronous generator and par-
tial converter system that uses the doubly fed induction 
generator (DFIG). DFIG has both the stator and rotor wind-
ings connected to the grid however the stator connected 
directly, and the rotor connected through a back-to-back 
converter which consists of rotor side converter (RSC) and 
grid side converter (GSC). Due to the direct connection of 
the stator to the grid, DFIG is very sensitive to any distur-
bance occurs in the network [1, 2].

The nature of wind speed varies all time this, in turn, 
causes variable generated power especially if wind tur-
bines are exposed to a gust. Pumped water and com-
pressed air are the most commonly used energy storage 
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technologies for power grids due to their low capital costs. 
In [3–5] flywheel is used as energy storage to increase the 
stability of wind turbine. Energy storage over 10 min using, 
for example, flywheels allows 10% more wind energy to be 
absorbed without grid reinforcement and appears to be 
economically worthwhile. Energy storage over 24 h using 
redox flow cells allows up to 25% more wind energy to be 
absorbed and 30% more revenue to be earned but does 
not appear to be economically justified [6]. However, these 
technologies are heavily dependent on geographical 
location with relatively low round trip efficiency. Energy 
storage system (ESS) is required to keep constant output 
power as in [7, 8]. Batteries and supercapacitor (SC) are 
types of ESS that have higher speed response than other 
traditional ESS that has mechanical parts [9, 10]. In [11, 12] 
batteries are used with wind energy to improve response 
and stability. In [13] batteries are used with wind energy 
using fuzzy logic control. In [14, 15] batteries are used as 
ESS with a Wind/Photovoltaics hybrid system to compen-
sate lack of energy is the good method to relinquish the 
uncertainty of the two renewable sources. In [16] batter-
ies are used as ESS with a standalone Wind/Photovoltaics 
hybrid system during wind gust as the generator and bat-
tery currents are the parameters of the system that directly 
affected by changes in the wind speed. Compared to bat-
teries, SC has a large power density that makes SC is more 
applicable in high power rating applications. SC coupled 
with DFIG system as it can be used to improve low voltage 
ride through of wind turbines during faults and also used 
for constant power application [8].

In wind energy application, SC is controlled through DC-
chopper converter such as buck-boost converter that allows 
flowing power in two directions and connected to DC-link 
capacitor [17]. In [18, 19] SC is used with power electronic 
converter to absorb the excess energy of wind energy sys-
tem equipped with synchronous generator and full con-
verter during the fault condition. In [20–25] SC is used to 
improve LVRT of wind energy system equipped with DFIG 
and back-to-back converter during the fault condition. How-
ever, in [8, 26–28], SC is used to achieve constant output 
power during wind speed variation. SC combined with the 
crowbar is used in [21] to protect the converter and improve 
(LVRT) capability of DFIG during grid faults. SC is used for 
power fluctuation suppression in [26, 28, 29]. In [30] SC is 
used to reduce frequency disturbance under load variation 
or fault occurrence. SC with enhanced field-oriented control 
technique is applied grid connected DFIG to improve LVRT 
as in [23]. SC is controlled by a fuzzy logic control to dynami-
cally match the intermitting of wind energy and for the 
active power regulation as in [31]. SC also has been applied 
to a hybrid wind–photovoltaic system as in [32]. In [33, 34] 
SC can be combined with batteries to operate as hybrid ESS. 
In [35] SC is connected to the whole wind farm at terminal 

bus not to individual wind turbine using a controlled recti-
fier. SC is connected with switch type fault current limiter to 
enhance LVRT where the Switch type fault current limiter 
effectively reduce the overcurrent in the rotor side during 
the fault [36]. SC can be used in a different application as 
in [37] the authors investigate the possible use of a com-
mercial supercapacitor to construct a very low-frequency 
oscillator. The efficiency of SC is significantly high and due 
to the internal resistance or problems in the cooling system 
the efficiency may decrease, the efficiency of SC can be cal-
culated as in [38]. In addition to the energy storage system 
used for active power compensation, there are also reactive 
power compensation sources. Flexible alternating current 
transmission systems (FACTS) devices are used to increase 
the stability of the power system by controlling network 
voltage magnitude or phase angle [39]. Static synchronous 
compensator (STATCOM) is a type of FACTS used to com-
pensate reactive power by regulating network voltage or 
reactive power [40, 41].

