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Abstract
We present an alternate method for evaluating Lagrange multipliers of probability distributions usually used in maxi-
mum entropy principle. The Lagrange multipliers are evaluated using least square method. Both the methods are used 
to calculate Lagrange multipliers in fitting wind speed data. Kolmogorov–Smirnov test, Chi squared goodness of fit test, 
and root mean square error indicate the usefulness of this alternate method.

Keywords  Maximum entropy principle · Maximum entropy method · Wind data · Wind speed · Hansweert · Least square 
method · Least square fitting

1  Introduction

Maximum entropy principle has a variety of applications 
in modeling of stochastic data. These applications involve 
many branches of natural and social sciences. Pressé et al. 
[1] reviewed the origins and use of Maximum Entropy Prin-
ciple in Statistical Physics and beyond in fields such as Biol-
ogy. Karlin et al. [2] used MEP for constructing equilibria 
in lattice kinetic equations. Chen and Dai [3] investigated 
MEP of uncertainty distributions for uncertain variables. 
Županović et al. [4] took an alternative path to derive Kirch-
hoff’s loop rule where they employed MEP to show that 
in network branches currents are distributed to achieve 
maximum entropy. Alves et  al. [5] found a connection 
between the maximum entropy principle and the Higgs 
boson mass without introducing any extra assumptions 
into the Standard Model. Hanel etal. [6] generalized the 
notion of entropy to complex and non-Ergodic systems and 
showed that the MEP is a consistent method for such sys-
tems. Roux and Weare investigated the consistency of the 
MEP and restrained-ensemble simulations. They showed 
that the conditions of the restrained-ensemble simulations 
were compatible with the maximum entropy principle [7]. 
Aldana-Bobadilla and Kuri-Morales proposed a method of 
clustering based upon the MEP and showed their method 

was more effective than supervised ones [8]. Pontzen and 
Governato used MEP to derive the phase-space distribution 
for a halo of dark matter. They used physically motivated 
constraints and found a good match with three simula-
tions of dark matter [9]. Rahmati, Pourghasemi and Melesse 
applied random forest and maximum entropy models to 
map groundwater potential in the Mehran region of Iran 
and found MEP provided more successful predictions [10]. 
Ruggeri used non-linear MEP to model a polyatomic gas 
under changing pressure conditions. He found the frame-
work to be in agreement with the phenomenological 
Extended Thermodynamics theory [11].

2 � MEP and new method

For a probability density function p(x) , the entropy is 
defined as

We need to maximize H subject to the condition that

here �n(x) re known functions with �0(x) = 1 nd �n re 
moments about origin with �0 = 1.The classical form of 
p(x) is

(1)H = − ∫ p(x) ln p(x)dx

(2)E
{

�n(x)
}

= ∫ �n(x)p(x)dx = �n, n = 0,… ,N
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here �n are called the Lagrangian parameters and make 
up a vector � . For a given data set we need to find the 
value of N that best fits that data set, and hence we need 
to determine the distribution it follows. Following Algo-
rithm is usually used to calculate the best fit distribution.

1.	 Define the range (xmin, xmax) and step size dx.
2.	 Use some standard functions for �n(x).

3.	 Start iterative procedure with some �
o
.

4.	 Calculate following two integrals.

5.	 Solve the equation G� = v  ,  where v =
[

�
o
−

G
o(�

o),�1 − G1(�
o),…… ,�

N
− G

N(�
o)
]t

 to find �
6.	 Calculate � = �

0 + � The process is repeated with this 
new value as �0 ntil � becomes negligible.

In this procedure, the first �
o
 is basically an initial guess 

for the vector � . Then the new values of � are taken as the 
new �

o
⋅ � are uncertainties in �

o
.

3 � Least square method

In least square method, the sum of square of error (SSE) is 
made minimum. If y and ŷ are the observed and calculated 
values of a dependent variable respectively, the sum of 
square of error is given by

The parameters of fitting are found by minimizing SSE.
To find the values of Lagrange multipliers, we have used 

least square fitting with �n(x) = xn . The classical form of 
p(x) is reduced to a linear polynomial by taking logarithm 
of the equation.

(3)p(x) = exp

[

−

N
∑

n=0

�n�n(x)

]

(4)
Gn(�) = ∫ �n(x)exp

[

−

N
∑

n=0

�n�n(x)

]

dx

= �n, n = 0,… ,N

(5)

gnk = gkn =
�Gn(�)

��k
= − ∫ xkxnexp

[

−

N
∑

m=0

�mx
m

]

dx

= −Gn+k(�)

(6)SSE =

n
∑

i=1

(

yi − ŷi
)2

The values of Lagrange coefficients are found by minimiz-
ing sum of square of errors, i.e.

