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Abstract
A new extractant-impregnated resin, alizarin red S -impregnated XAD-2010, is used as an adsorbent to separate and pre-
concentrate U(VI) and Th(IV) ions prior to their spectrophotometric determination. Various instrumental techniques such 
as elemental analysis, FTIR, and SEM analysis were employed for full characterization of the synthetic extractant. Opti-
mization of the adsorption and elution conditions of U(VI) and Th(IV) ions using synthesized alizarin red S -impregnated 
XAD-2010 were studied. Langmuir isotherm model has the best fitting experimental data with a maximum adsorption 
capacity of 20.2 mg g−1 for U(VI) and 18.25 mg g−1 for Th(IV). The adsorption process of each metal ion by synthesized 
alizarin red S -impregnated XAD-2010 showed an exothermic pseudo-second-order adsorption process. The tolerance 
limits for several metal ions on alizarin red S -impregnated XAD-2010 were calculated, giving high tolerance limit. The 
optimized method was applied on international certified samples and different rock types bearing thorium and uranium 
with accurate results.
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1  Introduction

The twin important nuclear elements, thorium and ura-
nium are the corner stone of the (industrial) nuclear tech-
nology and consequently the production of nuclear fuel 
used in nuclear power plants which has a return on the 
production of huge energy capable of developing any 
country due to its application as an efficient fuel for elec-
tric power plants [1, 2].

Accordingly, it is a strategic issue where their explora-
tion in their bearing rocks and hence their exploitation 
for production of nuclear grade yellow cake (highly con-
centrated uranium) is an important step in the nuclear 
fuel cycle. So, their accurate determination using several 
advanced and single techniques with economic proce-
dures will be of great prominence for a precise and accu-
rate evaluation of their occurrences in certain areas [3, 4].

Several instrumental techniques were suggested 
namely; inductively coupled plasma atomic emission spec-
trometry and inductively coupled plasma mass spectrom-
etry which can serve to improve sensitivity for uranium 
and thorium determination where, several trials are per-
formed to reach economic and accurate methods for their 
determination [5].

Problems encountering the spectrophotometric tech-
nique in rock analysis are mainly referring to spectral inter-
ference which enhances the absorbance value giving out 
incorrect (high) concentration [6, 7].

To solve these problems, the segregation including 
coprecipitation, solvent extraction, electrodeposition, ion-
exchange etc. [8–10] has been used in the analytical chem-
istry laboratories for their precise and accurate determina-
tion. Solid phase extraction (SPE) is one of the efficient 
preconcentration-differentiation procedures used, due to 
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its simplicity and confined usage of the organic solvents 
[11–15]. Solid phase extraction of thorium and uranium is 
also a preferable choice in the analytical chemistry in com-
mon [16–18]. Several properties of SPE such as selectivity, 
simplicity of equipment, ease of operation, and the mul-
tiple usages of adsorbents for numerous separation and 
preconcentration cycles without deprivation in the metal 
ion sorption capacity have made their use popular [19–24].

Amberlite XAD resin folk are vital for solid phase extrac-
tion studies for heavy metal ions in the environmental 
samples [25, 26]. These resins are extremely important 
from both, the economic and environmental point of 
views for solid phase extraction after their proper func-
tionalization [27]. The literature survey revealed that XAD-
2000 and XAD-2010 are used for the preconcentration and 
seclusion of organic materials at trace levels; [28, 29] how-
ever, only few studies on these resins were highlighted for 
preconcentration of trace metals [30, 31].

Spectrophotometric method for determination (as a 
single cheap and available technique) using the proper 
sensitive and selective dye was merged with solid phase 
extraction technique for the solutions bearing the twin 
nuclear elements for a single, accurate, precise, and low 
cost technique for the precise determination of both ele-
ments was proposed in this work. In the pursuance of 
many researches on the extractant impregnated resins 
(EIRs) applications [21, 22, 32–37], this work converges 
on the eclectic separation and preconcentration of trace 
amounts of thorium and uranium in their bearing rocks 
using a new EIR containing Amberlite XAD-2010 resin 
beads impregnated with alizarin red S. The new EIR sorb-
ent manifested eminent selectivity for thorium and ura-
nium sorption from aqueous solutions after adequate 
optimization.

2 � Experimental

2.1 � Reagents

Alizarin red S (ARS) and Amberlite XAD-2010 were pur-
chased from Sigma Chemicals. All the common reagents 
were supplied by VWR BDH Prolabo Chemicals (Fontenay-
sous-Bois, France). On the other hand, U(VI), Th(V), Na(I), 
K(I), Ca(II), Mg(II), Al(III), Mn(II), Fe(III), Cr(VI), VO(II), Cu(II), 
Co(III), Ln(III), pb(II), Ba(II), Mo(VI), B(III), Cd(II), and Zn(II) 
standard stock solutions, 1000 ppm, were analytical grade 
and purchased from Merck (Darmstadt, Germany).

