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Abstract
The applications of artificial intelligence (AI) mainly, the hybrid approaches are becoming more popular and the relevant 
researches have been conducted in every field of engineering and science by using these AI techniques. Therefore, this 
research aims to examine the influence of wire electric-discharge machining parameters on performance parameters 
to improve the productivity with a higher surface finish of Titanium alloy (Ti–6Al–4V) by using the artificial intelligent 
technique. In this experimental analysis, the adaptive network based fuzzy inference system (ANFIS) model has been 
highly-developed and the multi-parametric optimization has been done to find the optimal solution for the machining 
of titanium superalloy. The peak current (Ip), taper angle, pulse on time (Ton), pulse of time (Toff) and the dielectric fluid 
flow rate had selected as operation constraints to conduct experimental trials. The surface roughness and MRR were 
considered as output responses. The influence on machining performance has been analyzed by the ANFIS model and 
the developed model was validated with the full factorial regression models. The developed models showed the mini-
mum mean percentage error and the optimized parameters by the GRA method showed the considerable improvement 
in the process.
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1  Introduction

Non-conventional machining processes are the require-
ments of the fastest growing industries because of the 
precision, complex, intricate shape of the work material, 
higher tolerances and economically. Hard materials and 
super alloys such as titanium alloys, tungsten carbides, 
high carbon tool steels generally used in tool industries, 
automotive and electronics industries, medical and aero-
space are very difficult—to-machine by conventional 
manufacturing processes. Therefore, the ease of material 
cutting and machining non-conventional machining is 
preferred. WEDM is generally used to produce complex 
shapes die cavities and forming tools, fixtures, gauges, 
etc. which are difficult to produce by means of any other 

conventional and non-conventional machining methods 
except micro-machining [1].

Titanium alloys (Ti-alloys) are mostly utilized in aero-
space and automotive industries to manufacture higher 
precision components. Ti–6Al–4V grade 5 titanium alloy is 
used for the manufacturing of diesel engine components 
such as connecting rods, gas turbine parts, intake valves, 
etc. and this alloy covers the 50% of total global consump-
tion [2].

WEDM is a variation and development of EDM. In 1969, 
the Swiss firm Agie developed and delivered the world’s 
initially WEDM machine. These machines had machining 
ability to cut the material about 21 mm2/min per hour. 
These machines were extremely slow in production rate. 
After the continuous improvements in the machining 
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ability, the machining speed improved. WEDM removes 
material from the work metal with the use of electricity by 
means of spark erosion as shown in Fig. 1 [1, 3]. It is most 
important requirement that the work material should be 
electrically conductive. AC servo motors are exploited to 
provide positioning, stability and enhancement of wire 
tension. A DC or AC servo mechanism maintains the gap 
(0.051–0.076 mm) between the electrode and the work 
material. This maintained gap prevents the short circuit-
ing of wire.

‘Dielectric’ is the shield between the wire electrode and 
material. De-ionized water is generally used as a dielectric 
medium because the dielectric medium acts as an insulator. 
In this process, the material is submerged in the dielectric 
medium. When the voltage is applied, the electric pulses 
are generated, fluid ionizes and a spark generates between 
the electrode wire and work material, the controlled spark 
precisely erodes the metal from the work material causing 
it to melt and vaporize. Pressurized dielectric fluid flows 
continuously. It cools the vaporize material and carry away 
the particles from the cutting section. The dielectric passes 
through the filter to remove suspended particles and it is 
used continuously. Chillers are used to maintain the tem-
perature of dielectric fluids for higher machining efficiency 
and accuracy. In WEDM the wire electrode never comes in 
contact with the work piece, therefore this process is stress 
free cutting operation [1, 4–6].