STATCOM uses a three-level converter with two splitting 
DC capacitor is more applicable in high power applica-
tion with less ripple and harmonic compared to a two-level 
converter which uses one DC capacitor [42]. In [43–47] SC 
coupled to STATCOM at DC-link capacitor is used to com-
pensate active and reactive power, where STATCOM uses 
two-level converter. This paper proposes combination 
control for constant both active and reactive output power 
of wind farm (WF) during gust where STATCOM and SC are 
connected separately to wind energy system as STATCOM 
with a three-level converter is connected to the network 
and SC is coupled to each DFIG through DC-link capacitor. 
On the contrary to previous researches, this paper uses 
the STATCOM with a three-level converter to reduce the 
harmonic and using gate turn-off thyristor (GTO) which 
is more applicable for high power application. Also, in 
this paper, SC and STATCOM are connected separated to 
achieve separate control.

This paper is organized as follows: Sect. 2 analyzes DFIG 
system and Sect. 3 shows SC characteristics and model. 
Section 4 illustrates the ESS configuration and control. 
Section 5 shows the STATCOM configuration and opera-
tion. Suggested model is illustrated in Sect. 6 and the 
results in Sect. 7. Section 8 illustrates a discussion about 
the results. Section 9 illustrates the conclusion of the pro-
posed methodology.

2 � Doubly fed induction generator system

The construction of DFIG has the stator winding con-
nected to the grid and the rotor winding connected to a 
back-to-back converter (GSC and RSC which connected 
through the DC-link capacitor) as shown in Fig. 1.
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As the stator winding is connected to a balanced three-
phase supply, the stator flux rotates with constant speed 
called synchronous speed ns and has constant magnitude. 
The parameters of the stator are the stator resistance Rs and 
the stator leakage inductance Ls which represents the un-
useful flux generated by stator current and cannot across 
the air gap. The effective amount of flux that crosses the 
air gap between stator and rotor is represented by mutual 
inductance Lm. The parameters of the rotor are rotor resist-
ance Rr and inductance Lr, also the rotor has a parameter 
that represents the mechanical power Rr(1 − s)/s where s is 
the slip speed [48].

where ns is synchronous speed and nr is rotor speed.
The induced torque T depends on the stator flux λs and 

the rotor current ir so by calculating the stator flux and regu-
lating rotor current, the induced torque can be controlled.

where k is the proportionality constant. For the purpose of 
controlling the active and reactive power independently, 
DFIG is modeled using direct–quadrature (d–q) axis com-
ponent (park model). Flux equations are determined as 
follows:

where λds and λqs are d–q axis component of stator flux, λdr 
and λqr are d–q axis component of rotor flux, ids and iqs are 
d–q axis component of stator current, idr and iqr are d–q 
axis component of rotor current. Stator and rotor voltages 
in d–q model are calculated as follows:

(1)s =
ns − nr

ns

(2)T = k �s ir

(3)�ds = Lsids + Lmidr

(4)�qs = Lsiqs + Lmiqr

(5)�dr = Lr idr + Lmids

(6)�qr = Lr iqr + Lmiqs

(7)vds = idsRs − �s �qs +
d�ds

dt

where vds and vqs are d–q axis component of stator voltage, 
vdr and vqr are d–q axis component of rotor voltage.

The active and reactive power generated by DFIG and 
transferred to the network is adjusted by controlling GSC 
and RSC.

The torque and power equations are given by:

where p is pole pairs, Ps and Qs are stator active and reac-
tive power.

RSC tracks the maximum generated active power and 
control the reactive power transferred to the network 
through the stator. The active power is controlled by 
adjusting reference torque to adjust d axis component of 
rotor current, however, q axis component of rotor current 
is maintained at zero value to achieve zero reactive power. 
Reference values d–q axis components of rotor voltage 
are calculated by adjusting d–q axis components of rotor 
current.