2.2 � Preparation of the EIR

The ARS-impregnated XAD-2010 resin beads were prepared 
using dry procedure [34]. Before the impregnation process, 

a pretreatment of amberlite XAD-2010 resin beads were 
handled with 1: 1 methanol–water solution comprising 6M 
HCl for 12 h in order to drive out any enduring monomers 
and other species of impurities which may be found with 
the fabricated beads. The resin was totally rinsed with dou-
ble-distilled water and placed into a drying oven at 323 °K 
for 30 min. To prepare the impregnated resin, portions of 
amberlite XAD-2010 resin (1 g of dry resin) were carried into 
a spectrum of glass stoppered bottles containing different 
concentrations of ARS in 200 mL methanol, which was uti-
lized as the solvent. The entire contents were slowly shaken 
for 10 h to accomplish impregnation process and then were 
heated at 333 °K in a drying oven to drive out the solvent. 
Each EIR sample was then conveyed to a porous filter and 
washed consecutively with HCl (3M) solution and enormous 
amounts of distilled water until no ARS was found in the fil-
trate. Eventually, the impregnated resins were dried at 323 °K 
and weighed. Compound structure was characterized by 
means of SEM using a Jeol (Tokyo, Japan) JSM 5600 LV scan-
ning electron microscope, FTIR spectrometer Bruker Vector 
22 Germany in the range of 400–4000 cm−1, and elemental 
analysis.

2.3 � Analytical procedures

U and Th were spectrophotometerically determined by 
using the chromogenic reagent, Arsenazo-III and thoron I, 
respectively [38]. Other interfering elements were analyzed 
using ICP-OES, Teledyne technologies (Inductively Coupled 
Plasma Optical Emission Spectrometer).

2.4 � Statistical and accuracy evaluation

Statistical techniques are applied, in the present work, in two 
ways: one of them is for estimating precision and accuracy of 
the analytical data and the second is for quality assurance of 
the produced concentrate. A common practice in analytical 
chemistry literature is to quote the mean ( X̄ ) as a common 
factor for estimating the precession (degree of reproducibil-
ity or random error). Accuracy (Δ) of a measurement method 
is defined as the measure of the closeness of results to refer-
ence (well known) or true one. The following equations are 
therefore applied [39–41]:

where Xi, individual measurement; n, number of 
measurements.

(1)Arithmetic mean: X̄ =

∑

Xi

n

(2)Standard deviation: SD =

�

∑n

1
(Xi − X̄ )2

(n − 1)

�1∕2
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where d represents the difference between the repeated 
measurements.

2.5 � Adsorption procedure

In the adsorption process, a batch technique was used to 
study different parameters affecting uranium and thorium 
adsorption process for the prepared EIR in all experiments 
such as pH, contact time, initial metal concentration, tem-
perature and interfering ions. Thus, a sample (S) weight of 
0.1 g (m) was added to a volume of 50 mL (V) of U or Th 
aqueous solutions and equilibrated by stirring at room tem-
perature. After a certain time, the solutions were filtrated 
and the concentration of uranium and thorium was spectro-
photometrically determined. Both the determination of the 
adsorption coefficient (Ads %) and the adsorption capacity 
(q) were calculated using the following equations:

(3)Relative standard deviation: RSD = SD∕X̄ × 100

(4)Standard error: SE =
SD
√

n

(5)The percentage error: %Error = SE∕X̄ × 100

(6)Accuracy: Δ = ±

√

d2

2n

(7)q =

(

(Ci − Cf )

m

)

× V

where Ci and Cf are the initial and the final concentrations 
of aqueous phases, respectively.

3 � Results and discussion

3.1 � Preparation of ARS‑impregnated resin

Alizarin Red S dye (ARS) contains two hydroxyl groups 
and sulphonate group, making it suitable for chelate 
formation with several metal ions. It is easily soluble in 
alcohol or water, and changes its colour with pH (yellow 
at pH < 4, orange to intense red in the pH region 4–8, 
and violet at pH > 9). Alizarin Red S -impregnated XAD-
2010, ARS/XAD-2010, was efficiently prepared by the 
impregnation method, described in the experimental 
section. To prepare the suitable form of ARS/XAD-2010, 
various impregnation ratios; g ARS/g dry XAD-2010 
adsorbent were studied and the data was illustrated 
in Fig. 1. As shown, the weight change (%) increases as 
the impregnation ratio increases after which a plateau 
is reached at the impregnation ratio of 1.5 g ARS/g dry 
XAD-2010 adsorbent, where it was adopted as the opti-
mum impregnation ratio.