Various researchers have been reported working on 
WEDM to measure the influence of input parameters 
on performance parameters such as, Liao and Woo [7] 
reported the influence of wire-EDM constraints such as 
‘on time’ (Ton), ‘off time’ (Toff ) and feed rate on the behav-
ior of pulse train i.e. short ratio, arc ratio, normal ratio 
and gap width. Experiments were conducted on SKD 11 
tool steel. The authors concluded that ‘on time’ was a 
significant factor for arc ratio [7]. Miller et al. [6] dem-
onstrated the capability of WEDM to machine advanced 

materials such as porous metal foams, diamond grinding 
wheels, sintered Nd–Fe–B magnets, etc. Author exam-
ined the influence of spark on time duration and spark 
on time ratio on surface roughness and MRR by using 
Brother HS-5100 WEDM [6].

Mahapatra et al. [8] optimized the WEDM performance 
parameters such as MRR, SR and kerf width by using the 
Taguchi method. ROBOFIL100 5-axis CNC WEDM was used 
for experimental work. Experiments were conducted on 
D2 tool steel by using zinc-coated copper wire having 
0.25 mm diameter. The author concluded that discharge 
current, pulse duration and the dielectric flow rate had the 
significant effect on the performance parameters.

Kumar et al. [9] demonstrated the effect of Ton (pulse on 
time), Toff (pulse off time), Ip (peak current), spark gap volt-
age, wire feed (WF) and wire tension (WT) on the surface 
roughness of machined titanium grade-2 workpieces. The 
author concluded that pulse on time, pulse off time, peak 
current and spark voltage had higher impact on surface 
roughness [9]. Manjaia et al. [10] statistically optimized the 
pulse on time, pulse off time, servo voltage and wire feed 
for WEDM of AISI D2 tool steel for the response of MRR and 
SR. The author resulted the higher significance of pulse on 
time and servo voltage on performance parameters [10].

Kumar et al. [11] concluded that the surface roughness 
increases with the increase in peak current because peak 
current increases the discharge energy. They conducted 
the experimental work on tungsten carbide with brass 
wire. Wire feed, flushing pressure and current were the sig-
nificant parameters for surface roughness [11]. Vijaya Babu 
[12] concluded that the peak current was the significant 
parameter for surface roughness after they studied the 
effect of pulse on time, pulse off time and peak current on 
Inconel 625. Maniappan et al. [13] reported the influence 
of peak current on kerf width. The experiments were con-
ducted on Al 6061 alloy with zinc coated brass wire [13].

Various researchers have been reported the use of 
ANFIS to predict the performance of machining such as 
turning, ball milling, WEDM etc. Kar et al. [14] explained the 
applications of Neuro-fuzzy system in various fields such 
as stock market, financial trading, hazard assessment, etc. 
Caydas et al. [15] worked to measure the impact of pulse 
duration, open circuit voltage, wire feed and dielectric 
flushing pressure on white layer thickness and SR. Author 
developed the ANFIS model for the prediction of perfor-
mance parameters [15].

Hossain and Ahmad [16] developed the ANFIS model 
for the prediction of performance parameters of ball end 
milling. The authors compared the ANFIS model results 
with the response surface methodology and found more 
accurate [16]. Abdul Mayu et  al. developed the ANFIS 
model for the prediction of hardness of TiAlN coatings. 
Author compared and validated their model with fuzzy Fig. 1   Working principle of WEDM
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and RMS model. They concluded that the triangular mem-
bership function obtains best results than other MF’s.

Anwar et al. [5] demonstrated the ANFIS model for the 
prediction of surface roughness and chipping size of rotary 
ultrasonic drilling (RUM). The authors compared the ANFIS 
results with the regression models. They achieved the lover 
mean absolute percentage error in ANFIS model [5].

Boral and Chakraborty [17] developed case-base rea-
soning system for machine tool selection and for non-
traditional machining process selection. Sarikaya et al. 
developed a multi-objective optimization model for the 
selection of micro-electrical discharge drilling of AISI 
304 stainless steel using S/N, RSM, RA and ANN method 
[18–20]. Chatterjee et al. proposed a novel hybrid model 
encompassing factor relationship (FARE) and MABAC 
(multi-attributed border approximation area comparison) 
method for selection and evaluation of non-conventional 
machining [21, 22].

