
Vol.:(0123456789)

SN Applied Sciences (2019) 1:301 | https://doi.org/10.1007/s42452-019-0299-5

Research Article

Investigations on dynamic analysis and free vibration of FGMs rotating 
circular cylindrical shells

Ahmad Reza Ghasemi1  · Mohammad Meskini1

© Springer Nature Switzerland AG 2019

Abstract
In this study, the free vibration studies of rotating circular cylindrical shells composited of functionally graded materials 
(FGMs) layer with simply supported boundary condition has been investigated. The  FGMS layer composed from metal 
and ceramic that metal has on the outer surface and ceramic has on the inner surface of the circular cylinder shells. Based 
on the Love’s first approximation shell theory, relations between strain and displacement are expressed. Then, according 
to Hamilton’s principle, the governing equations for the cylindrical shell are extracted. Also, due to the simply supported 
boundary condition, the Navier’s solution is used to solve the equations of the cylindrical shell. Then the results obtained 
with the present method compared with the results of other investigations. The results are compared with a results that 
presented by other researchers. Finally, the results obtained from the rotating FGMs cylindrical shells for length to radius 
ratio, rotating speed, axial and circumferential wave number, are presented.

Keywords Free vibration · Natural frequency · Rotating circular cylindrical shells · Functionally graded material · Love’s 
shell theory

1 Introduction

Rotating cylindrical shells are one of the most commonly 
used geometric shapes and industrial equipment. These 
shells may be used in gas turbines, aerospace structures, 
planes and many others systems. In recent years, the use of 
composites and functionally graded materials (FGMs) has 
increased in most engineering areas including aerospace, 
automation, urban construction, marine industries, and 
many other industries. Free vibration analysis and critical 
speed of rotary shafts have been widely studied in recent 
years.

Free vibration analysis of thin rotating laminated cylin-
drical shell based on Love’s first approximation theory 
studied by Lam and Loy [1, 2]. Also, they [3] investigated 
influence of boundary conditions and fiber orientation on 
the natural frequencies of thin laminated cylindrical shells. 
The analysis is carried out using Love’s shell theory and 

solved using Galerkin’s method. The displacement fields 
employed consist of beam functions models and Fourier 
functions in the axial and the circumferential direction, 
respectively. Then, analysis of free vibration of cylindrical 
shells made of FGMs that composed of stainless steel and 
nickel studied by Loy et al. [4].

Lee and Choi [5] studied free vibration of circular cylin-
drical shells with an interior plate, that reacceptance 
method employed to obtain the vibrational characteris-
tics of a simply supported cylindrical shell with an interior 
plate. The effects of boundary conditions on the frequen-
cies of free vibration analysis of rotating cylindrical shells 
with harmonic reproducing kernel particle method carried 
out by Liew et al. [6]. In the other research Pellicano et al. 
[7] expressed the non-linear vibration of circular cylindrical 
shells with simply support condition by using Donnell’s 
non-linear shallow-shell theory. Free vibration character-
istics of thick laminated composite non-circular cylindrical 
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shells with elliptical cross sections using higher order the-
ory analyzed by Ganapathi and Haboussi [8]. Also, shown 
the behaviors of first-order model in analyzing the non-
circular shell is qualitatively same as that of higher-order 
theory. Then Sofyev [9] investigated the buckling of  FGMS 
cylindrical thin shells composed of ceramic and metal 
under external pressure load based on Love’s shell theory.

Bhangale and Ganesan [10] expressed analysis of free 
vibration of simply supported non-homogeneous func-
tionally graded magneto-electro-elastic finite cylindrical 
shells. Analysis of free vibration of a thin circular cylindri-
cal shell for orthotropic materials based on Flugge’s shell 
theory have been illustrated by Xuebin [11]. That he solved 
the equations with using general displacement and new 
type of polynomial eigenvalue problem. Bahtui and Eslami 
[12] studied the coupled thermoelastic response of a FGMs 
circular cylindrical shell. That coupled thermoelastic and 
the energy equations are simultaneously solved for a FGMs 
axisymmetric cylindrical shell subjected to thermal shock 
load.

Analytical solutions for axisymmetric transverse free 
vibration analyses of cylindrical shell with thickness varia-
tion under simply supported and clamped ends conditions 
in arbitrary power form due to forces acting in the trans-
verse direction has been expressed by Duan and Koh [13]. 
For analytical solution, he used the Frobenius method for 
solve the governing differential equations. Also, thermoe-
lastic vibration and buckling characteristics of the func-
tionally graded piezoelectric cylindrical based on the first 
order shear deformation theory investigated by Sheng and 
Wang [14]. That, they used a piezoelectric material hav-
ing gradient change along the thickness of the cylindrical 
shells. Also, Sofyev [15] presented the dynamic behavior 
of  FGMS cylindrical shells composed of metal and ceramic 
under axial tension, internal compressive load.