(8)Ads % =

(

(Ci − Cf )

Ci

)

× 100

Fig. 1   Effect of the impregna-
tion ratio on the EIR prepara-
tion at the condition that por-
tions of 1-g of the dry polymer 
beads of Amberlite XAD-2010 
was subjected to the impreg-
nation process
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3.2 � Stabilizing extractant capacity impregnated 
on the polymer

The immobilization of the extractant on the macroporous 
matrices during the impregnation process is invaded in 
pores (due to the capillary forces) and in the gel regions 
of the polymer beads. The impregnated extractant located 
in pores is weakly bonded and represents the unstable 
part of EIR capacity; thus, it can be easily leached out from 
the freshly prepared EIR sample. Otherwise, the most sta-
ble part and remains constant that is taken up by the gel 
regions of the macroporous matrix [42, 43]. According to 
Hosseini-Bandegharaei et al. [44], the chemical stability of 
the Extractant Impregnating Resin (ARS/XAD-2010) was 
examined by sequentially suspending a 0.1 g of EIR in dif-
ferent pH values and shaking for 10 h. The new EIR was 
filtered and rinsed with double distilled water; the resulted 
solution was clear. The released amount of ARS was exam-
ined by weighing the EIR (ARS/XAD-2010). It was found 
that no change in its quantity indicates a high stability.

3.3 � Characterization of the modified resin

In order to verify the presence of the active functional 
groups of ARS in the modified resin, IR spectra of Amber-
lite XAD-2010 and the ARS/XAD-2010 modified resin 
were obtained (Fig.  2). The IR spectrum of amberlite 
XAD 2010 resin exhibited less intense band at 3436 cm−1, 
which can be attributed to the stretching vibrations of 
adsorbed water [45]. The bands at 2924 and 1632 cm−1 

are assigned to the aliphatic –CH2–CH2 chains and the 
phenyl rings, respectively [46–49].

Upon modification with ARS, the phenolic-OH band 
appears at 3432  cm−1 [46, 50]. The most noticeable 
change in the spectra is the band at 1266 and 1159 cm−1 
which are due to the stretching SO3

2− and C–S band at 
585 cm−1 [46, 51]. The band at 1022 cm−1 is assigned 
to the stretching vibration of S=O group. Moreover the 
bands were assigned to C–O at 1061 and 1105 cm−1 and 
the C=O band at 1635 cm−1 [46, 48, 49, 51–53]. The above 
mentioned bands indicate the modification of amberlite 
XAD 2010 with ARS.

The CHNS elemental analysis of Amberlite XAD-2010 
and the ARS/XAD-2010 modified resin were obtained 
(Table 1). The elemental analysis of the ARS/XAD-2010 
was conducted with an erratic increase in the C, H and 
N contents than Amberlite XAD-2010. In addition, the 
presence of S element (3.15%) confirms the impregna-
tion of ARS into Amberlite XAD-2010 as shown in Table 1.

Fig. 2   FTIR spectroscopy of the 
working polymeric resin: (A) 
Amberlite XAD-2010 and (B) 
ARS/XAD-2010 modified resin

Table 1   The CHNS elemental analysis of Amberlite XAD-2010 and 
the ARS/XAD-2010 modified resin

Sample C H N S

Amberlite XAD-2010 39.12 5.03 3.26 –
ARS/XAD-2010 modified resin 64.63 6.45 3.73 3.15
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3.4 � Effect of acid medium

From the critical parameters for solid phase extraction 
of metal ions is the type of acidic medium. The effect of 
perchloric acid, hydrochloric acid, nitric acid and sul-
furic acid on sorption process and complex formation 
between metal ions and synthesized EIR were studied. 
For this purpose, 50 mL aliquots of U(VI) and Th(IV) solu-
tions (pH 3) having concentration of 500 μg L−1 in differ-
ent acid concentrations were treated with 0.1 g portions 
of EIR at 298 ± 1 K. As shown in Table 2, the adsorption 
of metal ions on synthesized EIR with perchloric acid 
gives the highest adsorption percentages. As expected, 
increasing acid concentration leads to enhance the 
salt effect and consequently, the adsorption process is 
encountered with some restriction. Also, the crystals of 
salt occupy the superficial area of the EIR at high salt 
concentrations, which diminish the EIR available to 
interact with the analytes and play a very negative role 
by decreasing the recovery. The same behavior agrees 
with that reported earlier using other adsorbents [22, 
44, 54, 55]. Perchloric acid was selected for optimum 
adsorption experiments.

3.5 � Effect of pH

As mentioned above, the synthesized EIR (ARS/XAD-2010) 
can take up uranium and thorium in high yield from aque-
ous perchloric acid solutions containing uranium and 
thorium. A glance at the extractant structure shows the 
presence of different donating atoms or functional groups 
such as OH, C=O, and S-donor ligands which readily form 
complexes with uranium and thorium ions. The pH exten-
sively affects the metals ion accumulation on the sorb-
ent and their chelate formation. The effect of pH on the 
adsorption process was investigated in the range of 1–5 
under the above optimum conditions (Fig. 3).