GSC acts on controlling the reactive power transferred 
to the network through the back-to-back converter and 
this can be achieved by adjusting q-axis component of 
GSC-current. GSC keeps the voltage of the DC-link capaci-
tor constant by maintaining the balance between active 
power flow from the rotor side (Pin) and active power flows 
to the grid side (Po). The energy stored W and the power 
Pdc of the DC-link capacitor is given by:

(8)vqs = iqsRs + �s �ds +
d�ds

dt

(9)vdr = idrRr − �r �qr +
d�dr

dt

(10)vqr = iqrRr + �r �dr +
d�dr

dt

(11)T =
3

2
pLm

(

idsiqr − iqsidr
)

(12)Ps = vdsids + vqs iqs

(13)Qs = vqsids − vds iqs

Fig. 1   DFIG mode
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where Cdc is the capacity of DC-link capacitor and Vdc is the 
dc-link voltage. Vdc is kept constant when Pdc equals zero.

3 � Supercapacitor characteristics and model

Supercapacitor SC or (ultra-capacitor) is a type of the 
energy storage system which reduces the gap between 
conventional capacitor and batteries. SC has two parallel 
plates with a bigger area and a smaller distance separa-
tor than the conventional capacitor that, in turn, provides 
more energy to be stored and SC capacity may get to thou-
sands of farads. SC is used in many of applications that 
require high stored energy as SC has many advantages 
such as the ability to absorb or release the energy quickly, 
high charging or discharging current, and long life. As 
shown in Fig. 2, SC is modeled by a capacitor and equiva-
lent series resistance (ESR) which represents the internal 
resistance of the capacitor (the resistance of the two plates 
and the electrolyte) that effects the power losses in SC and 
equivalent parallel resistance (EPR) which represents the 
current leakage and affects the long-term stored energy. 
SC can be simply modeled by neglecting EPR.

(14)W = ∫ Pdcdt =
1

2
CdcVdc

(15)
dVdc

dt
=

Pdc

CdcVdc
, Pdc = Pin − Po

The rated cell voltage of SC is low, so it is necessary to 
connect a large number of cells in series to get a high rated 
voltage that, in turn, may cause a leakage current between 
cells and affect the performance due to the little difference 
in voltage between cells resulting from the manufacture 
tolerance. The energy stored (Wsc) in SC is calculated by 
Eq. (16).

where C is the capacity of SC. Vmax and Vmin is the maxi-
mum and minimum value of SC voltage. In constant power 
application, the capacity of SC is calculated as follows:

where P is the required power absorbed or released by SC 
for a certain time (t).

4 � ESS configuration and control

Supercapacitor SC is connected to the DC-link capacitor of 
DFIG through DC–DC converter (buck-boost) to exchange 
a certain amount of power as shown in Fig. 3. The DC–DC 
converter consists of two insulated-gates bipolar transis-
tors (IGBTs) switches S1 and S2 each with an antiparallel 
diode and connected to SC through an inductor at one 
side and the other side connected to the DC-link capaci-
tor. The DC–DC converter operates as a two-quadrant con-
verter where the current can flow in the two directions 
that means the DC–DC converter can operate as a buck 
converter where SC is charging or operates as a boost con-
verter where SC is discharging. The DC–DC converter is 
controlled to maintain the output power of the DFIG con-
stant at its reference value. This will be done by controlling 
the power exchanged between SC and DC-link capacitor.

(16)Wsc =
1

2
C
(

V
2

max
− V

2

min

)

(17)Wsc = Pt

(18)C =
2Pt

V2
max

− V2

min

CESR

EPR

Fig. 2   SC model

Fig. 3   ESS configuration and 
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Figure 3 also shows the controller of the DC–DC con-
verter where the output power of the DFIG is measured 
and compared with the reference value. The PI control is 
driven by the error between the measured and reference 
values following Eq. (19).

where K1 is the duty cycle of the switch S1, P∗
o
 is the ref-

erence power value, and Po is the output power of DFIG. 
Kp and Ki is the control parameter of PI. Considering that, 
the value of P∗

o
 for different wind speeds are calculated 

by maximum power point tracking technique (MPPT) 
[15]. The output of the PI control is the duty cycle of the 
switches that compared with a sawtooth signal to gen-
erate the required pulses. The pulses of switch S2 is the 
inverse of the pulses of switch S1.

where K2 is the required duty cycle of the switch S2.
Figure 4 shows two modes of the DC–DC converter, in 

mode1, operates as a buck converter where there is excess 
output energy from DFIG needed to be absorbed by SC 
so the current flows in the positive direction through the 
inductor and SC so the switch S1 and diode D2 operate in 
the first quadrant and D1 is inverse-biased. However, in 
mode2, the converter operates as a boost converter where 
there is a lack of output energy of DFIG so the current 
flows in the negative direction through the inductor and 
SC so the switch S2 and D1 operate in the second quadrant 
and D2 is inverse-biased.