From the literature survey, it is ascertained that no plau-
sible work has been reported on the application of ANFIS 
system in WEDM. Therefore, the main objective of this 
work is, (1) to optimize the performance parameters by 
multi-parametric optimization using grey relation method 
(GRA) and (2) to develop the ANFIS model for the predic-
tion of two major performance parameters namely surface 
roughness and material removal rate in WEDM by consid-
ering the five major input parameters.

2 � Methodology

Design-of-experiments (DOE) needs cautions scheduling, 
practical layout of trials, Taguchi method has identical 
procedures for every DOE application steps and DOE can 
dramatically decrease the amount of trials [4, 18]. Thus, 
the five parameters such as Taper angle (U and V axis taper 
in degrees), pulse on time (Ton), peak current (Ip), dielec-
tric flow rate and pulse off time (Toff) had selected for the 
governing parameters. Each parameter had three levels 
denoted by level-1, level-2 and level-3 except taper angle. 
Taper angle had two levels. From the previous literatures, 
it is clear that the taper angle has the least influence on 
performance parameters. Therefore, the taper angle has 
selected two levels to reduce the number of experimental 
trials and mixed orthogonal array is used, as designated 
in the Table 1.

2.1 � Experimental set‑up

As per DOE, the experiments were performed on ELEKTRA 
Ultima-1F WEDM. The WEDM setup is shown in Fig. 2.

Titanium alloy namely Ti–6Al–4V grade-5 superal-
loy was used in the form of thick rectangular plate. 

Ti–6Al–4V material belongs to (α + β) category of tita-
nium alloys and its chemical composition consists of 
5.5–6.5% Al, 3.5–4.5% V, 0.08% C, 0.005% Yttrium, 0.30% 
Fe and remaining titanium. This superalloy has excellent 
mechanical properties, acceptable fracture toughness, 
high strength and resistance to corrosion. Therefore, this 
superalloy is mostly demanded in aerospace, chemical, 
heat treatment, nuclear and gas turbine industries. The 
workpiece and the zinc coated brass wire electrode 
having diameter 0.25 mm was linked up with +ve and 
−ve polarity in the D.C. power source, respectively. De-
ionized water having a conductivity level of 0.6 µs/cm 
was used as dielectric medium. The dielectric fluid was 
flushed from the top and bottom nozzles.

Surface roughness of the machined samples was 
measured with Mitutoyo surf-test surface roughness 
tester. Each sample was evaluated thrice and the mean 

Table 1   Allocated values of WEDM constraints and their levels

Factor Parameter Units Level-1 Level-2 Level-3

A Taper Angle Degree 3 1.5 –
B Peak Current (Ip) Amps 110 120 130
C Pulse on Time (Ton) µs 104 108 112
D Pulse off time (Toff) µs 55 58 63
E Dielectric flow rate Ltr/min 10 12 15

Fig. 2   Experimental setup of ELEKTRA Ultima-1F WEDM
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values were obtained. The mathematical relation used to 
evaluate the surface roughness is given in Eq. 1.

where Ra is the value of surface roughness measured in 
µm, L = evaluation length and Z(x) = profile height function.

The ANOVA mathematical relation (lower the better) 
applied to calculate the S/N ratio of SR is given in Eq. 2

The ANOVA mathematical relation (higher the better) 
used to calculate the S/N ratio of MRR is given in Eq. 3

The S/N ratio (nij) for the ith performance characteristics 
in the jth experiment is evaluated by the Eq. 4.

The mathematical relation used to evaluate the material 
removal rate (MRR) is given in Eq. 5.