These are (N + 1) linear equations in terms of Lagrange 
coefficients. They are solved to find the values of these 
coefficients. The process is repeated for various degrees 
of polynomials. The degree of the polynomial is selected 
for which Chi square, Kolmogorov–Smirnov test and Mean 
Square errors are minimal.

4 � Wind speed data

Many different statistical distributions have been used to 
model wind speed data. The most widely used distribution 
is Weibull distribution [12, 13]. MEP more accurately mod-
els wind speed data [14–17]. Djafari developed a matlab 
program to model wind power density using maximum 
entropy distributions [18]. Wind speed data for this study 
has been downloaded from the site [19]. This site contains 
wind speed data of various cities of The Netherlands and 
it has been made available for free for educational and 
research purposes. As a sample we randomly picked the city, 
Hansweert and used hourly wind data for the year 2000. It 
has a longitude of 3.998 and latitude of 51.446. Hansweert 
is a village in southwest Netherlands with overall pleasant 
weather. The average temperature in winter is 2 °C, while in 
summer it is 18 °C. In Hansweert winters are windier.

5 � Goodness of fit tests

Three different goodness of fit tests have been used to 
determine how well the datasets fit on the classical dis-
tribution of maximum entropy principle using both 
methods.

6 � Kolmogorov–Smirnov test

Kolmogorov–Smirnov (KS) test is a goodness of fit test that 
checks if a given sample data follows a specific distribu-
tion. KS test measures the maximum distance between 
cumulative curves. It does not depend on cumulative dis-
tribution function (CDF). It is given by

(7)y = −lnp(x) =

N
∑

n=0

�nx
n

(8)SSE =

N
∑

i=0

(

yi − ŷi
)2

=

N
∑

i=0

(

yi −

N
∑

n=0

𝜆nx
n
i

)2
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where ‘n’ is the number of data points, F
(

xi
)

 is the CDF of 
hypothetical or given distribution and G

(

xi
)

 is the CDF of 
specific distribution.

To check the validity of the hypothesis that the given 
data follows a specific distribution, a test of hypothesis 
with given level of significance is conducted. If KS < KS𝛼 
then the two distributions are similar. At 99% level of sig-
nificance, KS99 =

1.63
√

n
 . For n = 6 and � = 99% , the critical 

value is 0.618. The best feature of KS test is that it does not 
depend on sample size.

7 � Chi square goodness of fit test

Chi square test is another goodness of fit test which also 
determines how well a given dataset follows a specific dis-
tribution. This test requires dataset of observed frequency 
(Oi) and corresponding expected frequency (Ei). The Chi 
square test statistic is given by

If 𝜒2 < 𝜒2

𝛼,k−1
 the two distributions are identical, � is the 

level of significance and k is the number of data points. For 
k = 6 and � = 95% , the critical value is 1.63.

8 � Root mean square error (RMSE)

Root mean square error is another mean to determine the 
goodness of fit of a given dataset on a specific distribution. 
It is defined as the square root of mean of square error and 
is given by

where yi is the actual value and ȳi is the fitted value calcu-
lated from given distribution, and n is the number of data 
points. The smaller the RMSE is, the better the goodness 
of fit.

9 � Results and discussion

The probability of a real-valued random variable is always 
positive in a region ‘R’. If the random variable follows the 
maximum entropy principle, the probability distribution 
is given by

(9)KS = max
[

F
(

xi
)

− G
(

xi
)]

, i = 1, 2, 3, ....n

(10)�2 =
∑

i

(

Oi − Ei
)2

Ei

(11)𝜒2 =

√

√

√

√

∑

i

(

yi − ȳi
)2

n

where �n are known as Lagrange coefficients and the val-
ues of these coefficients are determined using moments 
as constraints. In this study instead of using the moments 
as constraints, the least square method was used to fit a 
distribution on given wind speed data, that is, coefficients 
�n are determined by minimizing square of the difference 
of fitted and theoretical probabilities. The approach is dif-
ferent from maximum entropy method, even though the 
same classical probability distribution is fitted. A Python 
program has been developed for the fitting process, the 
code of which is given in “Appendix A” section.

The Chi square, Kolmogorov–Smirnov and Root Mean 
Square Error test statistics have been calculated for fit-
ting process for datasets of each month from January to 
December. All three tests of goodness of fit (Chi Square, 
Kolmogorov–Smirnov, and Root Mean Square Error) yield 
very low values, favoring the hypothesis that the datasets 
follow the determined distributions. The KS and RMSE are 
found to be very close. In Fig. 1 a comparison between 

(12)p(x) = exp

[

−

N
∑

n=0

�nx
n

]

.