It was found that the adsorption of uranium was very 
low at perchloric solution (0.01 M) with lower pH value 
but, thorium can be adsorbed effectively with 98% yield 
and then declines slowly to 20% solution at pH 5 by syn-
thesized EIR (ARS/XAD-2010) due to the formation of tho-
rium hydroxide precipitate species after pH 3.5 [56, 57]. 
On the other hand, uranium gives high yield of adsorp-
tion at pH 4 and begins to decrease above pH 4.5, due 
to the formation of colloidal and oligomeric species that 
can precipitate uranium as hydroxides in the solution or 
at the surface of the sorbent [56–59]. The result agreed 
with that reported earlier using other adsorbents [22, 54, 
55]. Lower adsorption of each analyte at pH values lower 

Table 2   The effect of different 
acid concentrations of several 
acidic media

Acid conc. Th adsorption (%) U adsorption (%)

HClO4 HNO3 HCl H2SO4 HClO4 HNO3 HCl H2SO4

0.01 75.0 62.5 70.0 50.0 78.0 60.0 66.0 54.0
0.025 70.0 54.0 56.0 40.7 66.0 50.0 52.0 43.0
0.05 50.0 43.0 43.2 30.4 48.2 40.0 45.8 32.3
0.10 42.0 31.4 33.5 25.6 38.2 31.6 36.8 24.8

Fig. 3   Effect of pH on the 
adsorption efficiency percent 
of uranium and thorium using 
50 mL of solution of 0.5 mg L−1 
with respect to U(VI) and Th(IV) 
ions and 10 min contact time
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than the optimum values can be due to (1) the rivalry of 
H+ with analyte ions for special functional groups, which 
are responsible for complexation of each analyte to ARS/
XAD-2010, (2) partial protonation of the functional groups 
of extractant molecules. So, the adsorption of the analyte 
thorium ion was quite high and comparable suggesting 
marginal or no interference from uranium at lower pH (2). 
As a result of the above, the authors suggested separation 
of thorium firstly by the synthesized EIR (ARS/XAD-2010) 
from perchloric solution then effluent was subjected to 
uranium adsorption with a high yield of selectivity.

3.6 � Effect of contact time and kinetic studies

Kinetic behavior of uranium and thorium adsorption 
from 0.01 M perchloric acid solution using the synthetic 
sorbent, in terms of adsorbed amount qt (mg g−1), is illus-
trated in Fig. 4. The adsorption into synthesized EIR (ARS/
XAD-2010) is passed through two stages:, the first stage 
where adsorption increased rapidly up to 5 min which is 
attributed to more available sites of EIR for adsorption, 
and finally equilibrium stage has been attained at 10 min 
(Fig. 4) referred to all the sites present on adsorbent get 
satisfied [60, 61]. It can be seen that over 75% of uranium 
and thorium adsorption efficiency achieved within the first 
3 min. In addition, equilibrium adsorption (99.2% for U and 
98% for Th) occurred within 10 min.

The experimental data was treated with various kinetic 
models including the pseudo-first order and the pseudo-
second order for evaluating the kinetic mechanism of 
adsorption process.

The equations of pseudo-first-order and pseudo-sec-
ond-order models are specified as follows [62, 63]:

where qe and qt (mg g−1) are the capacities of each analyte 
adsorption by synthesized EIR at equilibrium and time t 
respectively. k1 (1/min) and k2 (g mg−1 min−1) is pseudo 
first-order and second order sorption rate constants 
respectively. The values of constants (qe, k1, and K2) were 
calculated from the lines (Fig. 5) and given in Table 3. Con-
sequently, Pseudo second order model has better fitting 
experimental data performance in terms of higher correla-
tion coefficient and conformity with equilibrium adsorbed 
amount qe.

The intra-particle diffusion model is expressed as [64, 
65]:

where qt (mg g−1) is the metal adsorbed amount at time 
t, Kid (mg g−1 min0.5) is the intraparticle diffusion rate con-
stant and C is the thickness of the boundary layer.

The intraparticle diffusion parameters are calculated 
from the slope and the intercept of the linear plots as 
expressed in Fig. 6. The plots of qt versus t0.5 show that 
the obtained straight lines do not pass through the ori-
gin (C > 0). The obtained data in Table 3 is found that the 
values of correlation coefficient R2 are 0.94 and 0.96 for 
Th and U respectively. The obtained data confirm that 
this model is not appropriate for describing the sorp-
tion kinetics. Finally, from the kinetic parameters of three 
kinetic models as seen in Table 3, the adsorption kinetics 

(9)log(qe − qt) = log qe −
k1t

2.303

(10)
t

qt
=

1

k2q
2
e

+
t

qe

(11)qt = kidt
0.5 + C

Fig. 4   Effect of time upon 
uranium and thorium adsorp-
tion efficiency from 50 mL 
0.01 M perchlorate medium 
((500 μg L−1 of each U and Th) 
by 0.1 g synthesized EIR at 
25 °C
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is estimated and fitted well by the pseudosecond-order 
kinetic model.