Amabili [16] studied the geometrically nonlinear 
forced vibrations of laminated circular cylindrical shells 
by using the Amabili–Reddy higher-order shear deforma-
tion theory. The result shown that the Amabili–Reddy and 
Novozhilov theories give good results for thin laminated 
shells. On the other hand, for thick laminated shells, the 
Amabili–Reddy theory should be used in order to have 
accurate results. The nonlinear vibration of a functionally 
graded cylindrical shell subjected to axial and transverse 
mechanical loads using improved Donnell shell theory 
under simply support conditions presented by Bich and 
Nguyen [17]. The Galerkin method, the Volmir’s assump-
tion and fourth-order Runge–Kutta method are used for 
dynamical analysis of shells to give expressions of nonlin-
ear frequency. Also, they shown the effects of pre-loaded 
axial compression and dimensional ratios on the dynami-
cal behavior of shells.

Strozzi and Pellicano [18] analyzed the nonlinear vibra-
tions of FGMs circular cylindrical shells, that Sanders–Koiter 
theory is applied to model the nonlinear dynamics of the 
system in the case of finite amplitude of vibration. Nonlin-
ear vibration problem of simply supported FGMs cylindri-
cal shells with embedded piezoelectric layers studied by 
Jafari et al. [19]. Sofyev et al. [20] studied the frequencies 
and critical axial load of sandwich cylindrical shell contain-
ing an  FGMS core with shear stresses, rotary inertia and 
subjected to axial compressive load based on Donnell’s 
shell theory using the shear deformation theory.

Free vibration analysis of a laminated composite beams 
based on von Karman nonlinear theory and finite strain 
demonstrated by Ghasemi et al. [21]. Sofiyev [22] inves-
tigated the non-linear free vibration of FGMs orthotropic 
cylindrical shells taking into account the shear stresses 
based on the shear deformation theory (SDT) and von Kar-
man-type strain displacement relationships. Also, Sofyevet 
al [23] analyzed the free vibration and stability of axially 
loaded sandwich  FGMS cylindrical shells composed of 
stainless steel and zirconium oxide without shear stresses 
and rotary inertia resting Pasternak foundations based 
on the first order shear deformation theory under simply 
supported boundary conditions. Then, Sofiyev et al. [24] 
based on first and higher order shear deformation theory 
investigated the instability of  FGMS orthotropic cylindrical 
shell. Wang and Wu [25] studied the focuses on perform-
ing a free vibration analysis of a functional graded porous 
cylindrical shell subjected to different sets of immovable 
boundary conditions. The nonlinear vibration behavior of 
graphene-reinforced composite (GRC) laminated cylindri-
cal shells in thermal environments investigated by Shen 
et al. [26].

Ghasemi and Mohandes [27] studied free vibration 
analysis of rotating fiber–metal laminate (FMLs) thin cir-
cular cylindrical shells based on Love’s first approximation 
shell theory. Also, they [28] investigated free vibration of 
FMLs thin circular cylindrical shells with different bound-
ary conditions based on Love’s first approximation shell 
theory and beam modal function model. Then they ana-
lyzed [29] the micro and nano FMLs cylindrical shells based 
on modified couple stress theory; that, the frequencies 
of the shells calculated for different volume fractions of 
composite section, lay-ups, material length scale param-
eters, length to radius ratio, axial and circumferential wave 
numbers. Free vibration characteristics of the functionally 
graded graphene reinforced porous nanocomposite cylin-
drical shell with spinning motion demonstrated by Dong 
et al. [30]. The nonlinear dynamic behaviors of functionally 
graded cylindrical shells under combined parametric and 
external excitations based on the von Kármán nonlinear 
theory, studied by Sheng and Wang [31].
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In this research, the free vibration of rotating circular 
cylindrical shells composited of FGMs layer with simply sup-
port boundary condition are investigated. Using the Love’s 
first approximation shell theory, and according to Hamilton’s 
principle, the governing equations for the cylindrical shell 
extracted. Also, the Navier’s solution is used to solve the 
equations of the cylindrical shell due to the simply support 
boundary condition. Then, analysis for length to radius ratio, 
rotating speed, axial and circumferential wave number are 
illustrated.