Fig. 1   Comparisons between Least Square fit and MEP fit for Han-
sweert (a) and Karachi (b). The histograms show actual data
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MEP fit and least square fit of classical distribution of MEP 
is given for the wind speed data of month of January for 
Hansweert and Karachi, Pakistan. Both plots appear to be 
good fits for both cities. To compare the reliability of the 
fits, the values of test statistics for Chi square, KS and RMSE 
are given in Table 1. It is clear from the table that the values 
of these statistics are least in case of least square fit. The 
difference is not large for Karachi, but the superiority of 
the Least square fit is still apparent. The reason is that the 
main focus of MEP fitting is to determine exact values of 
the constraint parameters (moments) of the distribution. 
Hence if the statistical information of data is needed MEP is 
the better choice, and if fitting is the aim then least square 
fitting is the better choice.

In Table, values of all three test statistics for the wind 
speed data for January to December are given. On aver-
age the order of Chi square is 1E − 16 but in November 
the order is 1E − 11. The orders of KS and RMSE are almost 
same i.e. 1E − 08, in November however the orders are 
1E − 5. The values show that the least square fitting of 
wind speed data on classical probability of MEP is excel-
lent. The second column of Table 2 gives the degree of 
polynomial that fits in each month on the given dataset 
of wind speed. Mostly 6th degree polynomials fit well 
except for May & October where the degree of polyno-
mial is 7. The Lagrange coefficients have been calculated 
and given in Table 3. These coefficients are then used to 
draw plots of classical probability distributions, which 
are overlapped on histograms generated from given 
wind speed data. In Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 
and 13, the plots show the least square fitted curves on 

Table 1   Goodness of fit statistics of MEP fit and least square fit for 
the month of January

Cities Fits Chi square Kol-
mogorov–
Smirnov

RMSE

Hansweert MEP fit 0.058554 0.013204 0.029344
Least square fit 3.05E − 16 6.70E − 08 6.86E − 08

Karachi MEP fit 2.48E − 2 2.66E − 3 3.62E − 4
Least square fit 5.63E − 4 6.63E − 4 1.263E − 5

Table 2   Month-wise test statistics for goodness of fit for Least 
Square fit

Month N Chi square Kolmogorov–
Smirnov test

RMSE

January 5 3.05E − 16 6.70E − 08 6.86E − 08
February 5 3.05E − 16 6.70E − 08 6.86E − 08
March 5 7.88E − 18 1.48E − 08 1.26E − 08
April 5 1.97E − 17 1.85E − 08 1.33E − 08
May 5 1.52E − 17 3.11E − 08 1.49E − 08
June 5 1.42E − 16 3.92E − 08 4.43E − 08
July 5 3.35E − 17 3.23E − 08 2.54E − 08
August 5 1.69E − 17 2.04E − 08 1.70E − 08
September 5 8.65E − 18 1.86E − 08 1.17E − 08
October 5 4.62E − 16 1.35E − 07 1.02E − 07
November 6 1.44E − 11 3.28E − 05 1.64E − 05
December 5 8.57E − 18 3.63E − 08 1.70E − 08

Table 3   Values of Lagrange coefficients obtained by Least Square Method

�0 �1 �2 �3 �4 �5 �6 �7

Jan 0.2586 − 3.7199 1.1559 − 0.1965 1.7840E − 02 − 7.9752E − 04 1.3813E − 05
Feb − 0.0962 − 2.6092 0.7384 − 0.1229 1.0853E − 02 − 4.6586E − 04 7.7139E − 06
Mar − 2.2530 − 1.4277 0.2821 − 0.0390 3.7522E − 03 − 1.9167E − 04 3.8228E − 06
Apr − 1.4752 − 1.4661 0.0975 0.0120 − 1.5274E − 03 4.6887E − 05
May − 8.5501 8.9182 − 4.8420 1.0956 − 1.2571E − 01 7.7100E − 03 − 2.4044E − 04 2.9919E − 06
Jun 0.6504 − 4.0858 1.2287 − 0.2112 2.1028E − 02 − 1.0907E − 03 2.2989E + 00
Jul − 1.2563 − 2.3945 0.5998 − 0.0938 9.9086E − 03 − 5.8817E − 04 1.4429E − 05
Aug 0.1333 − 5.0964 1.9391 − 0.3807 3.9318E − 02 − 1.9633E − 03 3.7214E − 05
Sep − 0.5050 − 2.7926 0.6578 − 0.0698 1.2434E − 03 3.0950E − 04 − 1.5337E − 05
Oct 2.4246 − 3.9655 0.9971 − 0.1661 1.7848E − 02 − 1.1256E − 03 3.7408E − 05 − 5.0212E − 07
Nov 38.0074 − 31.1175 9.8836 − 1.6705 1.5398E − 01 − 7.2824E − 03 1.3832E − 04
Dec 3.1023 − 3.7479 0.7224 − 0.0822 5.5612E − 03 − 1.9647E − 04 2.7869E − 06
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Fig. 2   Histogram and LS fit for January