3.7 � Effect of initial U and Th concentration 
and the adsorption mechanism

Based on mixing a series of batch experiments at ambi-
ent temperature (≈ 25 °C), it can be concluded that the 
adsorbed uranium and thorium increases with increasing 
the initial uranium and thorium concentrations in solu-
tion till the saturation plateau. The maximum uranium 
and thorium sorption capacity was acquired by conduct-
ing a fixed EIR (ARS/XAD-2010) weight (0.1 g) with 50 mL 
of U and Th at different concentrations in perchloric acid 
(0.01 M), and at optimum conditions for each metal ion. 

From Fig. 7, we can conclude that the maximum adsorp-
tion capacity of uranium and thorium from perchloric acid 
by EIR (ARS/XAD-2010) was 19 mg U g−1 EIR and 17 mg 
Th g−1 EIR. It is interesting to compare the achieved U(VI) 
and Th(IV) adsorption capacities on the synthesized EIR 
with other previously prepared sorbents. It was found 
that the synthesized EIR is competitive when compared 
with other previously prepared sorbents such as Mannich 
type resin (qmax: 5.2 mg U g−1 and 2.28 mg Th g−1 [57]), 
modified benzophenone (qmax: 2.42 mg U g−1 [66] and 
1.1 mg Th g−1 [67]), Carminic acid (CA) impregnated XAD-
16 (1.93 mg U g−1 and 1.92 mg Th g−1 [22]), Quinoline-8-ol 
impregnated XAD-4 (qmax: 2.74 mg U g−1 [68]), o-Vaniline 
semicarbazone impregnated XAD-4 (qmax: 2.89 U g−1 [69], 
Pyrogallol impregnated XAD-2 (qmax: 6.71 mg U g−1 [70]), 

Fig. 5   Pseudo-first-order (a, b) and pseudo-second (c, d) kinetics of U and Th adsorption by synthesized EIR from the synthetic perchloric 
acid (0.01 M HCLO4 and 0.5 mg L−1 of each U and Th) at 25 °C

Table 3   Kinetic parameters for the adsorption of U(VI) and Th(IV) ions onto synthesized EIR (ARS/XAD-2010)

Metal ions Exp. qe (mg g−1) Pseudo-First-order Pseudo-Second-order Intraparticle diffusion

qe (mg g−1) K1 (min−1) R2 qe (mg g−1) K2 
(g mg−1 min−1)

R2 kid 
(mg g−1 min−1/2)

C (mg g−1) R2

U(VI) 0.248 0.134 0.362 0.985 0.261 5.00 0.995 0.0402 0.1219 0.96
Th(IV) 0.245 0.124 0.343 0.992 0.256 5.37 0.999 0.0416 0.1266 0.94
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Fig. 6   Intra-particle diffusion 
model of Th(IV) (a) and U(VI) 
(b) adsorption by 0.1 g synthe-
sized EIR from 50 mL 0.01 M 
perchloric acid (500 μg L−1 of 
each U and Th) at 25 °C

Fig. 7   Effect of initial uranium 
and thorium concentrations 
on adsorption efficiency of 
synthesized EIR from per-
chlorate medium (adsorption 
condition: 50 mL of solution 
of 0.01 M perchloric acid and 
10 min contact time at room 
temperature)
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modified naphthalene (qmax: 1.88 mg U g−1 [20]), modi-
fied silica (qmax: 3.02 mg U g−1 [71]), Tiron impregnated 
XAD-2 (qmax: 7.70 mg U g−1 [72]), and [(2-dihydroxyars-
inoylphenylamino) methyl] phosphonic acid functional-
ized XAD-16 (3.55 mg U g−1 and 3.25 mg Th g−1 [73]).

The infrared technique was used for further study of 
the adsorption mechanism (Fig. 8). Comparing both spec-
tra of EIR before and after adsorption, it can be observed 
that the main difference between absence of thorium 
and uranium ions (Fig. 2B) and their complexation with 
synthesized resin (Fig. 8A, B) was some band shifts which 
were observed due to interaction with U and Th. The 
band belonging to C=O unit of synthesized resin shifted 
to 1637 cm−1. Also, the IR spectrum of the modified resin 
loaded with uranium and thorium is also characterized by 
the shift of C–O bands to 1234, 1188, 1161, and 1090 cm−1. 
The band of OH becomes weak and less intense due to 
the interaction with U and Th ions. As a result, we can say 
that the ketonic and phenolic groups are coordinated to 
the U and Th ions and the result agreed with that reported 
earlier [22, 46, 50, 74, 75] which indicate that sorption of 
uranium and thorium takes place through complexation 
with ARS loaded on the resin and that amberlite XAD 2010 
is applied only as an immobilization substrate for ARS 
reagent.

From the SEM images of the ARS/XAD-2010 synthesized 
resin before and after uranium(VI) and thorium(IV) adsorp-
tion are shown in Fig. 9a–c, respectively. The SEM images 
show the observation of brilliant spots on the resin beads 
variation after U(VI) and Th(IV) adsorption other than that 
uniformity and smooth surface of ARS/XAD-2010 synthe-
sized resin.