3 � ANFIS modeling for performance 
prediction

The growing need of artificial intelligence (AI) system to 
solve out the complex and real world problems, the ANN 
and fuzzy interference system has drawn the concern of 
researchers in engineering and various scientific areas. In 
1983, Jang proposed a Neuro-fuzzy system (NFS) which 
is the combination of ANN (artificial neural network) and 
Fuzzy-logic [23]. This system combines the reasoning of 
fuzzy system with the structure of neural networks. This 
system provides the flexible approximation with the abil-
ity to explore interpretable If–then fuzzy rules. ANFIS uses 
a hybrid learning method to determine the optimum 
distribution of various MF’s (membership functions) and 
provides the mapping relations between input and out-
put data. ANFIS uses the combined architecture of ANN 
and Fuzzy-logic [23]. In ANFIS the MF’s function param-
eters are updated by two approaches, namely hybrid 
and back propagation. The architecture of ANFIS con-
sists of 5 layers and each layer of the ANFIS architecture 
is described by node function. The co-operative Neuro 

(1)Surface roughness (Ra) =
1

L

L

∫
0

�Zx�⟨dx⟩ (μm)

(2)�
HB = −10 log

[
1

n

n∑

i=1

yi

]

(3)�
HB = −10 log

[
1

n

n∑

i=1

yi

]

(4)�
ij = −10 log[Lij]

(5)MRR =
Weight of work material removal

time
(g/min)

fuzzy model is shown in the Fig. 3 and the architecture 
of ANFIS system with layers and nodes is shown in Fig. 4.

The ANFIS uses the Takagi–Sugeno type fuzzy If–then 
rules and the five network layers are used to perform 
the fuzzy interference steps. The steps used in ANFIS are 
described as:

•	 Calculation of the MF’s values (Fuzzyfication): In the 
ANFIS architecture µAi, µBi, and µCi are the MF’s of 
three input values x, y and z respectively and each 
node produces the MF’s of input values. The Eq. 6 
describes the MF’s for bell shaped function:

where ai, bi and ci—parameter set and these set 
changes the FMS form in between 0 and 1 value.

(6)
�Ai(x) =

1

1 +

[(
x−ci

ai

)2
]
× bi

Fig. 3   Co-operative neuro fuzzy model

Fig. 4   ANFIS architecture
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•	 Multiplication of the incoming signals by applying 
Fuzzy operator (Eq. 7)

where i = 1,2….
•	 Normalization of node firing strength: The normaliza-

tion of the firing strength of each node is calculated by 
the Eq. 8

•	 Defuzzification: Defuzzification is used to convert the 
fuzzy quantity to predict the accurate value. Each node 
in the layer 4 in an adaptive node having a node func-
tion. The node functions are identified during the net-
work training. In Defuzzification, the MF’s and the rules 
are united and thus providing the results.

where pi, qi, ri = consequent parameter set of each node.
•	 The summation of all incoming signals: the total of 

incoming signals is calculated by the relation given in 
Eq.

3.1 � Results of ANFIS model

The ANFIS model has been developed as the function of 
WEDM parameters for Ti–6Al–4V titanium alloy by using 
the eighteen testing data and training data. The already 
existed algorithm in MATLAB was used to achieve the per-
fect training and prediction of data. The following Table 2 
represents the initial parameters for ANFIS model.

In this ANFIS structure, the hybrid algorithm was used. 
ANFIS model has the different shape of input and output 
MF’s. From all the MF’s the ‘trimf’ MF’s has selected because 
the trimf MF’s (triangular membership functions) has 
incline and decline features with one certain value and it 
displays the lowest test error and the lesser value of mean 
absolute percentage error rather than other MF’s [5, 24].

The training was executed using 300 epochs for surface 
roughness and MRR model. Training curve obtained after 
data training is shown in Fig. 5.

(7)i = �Ai(x) × �Bi(y) × �Ci(z)

(8)wi =
wi∑
i wi

, i = 1, 2, 3…

(9)wi × fi = wi ⋅ (pi ⋅ x + qi ⋅ y + ri ⋅ z + si)

(10)Output =
�

i

wi ⋅ fi =

∑
i wi ⋅ fi∑
i wi

The curve was obtained after training the data. The 
obtained values of training error was 2.2428 * 10−6. It 
shows that after 138 epochs, root mean square error 
become steady because of the limited experimental 
data. For the prediction of output values for SR, the set of 
fuzzy interference parameters were chosen in the training 
phase. The predicted values obtained through the ANFIS 
model were compared with the experimental values. The 
comparison between the experimental and predicted 
surface roughness by ANFIS test data is shown in Fig. 6.