2  Governing equations

In this section, the fundamental relations for the analysis 
of the rotating FGMs shell are presented. By Consider the 
rotating cylindrical shell, which R shell radius, L cylindrical 
lengths, h shell thickness and � is angular speed of rotation. 
where u, v, w, are axial, circumferential and radial displace-
ments along the x, � and z directions respectively. Accord-
ing to Love’s first shell theory, the axial, circumferential, and 
shear strain is defined as follows [1],

That z is distance from the shell’s middle surface, and 
�x,o , �x,o , �x,o are axial, circumferential and shear strain of the 
shell’s middle surface, respectively that are expressed as fol-
lows [2, 15],

Also kx , kx , kx are axial, circumferential and shear curvature 
of the shell’s middle surface, respectively that are expressed 
as follows [2, 15],

For the FGM cylindrical shells, the stress and strain rela-
tions are as follows [4, 9],
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where,

For the FGMs, the properties of material are defined as 
follows [4, 20, 23],

where E , �, � are Young’s modulus Young’s modulus, Pois-
son’s ratio and mass Density respectively. Also, N is the 
power-law exponent that 0 ≤ N ≤ ∞ . The Hamilton prin-
ciple is used to obtain the equilibrium equations, where 
is expressed [32],

where Ue is the strain energy,T  is the kinetic energy of the 
plate and Uh is the strain energy due to shell rotation. That 
strain energy is defined [33],

where strain energy due to shell rotation is expressed [34],
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where 
−

N
�
= �h�2R2 is centrifugal force that is the result of 

cylindrical shell rotation. Also, kinetic energy is defined 
[35],

where i, j, k are vectors along the x, � and z directions, 
respectively. With substitution of variation of strain ener-
gies, and kinetic energy, to Hamilton’s principle, the equa-
tions of motion for the cylindrical shell are obtained as [2, 
27],

in which the resultant components Ni ,Mi are given by,

By introducing the Eqs. (1), (4) and (12) in Eq. (11), we 
have,
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3  Analytical solution

In this research, due to the simply support boundary con-
ditions, the Navier’s solution is used to solve the equations. 
Simply support boundary conditions is expressed as [1, 2],

The Navier’s solution procedure is expressed for simply-
supported boundary condition as follows [3, 27],

By introducing the Eq. (16), into Eq. (13), the following 
relation is obtained,

By equaling the determinant of the H matrix set to 
zero, the natural frequency of the rotating FGMs cylindri-
cal shell is obtained base on each values of n and m. Also 
the non-dimensional natural frequency �∗ = �

√
�mR

2∕Em 
is used to obtain the results of this research. The �m is 
mass density of metal, and Em is Young modulus of metal. 
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(17)H3×3{U, V ,W}T = {0, 0, 0}T

Also, the material properties used of the FGMs follows at 
Table 1 [36].  

4  Results and discussion

The natural frequency obtained with the method in this 
study is compared with the results of other investigations 
and the results are shown in Table 2. Also, material proper-
ties considered for to compare the results, are presented 
in Table 3 [4].

The FGMs shell for comparison is composed of Nickel 
on its inner surface and Stainless steel on its outer surface. 
The comparison demonstrated that has good agreement 
present method with the result Lam et al. [4].

Table 4 shows the effect of power-law exponent N at 
different n on the non-dimensional frequency of rotating 
FGMs (metal outer, ceramic inner) cylindrical shell. That, 
non-dimensional natural frequency is decreased with 

Table 1  Material properties used for the FGMs

Property E (GPa) � (kg∕m3) �

Ceramic  (AL2O3) 380 3800 0.3
Metal (Al) 70 2702 0.3

Table 2  Comparison of the natural frequency of the FGM 
cylindrical shell for simply supported boundary conditions 
( m = 1, h∕R = 0.002, L∕R = 20,� = 0)

n N = 1 N = 5

Present Ref. [4] Present Ref. [4]

1 13.216 13.211 12.997 12.998
3 4.164 4.159 4.092 4.0891
5 11.32 11.241 11.049 11.061
10 46.853 46.905 46.105 46.155

Table 3  Material properties used in the FGM for to compare

Property E (GPa) � (kg∕m3) �

Stainless steel 207.78 8166 0.3177
Nickel 205.09 8900 0.3100

Table 4  Non dimensional natural frequency of the FGMs cylindrical 
shell with respect to power-law exponent N for different value of n 
( m = 1, h∕R = 0.002, L∕R = 10,� = 1)

n FGM (metal outer, ceramic inner)

N = 0 N = 1 N = 5 N = 10 N = 30

1 0.1205 0.1085 0.0864 0.0771 0.0674
3 0.0216 0.0257 0.0218 0.0186 0.0146
5 0.0291 0.0254 0.0221 0.0206 0.0252
7 0.0570 0.0445 0.0386 0.0372 0.0443
10 0.1176 0.0902 0.0780 0.0755 0.0692

Fig. 1  Effect of variation of the n on the non-dimensional natural 
frequency for different value of rotation
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increase the volume fraction N. Also, with increase the 
n, the non-dimensional natural frequency decreased and 
then increased. In this research, for the all results pre-
sented of the diagram, FGMs is considered to be metal 
on the outer surface and ceramic on the inner surface 
of the cylinder.