As could be seen from the results, a visible change of the 
surface morphology in the U(VI) and Th(IV) adsorbed resin 
demonstrates that the sorption of studied metal ions take 
place onto the ARS/XAD-2010 synthesized resin.

3.8 � Isotherm studies

In order to describe and understand the adsorption prop-
erties of uranium and thorium from 0.01 M perchloric acid 
towards synthesized EIR, Langmuir and Freundlich models 
were established to fit the experimental data. The equation 
of Langmuir (12) and Freundlich (13) models are specified 
as follows [76]:

(12)
Ce

qe
=

Ce

qmax
+

1

KLqmax

(13)log qe = log Kf +
log Ce

n

Fig. 8   FTIR spectroscopy of 
Th-loaded synthesized (ARS/
XAD-2010) (A) and U-loaded 
synthesized (ARS/XAD-2010) 
(B)
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Here Ce (mg L−1) is the equilibrium concentration of metal 
in the liquid phase, qmax (mg g−1) is the monolayer capacity 
in model of langmuir, KL (L mg−1) is the Langmuir equi-
librium constant, kf and n are characteristic Freundlich 
constants related to the relative sorption capacity of the 
sorbent and sorption intensity, respectively.

The linear plots of (Ce/qe) versus Ce for Langmuir iso-
therm (Fig. 10a, b) or log qe versus log Ce for Freundlich 
isotherm (Fig. 10c, d) give the constants of these models, 
from slope and intercept, which are given in Table 4 and 
represented adsorption properties of uranium and tho-
rium from 0.01 M perchloric acid towards synthesized EIR. 
Consequently, Langmuir isotherm model has better fitting 
experimental data performance in terms of higher correla-
tion coefficient and conformity with equilibrium uranium 
and thorium adsorbed amount from perchlorate medium.

Dubinin–Radushkevich (D–R) does not assume an 
energetically homogeneous surface and proposes a non-
homogenous distribution of adsorption sites. In particular, 
it assumes that the ionic species bind first with the most 
energetically favorable sites and that multilayer adsorp-
tion then occurs. The linear form of D–R isotherm equation 
[77, 78]:

where qm is the theoretical saturation capacity (mg g−1), 
K (mol2 KJ2) is a constant related to the mean free energy 
of adsorption per mole of the adsorbate, ε is the Polanyi 

(14)ln qe = ln qm − kε2

potential (ε = RT ln (1 + 1/Ce)), Ce is the equilibrium con-
centration of adsorbate in solution, R (8.314 J mol−1 K−1) is 
the gas constant, and T is the absolute temperature. The 
D–R constants qm and K are calculated from the linear plots 
of ln qe versus ε2 from the intercept and slope (Fig. 11). The 
constant K gives an idea about the mean free energy (E) 
of adsorption per molecule of the adsorbate when it is 
transferred to the surface of the solid from infinity in the 
solution and can be calculated from the relationship [77]:

If the magnitude of E is between 8 and 16 kJ mol−1, the 
sorption process is supposed to proceed via chemisorp-
tion but if E is less than 8 kJ mol−1, the sorption process is 
of physical nature [79, 80].

E for uranyl and thorium ions is 0.173 and 0.2 kJ mol−1 
respectively (less than 1) implying that U(VI) and Th(IV) 
adsorption process proceeds via physisorption and the 
values of correlation coefficient (R2) are 0.85 and 0.86 at 
298 K, respectively. Therefore, the Dubinin–Radushkevich 
(D–R) isotherm model does not fit the adsorption pro-
cesses of the uranium and thorium ions on the synthesized 
EIR. Finally, it is clear from Table 4 and Figs. 10 and 11 that 
the parameters of Langmuir isotherm model are closer to 
the experimental values than those fitted by other models. 

(15)E =
1

√

2K

Fig. 9   SEM images of ARS/
XAD-2010 (a), U-loaded ARS/
XAD-2010 (b) and Th- loaded 
ARS/XAD-2010 (c)
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These showed that Langmuir isotherm model could well 
describe the adsorption equilibrium of uranium and tho-
rium ions on the resin.

3.9 � Effect of temperature (thermodynamics studies)

For evaluation of the effect of temperature on adsorption 
of U(VI) and Th(IV) from perchloric acid (0.01 M) using syn-
thesized EIR (ARS/XAD-2010), the adsorption process was 
conducted in a series of batch experiments under various 
temperatures ranging from 25 to 65 °C. The other param-
eters were as follows: concentration of each uranium and 
thorium 0.5 mg L−1, EIR amount 0.1 g, solution volume 
50 mL. As seen from Fig. 12, heating in the examined range 
only slightly affects the adsorption. Therefore, 25 °C can 

be considered as the optimum temperature for uranium 
adsorption experiments.