5 � STATCOM configuration and operation

the static synchronous compensator is a type of FACTS 
which is used to deliver or absorb the necessary reactive 
power to the power system by injecting lagging or leading 
current to the system to keep the voltage at rated value. 
Static var compensator (SVC) is also used to compensate 
the reactive power, however, STATCOM is more effective 
because the reactive power supplied is not significantly 

(19)K1 =

(

Kp +
Ki

s

)

(

P∗
o
− Po

)

(20)K2 = 1 − K1

affected by the drop of network voltage which is contrary 
to what happens in SVC. Moreover, STATCOM has less har-
monic distortion and increase network stability.

STATCOM consists of a voltage source converter (VSC) 
which is the main part that responsible for generating 
AC-voltage with less harmonic as possible, an interme-
diate transformer which represents an electric-coupling 
between VSC and the network, and DC-link capacitor 
which operates as a storage system for reactive power 
compensation as shown in Fig. 5.

There are different topologies of STATCOM such as 
two-level converter which has line-to-line voltage levels 
(0, + Vdc) and phase-to-neutral voltage levels (0, + Vdc/3, 
+ 2Vdc/3), where Vdc is the voltage of DC-link capacitor. 
Multi-level converter (N-level) is achieved by splitting 
the DC capacitor to (N − 1) capacitors to produce N-level 
phase-to-neutral voltage and line voltage of (2N − 1) lev-
els. The three-level voltage converter is commonly used 
which consist of two splitting capacitors and control the 
AC voltage magnitude without varying the capacitor volt-
age unlike the two-level converter [42].

In high power application, GTO is a more appropriate 
switch used with square wave operation [49, 50]. The GTO-
three level converter of 48-pulses is shown in Fig. 6 uses 
two converter each has 24-pulses and shifted by 7.5°. The 
two converter is linked by four transformer with windings 
is phase-shifted and this interconnection helps in reducing 

Fig. 4   Two modes of buck-
boost circuit
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harmonics generated due to square wave operation [51, 
52].

The power flow of STATCOM with the network is gov-
erned by the following equation.

where S is the STATCOM apparent power, P and Q are the 
STATCOM active and reactive power respectively, Vs and 
Vc are voltage the network voltage and STATCOM voltage 
respectively, XL is the inductive reactance of the interme-
diate transformer, and α is the angle between Vs and Vc.

Active power can be controlled by changing the angle 
α and reactive power that can be supplied by STATCOM 
depends on the difference between the network voltage 
and STATCOM voltage. To supply maximum reactive power, 
α is set to zero to achieve zero active power however reactive 
power equation becomes as follows:

(21)

S = 3

(

Vs Vc

XL

)

sin � − j3

(

(

Vs Vc

XL

)

cos � −
V2
s

XL

)

= P − jQ

(22)Q =
3Vs

(

Vc − Vs
)

XL

The previous equation shows that reactive power flows in 
the positive direction from STATCOM to the network when 
Vc > Vs that occurs when Vs becomes below rated value and 
STATCOM supplies reactive power. Reactive power flows in 
the negative direction from the network to STATCOM when 
Vc < Vs that occurs when Vs becomes overrated value and 
STATCOM absorbs the excess in reactive power.

However, due to the converter losses, the angle between 
Vc and Vs is adjusted to a certain value to deliver the required 
active power to compensate these losses rather than set at 
zero value.

The control of STATCOM sets the reference value of q-axis 
current component iq

* by controlling the reactive power Q 
or controlling the network voltage Vs to be kept at 1 pu by 
using PI control following Eqs. (23) or (24).