In Fig. 1, effect of variation of the n on the non-dimen-
sional natural frequency of the rotating FGMs cylindri-
cal shells for different value of rotation is indicated. In 
this figure, with increase the rotating speed, backward 
non-dimensional frequency increased and forward non 
dimensional frequency decreased. Further, with increase 

of the n from 1 to 3, the backward and forward frequency 
are reduced and for n = 1 is greater than n = 2, 3.

Influence of different value of rotating speed and 
variation of m on non-dimensional natural frequency 
of rotating FGMs cylindrical shells is expressed at Fig. 2. 
The result shown that with increase the rotating speed, 
forward and backward non-dimensional frequency are 
increased and decreased, respectively. With increase of 
the m, difference between backward and forward fre-
quency are reduced. Also, forward and backward non-
dimensional frequency are increased with increase of 
the m.

Fig. 2  Effect of variation of the m on the non-dimensional natural 
frequency for different value of rotation

Fig. 3  Effect of variation of rotation on non-dimensional natural 
frequency for different value of n

Fig. 4  Effect of variation of rotation on non-dimensional natural 
frequency for different value of m

Fig. 5  Effect of variation of m on non-dimensional natural fre-
quency for different value of L/R ( � = 10)
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Figure 3 is illustrated the effect of variation of rotation 
speed on non-dimensional natural frequency for differ-
ent value of n. Where with increase of the n, forward and 
backward non-dimensional frequency are decreased and 
then increased. Also, with increase of the rotating speed, 
forward and backward non-dimensional frequency are 
increased. In Fig. 4 influence of different value of rotating 
speed and variation of m on the non-dimensional natural 
frequency of rotating FGMs cylindrical shell are studied. It 
expressed that with increase of the m forward and back-
ward non-dimensional frequency are increased, that with 
increase of the rotating speed the difference between for-
ward and backward non-dimensional frequency increased.

Figures 5 and 6 shown the influence of variation of m on 
backward and forward non-dimensional natural frequency 
for different value of the length to radius ratio (L/R) for 
� = 10, 50 . The result illustrated with increase of the m 
backward and forward non-dimensional natural frequency 
increased. Also, backward and forward non-dimensional 
natural frequency decreased with increase of the length 
to radius ratio (L/R). That with increase of the rotating 
speed, the difference between forward and backward 
non-dimensional frequency increased. Also, in both figures 
with increase of the length to radius ratio (L/R), in first step, 
for L/R < 10, the non-dimensional frequency decreased 
rapidly and then for L/R > 10 mildly declined.

Effect of variation of n on the backward and for-
ward non-dimensional natural frequency for different 
value of the length to radius ratio (L/R) for � = 10, 50 
are expressed at Figs. 7 and 8. It is observed that with 
increase of the L/R, the first step, for L/R < 5 backward 
and forward non-dimensional natural frequency quickly 
decreased and then for L/R > 5 slowly decreased. Also, 
the difference between backward and forward non-
dimensional natural frequency with increase of the 
rotating speed increased. Further with increase of the 
n, backward and forward non-dimensional natural fre-
quency decreased.

5  Conclusions

In the research, free vibration analysis of rotating FGMs 
cylindrical shells are investigated. The governing equation of 
motion with Hamilton’s principle method are obtained. Also, 
Navier’s solution is used for simply supported boundary 

Fig. 6  Effect of variation of m on non-dimensional natural fre-
quency for different value of L/R ( � = 50)

Fig. 7  Effect of variation of n on non-dimensional natural fre-
quency for different value of L/R(� = 10)

Fig. 8  Effect of variation of n on non-dimensional natural fre-
quency for different value of L/R(� = 50)
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condition. The result of this study can be expressed as 
follows:

1. With increasing of the axial wave number n at first step, 
the forward and backward non-dimensional frequency 
decreased and then increased.

2. With increase of the L/R ratio, the forward and back-
ward non-dimensional frequency decreased and with 
increase of the rotating speed difference between 
forward and backward non-dimensional frequency 
increased.

3. Also, with increase of the rotating speed, the backward 
and forward non-dimensional frequency, increased 
and decreased, respectively.
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