Table 2   Initial parameters for 
the ANFIS model

Output response Surface roughness (SR) Material removal rate (MRR)

Method of training Hybrid Hybrid
MF’s (membership functions) trimf trimf
No. of Mf’s 2 3 3 3 3 2 3 3 3 3
No. of Epochs 300 300
Output function Constant Constant

Fig. 5   Training curve for surface roughness model

Fig. 6   Comparison between the experimental and predicted sur-
face roughness by ANFIS test data
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The generated model was used to measure the influ-
ence of input parameters on the performance param-
eters namely surface roughness and MRR. Figure  7 
demonstrates the influence of peak current on surface 
roughness. The values of SR was higher initially at the 
low value of peak current (i.e. 110 amperes) but as the 
value of peak current increased, the value of surface 
roughness declined and become constant.

Figure 8 expresses the influence of dielectric pressure 
on surface roughness. It clearly shows that the value of 
SR increased with the increase in dielectric flow rate.

Figure 9 demonstrates the surface view for measure-
ment the surface roughness of titanium alloy (Ti–6Al–4V) 
in relation to change of peak current and dielectric pres-
sure. It shows that the value of SR is higher at 12 Lit/min 
of dielectric flow rate and 120 amps of peak current. As 
the value of input constraints had changed, the value 

of output responses also varied. The same procedure 
was used to develop the model for material removal 
rate (MRR). For the prediction of output values of MRR, 
the set of fuzzy interference parameters were chosen in 
training phase. The predicted values obtained through 
the ANFIS model were compared with the experimental 
values. The training curve obtained during the MRR is 
shown in Fig. 10.

The comparison between the experimental and pre-
dicted material removal rate (MRR) by ANFIS test data is 
shown in Fig. 11.

The triangular membership function (Trimf) generated 
for Input and output variables through ANFIS are shown 
in Fig. 12.

3.2 � Regression analysis and empirical model

In regression equations, the coefficients of determination, 
R2 are used to decide whether regression model is appro-
priate or not. The value of R2 provides an exact model if 
the value is 1. In this experimental study, the value of R2 
for SR and MRR is very close to unity. Therefore, this model 

Fig. 7   Influence of peak current (Input2) on surface roughness

Fig. 8   Influence of dielectric flow rate (Input5) on surface rough-
ness

Fig. 9   Surface view (Input2-peak current, Input5-dielectric flow 
rate and output-surface roughness)

Fig. 10   Training curve for MRR model
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is reliable. The calculated regression empirical models for 
MRR and SR are given in Eqs. 11 and 12.

3.3 � Comparison of ANFIS model to regression 
empirical model

The regression equations were obtained by using the full 
factorial design in Minitab and a comparison between the 
ANFIS model and Regression model was made to under-
stand the potential of ANFIS. Figure 13 shows the compari-
son between the regression and ANFIS model.

(11)

SR = −13.0 + 0.224 taper angle + 0.0459 peak current

+ 0.0975 pulse on time − 0.0245 pulse off time

− 0.0053 dielectric flow rate

(12)

MRR = −33.7 + 0.358 taper angle + 0.184 peak current

+ 0.165 pulse on time − 0.0871 pulse off time

+ 0.038 dielectric flow rate

Fig. 11   Comparison between the predicted and experimental MRR 
by ANFIS test data

Fig. 12   Trimf MF’s for input and output variables (fuzzy-logic designer)

Fig. 13   Comparison between the experimental and predicted MRR by ANFIS test data
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From the comparison between the ANFIS model and 
Regression model responses, it is found that the ANFIS 
model has a lower value of absolute mean percentage of 
error than regression model. Therefore, the ANFIS model 
performance is higher than regression model.