According to Lima et al. 2019 [81], the accurate estima-
tion of thermodynamic parameters for adsorption system 
needs a correct equilibrium thermodynamic constant (Ke

0) 
to be used in Van’t Hoof equation. So, it is necessary to 
obtain the isotherms of adsorption at several tempera-
tures and for the best isotherm model obtain the equilib-
rium constant (Kisotherm). Then, this Kisotherm should have 
their value converted from L mg−1 into L mol−1. In that 
situation, the best isotherm model that was adjusted to 
the equilibrium data was the Langmuir model. Therefore, 
the kL (L mol−1) was used in the Van’t Hoof equation, in 
order to estimate the thermodynamic parameters (ΔH, ΔS, 
and ΔG) [81]:

(16)K0
e
= KL∕γ

Fig. 10   Langmuir (a, b) and Freundlich (c, d) models of U and Th adsorption by synthesized EIR (Adsorption condition: 0.1 g EIR, 50 mL of 
solution of 0.01 M perchloric acid, 10 min contact time at 25 °C)

Table 4   Isotherm parameters 
for the adsorption of U(VI) and 
Th(IV) ions onto synthesized 
EIR (ARS/XAD-2010)

Metal ions Exp. qmax 
(mg g−1)

Langmuir parameters Freundlich parameters

qmax (mg g−1) KL (L mg−1) R2 n Kf (mg g−1) R2

U(VI) 19 20.20 1.47 0.995 1.76 7.30 0.973
Th(IV) 17 18.25 1.04 0.998 1.59 5.44 0.727
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(17)ln (K0
e
) = −ΔH∕RT + ΔS∕R (18)ΔG = ΔH − TΔS

Fig. 11   The Dubinin–Radush-
kevich (D–R) isotherm model 
of uranium (a) and thorium (b) 
adsorption on synthesized EIR 
(Adsorption condition: 0.1 g 
EIR, 50 mL of solution of 0.01 M 
perchloric acid, 10 min contact 
time at 25 °C)

Fig. 12   Effect of temperature 
on the adsorption efficiency 
of uranium and thorium using 
synthesized EIR (ARS/XAD-
2010) adsorbent (adsorption 
condition: 50 mL 0.5 mg L−1 
of each uranium (pH 4) and 
thorium (pH 2) ions solution, 
0.01 M perchloric acid, 0.1 g 
EIR, 10 min contact time)
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where Ke
0 (L mol−1) is the thermodynamic equilibrium con-

stant, γ is the coefficient of activity, and the slope and inter-
cept of the linear relation between ln Ke

0 and T−1 (Fig. 13) 
were used for calculation of enthalpy (ΔH, kJ mol−1) and 
entropy (ΔS, J mol−1 K−1) respectively. The negative value 
of ΔH (− 9.43 kJ mol−1 for U and − 10.27 kJ mol−1 for Th) 
indicated that the adsorption process of U(VI) and Th(IV) 
by EIR was an exothermic reaction. The values of ΔS are 
75.95 J mol−1 K−1 for U and 69.23 J mol−1 K−1 for Th. Nega-
tive Gibbs free energy ΔG value (− 32.06 kJ mol−1 for U and 
− 30.9 kJ mol−1 for Th) demonstrated the spontaneous 
property of this adsorption [82–84].

3.10 � Interference effect

Studying the interference effect was necessary for spec-
trophotometric determination of thorium and uranium in 
different geological rock samples. Some of the common 
cations which are associated with studied metals and 
may show sorption behavior on the ARS-modified resin 
interferes during their spectrophotometric determination 
namely, Na+, K+, Ca2+, Mg2+, Al3+, Mn2+, Fe3+, Cr6+, VO2+, 
Cu2+, Co3+, Sr2+, and Ln3+.

In the present experimental section, the effects of the 
above listed cations were studied by adding different 
volumes from their working solutions to a constant con-
centration of each uranium and thorium (1 µg mL−1). The 
absorbances of these mixtures were measured in aqueous 
solutions after contacting with ARS/XAD-2010 adsorbent 
at the optimized conditions. From the obtained results 
(Table 5), it was found that;

1.	 The alkaline earth metals did not interfere on the pre-
concentration process.

2.	 The cations such as Cu2+, Zn2+, Fe3+, Co3+, Pb2+ and 
Cd2+, start to show their significant interference at con-
centration limits above 500 and 200 times greater than 
this of Th and U respectively.

3.	 The cations such as VO2+, Ni2+ and Ln3+ start to show 
their significant interference at concentrations 100 
times greater than this of U and 300, 250, 500 respec-
tively times greater than this of Th.