(23)i
∗

q
=

(

Kp +
Ki

s

)

(

V∗

s
− Vs

)

(24)i
∗

q
=

(

Kp +
Ki

s

)

(Q∗ − Q)

+

-

N
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Another PI control is driven by the error between the 
reference and the actual value of q-axis current and gener-
ates the required signal of converter (δ).

6 � Configuration of suggested model

In this paper, the suggested model is consists of WF with 
200 MW the capacity (100 × 2 MW wind turbine) simulates 
Gabal El-Zayt WF which has four groups with capacity of 
(42 MW, 54 MW, 52 MW, and 52 MW) as in [53]. Each wind 

(25)� =

(

Kp +
Ki

s

)

(

i∗
q
− iq

)

turbine is coupled to DFIG with a back-to-back converter 
connected to SC banks through buck-boost converter. 
Each group is connected to bus bar (B 690 V) and step-
up transformer (T1 0.69/22 kV) neglecting feeders then 
all groups are connected to the grid through 30 km trans-
mission line and step-up transformer (T2 22/220  kV). 
STATCOM of 3 MW is connected at the point of common 
coupling (PCC). The four groups are exposed to a gust 
wind for nearly 10.5 s. The rated value of the wind speed 
is 15 m/s, however, the gust as simulated in [54] has a 
peak value wind speed 22 m/s and assuming all groups 
are exposed to the gust at the same time. The suggested 
model is shown in Fig. 7. The design parameters of the 
studied model are listed in Table 1.
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7 � Simulation results

In this section, the validity of the proposed technique is 
illustrated. The wind farm is exposed to the gust at 4 s to 
14.5 s that has maximum value wind speed of 22 m/s as 
shown in Fig. 8. The impacts of connecting SCs to each 
DFIG, connecting STATCOM to the grid power system, 
and connecting both SCs and STATCOM are investigated. 
Finally, a comparison between connecting additional 
STATCOM at different location is illustrated.

7.1 � Impact of connecting SCs to each DFIG

In this case, SC is connected to DFIG of each wind turbine. 
Figure 9 shows the effect of connecting SC on maintain-
ing active and reactive power constant during gust. As 
shown in Fig. 9a, total active power is maintained constant 
at 200 MW with SC however, it varies between 170, 240 
and 137 MW without SC. Figure 9b shows that reactive 
power drawn from the grid is nearly kept between − 10 
and − 11 MVAR during gust with SC, however, varies from 
− 8.4, − 14.4 to − 6.9 MVAR without SC. The minus sign of 
reactive power value means that reactive power is drawn 
from the grid by this value.

7.2 � Impact of connecting STATCOM to the grid 
power system

In this case, STATCOM is connected to the electric grid 
system at PCC and the effect of STATCOM on active and 
reactive power is illustrated in Fig. 10. Active power is not 
affected by connecting STATCOM as it varies between 
170–240 and 137  MW with and without STATCOM as 
shown in Fig. 10a. However, Fig. 10b shows that reactive 
power drawn from the grid is decreased by connecting 
STATCOM by nearly 1 MVAR. this deduces that STATCOM 
has only impact on reactive power value without affecting 
active power.

7.3 � Impact of connecting SCs and STATCOM

In this case, SC is connected to each DFIG and STATCOM 
is connected at PCC. Figure 11 shows the effect of the 
gust on active power of each group with and without SC 
and STATCOM. Without SC and STATCOM, Fig. 11a shows 
that active power of the first group varies between 35.7, 
50.5 and 29 MW however with SC and STATCOM, active 

Table 1   Design parameters of studied model

Parameter Value

DFIG parameters
 Rated voltage 690 V
 Rated power 2 MW
 Rotor resistance 0.0050 pu
 Stator resistance 0.00706 pu
 Mutual inductance 2.9 pu
 Rotor leakage inductance 0.156 pu
 Stator leakage inductance 0.171 pu

Transmission line parameters
 Zero sequence resistance 0.4131 Ω/km
 Positive sequence resistance 0.1154 Ω/km
 Zero sequence capacitance 5.02e−9 F/km
 Positive sequence capacitance 11.33e−9 F/km
 Zero sequence inductance 0.00331 H/km
 Positive sequence inductance 0.00105 H/km

Transformer (T1) parameters
 Turns ratio 690 V/22 kV
 Impedance 0.0017 + j0.05 pu