Fig. 3   Histogram and LS fit for February

Fig. 4   Histogram and LS fit for March

Fig. 5   Histogram and LS fit for April

Fig. 6   Histogram and LS fit for May

Fig. 7   Histogram and LS fit for June



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:224 | https://doi.org/10.1007/s42452-019-0211-3

Fig. 8   Histogram and LS fit for July

Fig. 9   Histogram and LS fit for August

Fig. 10   Histogram and LS fit for September

Fig. 11   Histogram and LS fit for October

Fig. 12   Histogram and LS fit for November

Fig. 13   Histogram and LS fit for December
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the given dataset. The plots show that the fitting of the 
dataset of wind speed on the probability distribution is 
remarkable.

10 � Conclusion

In this study, we evaluated Lagrange multipliers of classical 
probability distribution of MEP using Least Square Method 
on wind speed data. The hourly wind speed data of Han-
sweert (The Netherlands) from January to December 
(2015) is used in this study. The basic difference between 
MEP and the method used is that whereas MEP fits the 
distribution using moments as constraints, the alternative 
method minimizes the square of differences between the-
oretical and given probabilities. It is concluded that

	 (i)	 MEP should be used if statistical information of the 
distribution is needed, and LSM is preferable when 
fitting of dataset is required.

	 (ii)	 The results show the evaluation of Lagrange multi-
pliers through LSM is better than that obtained by 
MEP (see Table 1).

A Python program has been developed that fits various 
degree polynomials as classical probability distributions 
and displays the degree for which the errors are least. It 
also displays the calculated values of Lagrange multipliers. 
For error calculation Chi square, Kolmogorov–Smirnov and 
Root Mean Square Error test statistics were used. The alter-
native method consists of using least square method to 
find the Lagrange multipliers of maximum entropy princi-
ple and has proven to provide a better fit of the dataset, as 
evidenced by lower values of tests of significance statistics.
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Appendix

" Least Square fi�ng of MEP probability distribu�on"

import matplotlib.pyplot as pyplot

import numpy as np

from numpy.linalg import inv

import xlrd 

from scipy.interpolate import spline

""" Open file for input data"""

file_loca�on="C:/*.xlsx"

workbook=xlrd.open_workbook(file_loca�on)

sheet=workbook.sheet_by_index(0)

x=[]

y=[]

p=[]

for row in range(sheet.nrows):

x.append(sheet.cell_value(row,0))

y.append(sheet.cell_value(row,1))

RMSE=[]

for n in range(2,12):

if (n==11):

n=int(RMSE.index(np.min(RMSE)))+2

print('Degree = ',n,'RMSE =',RMSE[n-2])

for i in range(0,len(x)):

if (y[i]==0):

y[i]=1

p.append(-1*(np.log(y[i])))

y1=p

""" Least square fi�ng"""

y2=[]

coeff=[]

xy=[]

for k in range(0,n+1):

temp1=0

row=[]

for i in range(0,n+1):
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temp=0

for j in range(0,len(x)):

temp=temp+(x[j]**i)*(x[j]**k)

row.append(temp)

coeff.append(row)

for k in range(0,n+1):

temp1=0

for i in range(0,len(x)):       

temp1=temp1+(x[i]**k)*y1[i]

xy.append(temp1)

ainv=inv(coeff)

a=np.matmul(ainv,xy)

""" Calculate expected frequency """

for i in range(0, len(x)):

temp=0

for j in range(0,n+1):

temp=temp+a[j]*x[i]**j

y2.append(np.exp(-1*temp))

yfit=[]

for i in range(0,len(x)):

yfit.append(y2[i]*np.max(y)/np.max(y2))

#plt.plot(x,y)

"Calculates RMSE"

sum=0

for i in range(len(x)):

sum=sum+(y[i]-yfit[i])**2

#print(y[i],yfit[i])

RMSE.append(sum/len(x))

""" Plots histogram from input dta and polygon from fi�ed values"""

x2=np.linspace(x[0],x[len(x)-1],100)

dx=(x[len(x)-1]+1)/1000

ynew=[]

xnew=[]

xtemp=-dx
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for i in range(0,1000):

xtemp=xtemp+dx

sum=0

for j in range(0,n+1):

sum=sum+a[j]*xtemp**j

ynew.append(np.exp(-sum))

xnew.append(xtemp)

y3=spline(x,yfit,x2)

pyplot.plot(x2,y3)

pyplot.bar(x,y,color="green",edgecolor='red',width=1.45)
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