Fig. 13   The plot of Ln Kd 
versus 1/T of the uranium 
and thorium adsorption upon 
synthesized EIR (Adsorption 
condition: 0.1 g EIR, 50 mL 
0.5 mg L−1 of each uranium 
(pH 4) and thorium (pH 2) ions 
solution, 0.01 M perchloric 
acid, 0.1 g EIR, 10 min contact 
time, at 25 °C)

Table 5   Effect of foreign 
ions on the adsorption of 
uranium and thorium from 
perchlorate solution with equal 
concentration of 1 μg mL−1 for 
both analytes

Interfering ion Tolerance 
ratio

Th(IV) U(VI)

Ca2+ 5000 1000
Mg2+ 5000 1000
Na+ 5000 1000
K+ 5000 1000
Sr2+ 5000 1000
Al3+ 5000 1000
Mn2+ 5000 1000
Fe3+ 500 1000
Co2+ 500 200
Cu2+ 500 200
Zn2+ 500 200
Cd2+ 500 200
VO2+ 300 100
Ni2+ 250 100
Pb2+ 500 200
Ln3+ 500 100
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3.11 � Elution studies

Quantitative desorption of U(VI) and Th(IV) was per-
formed with various eluting agents such as hydrochlo-
ric acid, ammonium oxalate, ammonium carbonate, and 
nitric acid which form stable complexes with uranium 
and thorium [22, 55, 57, 84, 85]. For this purpose, 10 mL 
aliquots of each eluting agent (1 M) were treated with 
0.1 g portions of loaded EIR at 298 ± 1 K for 10 min. The 
elution of metal ions with ammonium oxalate was 56% 
for Th and 30% for U. The elution with ammonium car-
bonate was 6% for Th and 68% for U. while with hydro-
chloric and nitric acid, it was 99.4–32.5% for Th and 
99.6–43.4% for U respectively. Hydrochloric acid was 
selected for optimum elution experiments.

3.12 � EIR reusability

The EIR reusability was checked by subjecting the syn-
thesized EIR (ARS/XAD-2010) to several loading and elu-
tion experiments. The capacity of the synthesized EIR 
(ARS/XAD-2010) was found to be practically constant 
(variation < 1%) after its repeated use for more than 40 
runs, thus indicating the multiple use of EIR is feasible.

3.13 � Application of proposed method for standard 
geological and granitic samples

The proposed method was applied for preconcentration 
and determination of U(VI) and Th(IV) in different samples 
including reference and geological materials to verify 
applications and validations of it. The samples were firstly 
decomposed by Afifi et al. and Fouad et al. [86, 87] to over-
come the high concentration of major oxides. The serious 
interference from above studied cations was avoided by 
masking with potassium cyanide (1 × 10−3 M) [88], Then, 
uranium and thorium was separated from acidic solu-
tion using synthesized EIR (ARS/XAD-2010) adsorbent at 
optimum conditions and analyzed in the eluted solutions 
spectrophotometrically with good accuracy (Tables 6, 7). 
Thus, these results indicated that the proposed method is 
accurate, simple and cost-effective for analyzing ore sam-
ples containing uranium and thorium.

4 � Summary and conclusions

A combination between spectrophotometric procedure 
and separation of U(VI) and Th(IV) ions by a high stable 
EIR is described. The new EIR was prepared by impreg-
nating alizarin red S onto Amberlite XAD-2010 beads. 
The maximum sorption capacity respect to interested 

Table 6   Comparison of 
uranium and thorium 
concentrations in standard 
reference rock samples and 
found using present method

a Certified values reported by Canadian Central for Mineral and Energy Technology standards (CANMET), 
certifying agency. SD standard deviation, SE standard error
b Certified values reported by SA Bureau of standards P/Bag X191, Pretoria 0001 (SARM1)

Standard sample Certified 
value (ppm)

Concentration of U, Th found 
using present method (ppm)

SD SE Error % Accuracy

DL-1aa 76 Th 75.3 0.57 0.33 0.44 ± 0.64
75.5
76.6

116 U 115.2 0.89 0.51 0.44 ± 0.88
115.6
116.9

DH-1aa 91Th 90.3 0.62 0.36 0.39 ± 0.62
90.6
91.5

2629 U 2627.5 1.05 0.61 0.023 ± 0.95
2625.6
2626.7

Nim.Gb 51 Th 50.6 0.73 0.42 0.83 ± 0.62
51.5
50.3

15 U 15.5 0.36 0.21 1.33 ± 0.36
15.3
16.0
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metal ions was acquired by conducting a fixed EIR (ARS/
XAD-2010) weight (0.1 g) with 50 mL of each uranium 
(pH 4) and thorium (pH 2) ions solution in perchloric 
acid (0.01 M) for 10 min contact time at room tempera-
ture. Langmuir isotherm model has better fitting exper-
imental data with a maximum adsorption capacity of 
20.2 mg g−1 for U(VI) and 18.25 mg g−1 for Th(IV). The 
adsorption process of each metal ion by synthesized 
Alizarin Red S -impregnated XAD-2010 showed an exo-
thermic pseudo-second-order adsorption process. The 
loaded metal ions were afterward completely eluted 
using one mole of 10 mL HCl solution using 10 min con-
tact time. The tolerance limits for several metal ions on 
Alizarin Red S -impregnated XAD-2010 were calculated, 
giving high tolerance limit. The optimized method was 
applied to reference and different rock types bearing 
thorium and uranium with good accurate results.
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