Transformer (T2) parameters
 Turns ratio 22 kV/220 kV
 Impedance 0.00534 + j0.16 pu

Grid parameters
 Impedance 0.0004 + j0.004 pu

ESS parameter
 SC capacity 800 F
 DC link capacitor 10,000e−6 F
 Inductor 10 mH

STATCOM parameter
 Capacitor (C1) 1000e−6 F
 Capacitor (C2) 1000e−6 F
 Primary Y zigzag nominal voltage 25e3/4 V
 Secondary Y zigzag nominal voltage 930 V
 Primary Δ zigzag nominal voltage 25e3/4 V
 Secondary Δ zigzag nominal voltage 930 V
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power is maintained at rated value 42 MW. Without SC 
and STATCOM, Fig. 11b shows that active power of the 
second group varies between 50, 65 and 37 MW however 
with SC and STATCOM, active power is maintained at rated 
value 54 MW. Without SC and STATCOM, Fig. 11c shows 
that active power of the third group varies between 44, 
62.5 and 36 MW however with SC and STATCOM, active 
power is maintained at rated value 52 MW. The fourth 
group fluctuates as the third group where they have the 
same rating of power. Total active power varies between 
170, 240 and 137 MW without SC and STATCOM however 
with SC and STATCOM, total active power is maintained at 

rated value 200 MW as shown in Fig. 12a. Without SC and 
STATCOM, reactive power varies from − 8.4 to − 14.4 MVAR 
however, with SC and STATCOM, reactive power is main-
tained constant at − 9.6 MVAR as shown in Fig. 12b. The 
result shows that without SC, when wind speed increases, 
the active power increases and this increasing in active 
power is offset by decreasing in reactive power. Also, when 
wind speed decreases, the active power decreases and this 
decreasing in active power is offset by increasing in reac-
tive power. This means whereas SC keeps the active power 
constant, this in turn keeps the reactive power constant. 
But STATCOM decrease this constant value of reactive 

Fig. 9   Measured total active 
and reactive power during 
gust with and without SC a 
total active power b reactive 
power measured at B2



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:331 | https://doi.org/10.1007/s42452-019-0351-5

power. In other words, if STATCOM is connected without 
applying SC, the reactive power is decreased but still varies 
with wind speed variation.

7.4 � Comparison of different location of STATCOM

For the purpose of decreasing reactive power drawn 
from the grid, another additional STATCOM is connected. 
Two positions are studied, position 1 after transmission 
line and position 2 at the midway distance of the trans-
mission line, Fig. 13 shows reactive power response for 
each position and without STATCOM. Without SC and 

STATCOM, reactive power is varying. With SC and one 
STATCOM at PCC, reactive power is nearly constant at 
10  MVAR. By connecting additional STATCOM after 
transmission line at B2, the reactive power drawn from 
the grid is decreased to 6 MVAR and the rest of reactive 
power is supplied by the additional STATCOM but in this 
case, the stress on the transmission line is the same as 
the case of using one STATCOM. In order to decrease the 
stress on the transmission line, the additional STATCOM 
is connected at the midway of transmission line rather 
than after transmission line. In this case, the reactive 
power drawn from the grid is decreased to 8 MVAR and 

Fig. 10   Measured total active 
and reactive power during gust 
with and without STATCOM a 
total active power b reactive 
power measured at B2
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Fig. 11   Measured active power 
during gust of each group with 
and without SC and STATCOM 
a first group b second group c 
third group



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:331 | https://doi.org/10.1007/s42452-019-0351-5

the rest of reactive power is supplied by the additional 
STATCOM and the stress on the half transmission line is 
decreased.

Finally, the results deduce that SC is responsible for 
maintaining active and reactive power constant, how-
ever, STATCOM specifies this constant value of reactive 
power without affecting active power.

8 � Discussion

SC is connected to DC-link capacitor of DFIG through 
DC–DC converter. The DC–DC converter operates as a 
two-quadrant converter where the current can flow in 

the two directions to enable SC for charging and dis-
charging. The DC–DC converter is controlled to maintain 
the output power of the DFIG constant at its reference 
value which is 2 MW for each wind turbine. This will be 
done by controlling the power exchanged between 
SC and DC-link capacitor. As the control of SC works 
on keeping active power constant during wind speed 
variation and as the result shows that without SC, dur-
ing wind speed variation, the active power varies, and 
also reactive power varies so connecting SC keeps the 
active power constant and this, in turn, keep the reac-
tive power constant. However, in order to control this 
constant value of reactive power, STATCOM is required. 
STATCOM is connected to the electric grid system at PCC. 

Fig. 12   Measured total active 
and reactive power during 
gust with and without SC and 
STATCOM a total active power 
b reactive power measured 
at B2
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Reactive power drawn from the grid is decreased by con-
necting STATCOM. However, active power is not affected 
by connecting STATCOM. For the purpose of decreasing 
reactive power drawn from the grid, another additional 
STATCOM is connected. However, the closer STATCOM to 
the grid, the lower reactive power is drawn from the grid 
but the more stress on the transmission line. the results 
deduce that SC is responsible for maintaining active and 
reactive power constant, however, STATCOM specifies 
this constant value of reactive power without affecting 
active power. In other words, if STATCOM is connected 
without applying SC, the reactive power is decreased but 
still varies with wind speed variation.

9 � Conclusion

In this paper, proposed methodology control has been 
suggested to achieve constant active and reactive out-
put power of WF equipped with DFIGs during gust. Con-
stant active power is achieved by connected SC banks 
through buck-boost converter to the DC-link of the 
back-to-back converter used with DFIG to be charging 
when the output power is more than reference value this 
means there is excess energy and discharging when the 
output power is less than reference value this means 
there is lack in energy. Reactive power compensation 
is achieved by connecting STATCOM to power system. 
SC maintains reactive power constant however its value 
is controlled by connecting STATCOM. Result shows 

that output active power has been maintained at rated 
capacity during the gust. The impacts of connecting SCs 
to each DFIG are studied during the gust, total active 
power is maintained constant at 200 MW with SC how-
ever, it varies between 170, 240 and 137 MW without SC 
and reactive power drawn from the grid is nearly kept 
between − 10 and − 11 MVAR with SC however varies 
from − 8.4, − 14.4 to − 6.9 MVAR without SC. The impacts 
of connecting STATCOM at PCC are studied during the 
gust, active power is not affected by connecting STAT-
COM as it varies between 170–240 and 137 MW with and 
without STATCOM. However, reactive power drawn from 
the grid is decreased by connecting STATCOM by nearly 
1 MVAR. The impacts of connecting SCs to each DFIG and 
STATCOM at PCC are studied during the gust, without SC 
and STATCOM active power of first group varies between 
35.7, 50.5 and 29 MW, active power of second group 
varies between 50, 65 and 37 MW, active power of the 
third group is the same as fourth group varies between 
44, 62.5 and 36 MW, total active power varies between 
170, 240 and 137 MW, and reactive power varies from 
− 8.4 to − 14.4 MVAR. However, with SC and STATCOM, 
active power is maintained at rated value 42 MW, 54 MW, 
52 MW, and 52 MW for first, second, third, and fourth 
group respectively, total active power is maintained at 
rated value 200 MW, and reactive power is maintained 
constant at − 9.6 MVAR. Reactive power is maintained 
constant thanks to connecting SC to each DFIG and reac-
tive power value is compensated by connecting STAT-
COM. With connecting additional STATCOM, reactive 
power drawn from the grid decreases depending on the 

Fig. 13   Measured reactive 
power at B2 during gust with 
different location of STATCOM
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location of that additional STATCOM. However, without 
using SC and STATCOM, active and reactive power var-
ies during the gust. With SC and one STATCOM at PCC, 
reactive power is nearly constant at 10 MVAR. By con-
necting additional STATCOM after transmission line at 
B2, the reactive power drawn from the grid is decreased 
to 6 MVAR but in this case the stress on the transmission 
line is the same as the case of using one STATCOM. In 
order to decrease the stress on the transmission line, the 
additional STATCOM is connected at midway of transmis-
sion line rather than after transmission line. In this case 
the reactive power drawn from the grid is decreased to 
8 MVAR and the stress on the half transmission line is 
decreased. This means that SC is responsible for main-
taining active and reactive power constant, however 
STATCOM specify this constant value of reactive power 
without affecting active power.
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