4 � DOE and multi‑parametric optimization

The aim of multi-parametric optimization is to increase the 
material removal rate and to minimize the value of surface 
roughness. In this experimental analysis, L18 (21 34) mixed 
orthogonal array (OA) was selected. This OA has 18 para-
metric combinations; therefore, the total numbers of 18 
experiments were conducted to measure the interactions 
between the various factors. The parameter combinations 
obtained using the L18 (21 34) mixed orthogonal array (OA) 
are shown in Table 3.

4.1 � Multi‑parametric optimization using the GRA​

The steps used for multi-parametric optimization using the 
grey relational analysis (GRA) are discussed as:

•	 Normalization of all the experimental results of SR and 
MRR: Linear normalization of experimental values is 
performed in the range of 0 and 1. The normalized val-

ues for output responses were calculated by using the 
standard formula given in Eq. 13.

where yij = ith experiment results in jth experiment.
•	 Calculation for the Grey relational coefficients: The 

standard formula used for the computation of Gray 
relational coefficients is given in Eq. 14.

where xi
0 = ideal normalized value.

•	 Calculation for the Grey relational grade: Grey rela-
tional grades are evaluated by the average of Grey 
relational coefficients using the formula given in 
Eq.  15. The calculated values for normalization, 
Grey relational coefficients and grades are shown in 
Table 4.

(13)Normalized results (Xij) =
(yij) − (minj yij)

(maxj yij) − (minij yij)

(14)
𝛿ij =

mini minj
|||x

0

i
− xij

||| + 𝜉maxi maxj
|||x

0

i
− xij

|||
|||x

0

i
− xij

||| + 𝜉maxi maxj
|||x

0

i
− xij

|||
,

0 < 𝜉 < 1

(15)�
j
=

1

m

m∑

i=1

�ij

Table 3   DOE matrix of L18 mixed orthogonal array (OA) and measured values for output responses

Sr. no. Taper angle 
(A)

Ip (B) Ton (C) Toff (D) Dielectric flow 
rate (E)

Output responses

Surface rough-
ness

MRR

1. 3 110 104 55 10 1.88 1.42
2. 3 110 108 58 12 1.98 1.55
3. 3 110 112 63 15 2.16 1.72
4. 3 120 104 55 12 2.07 1.7
5. 3 120 108 58 15 2.24 1.83
6. 3 120 112 63 10 2.32 1.95
7. 3 130 104 58 10 2.95 5.89
8. 3 130 108 63 12 2.5 4.55
9. 3 130 112 55 15 2.99 6.16
10. 1.5 110 104 63 15 1.13 0.8
11. 1.5 110 108 55 10 1.48 1.04
12. 1.5 110 112 58 12 2.01 1.71
13. 1.5 120 104 58 15 1.57 1.07
14. 1.5 120 108 63 10 1.8 1.16
15. 1.5 120 112 55 12 2.38 2.23
16. 1.5 130 104 63 12 2.47 3.58
17. 1.5 130 108 55 15 2.67 5.52
18. 1.5 130 112 58 10 2.58 4.69
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where αj = Grey relational grade and m = No. of execu-
tion grade characteristics.

•	 Calculation of the optimum levels: optimum levels are 
calculated to find the significant parameters as shown 
in Table 5.

•	 Selection of the optimum levels of process constraints 
by taking the highest values of levels for each param-
eter from the grey response table. The response table 
is clearly indicating the level values for each process 
parameter at their different levels. The highest value 
of the different level shows the best optimized value.

•	 Confirmation of experiment and verification of the opti-
mized process parameters.

4.2 � Confirmation of experiment

After obtaining the optimized values of process param-
eters, the last step is to confirm the experimentation as 

shown in Table 6. The mathematical relation used to calcu-
late the estimated grade relational grade is given in Eq. 9.

where αm = total mean of the Grey relational grade at opti-
mum level and q = no. of process parameters.

Taguchi analysis
Taguchi analysis is used for the selection of best opti-

mized parameter value for the individual process parameter 
and to measure the influence of each parameter at different 
levels.

4.3 � Influence of input constraints on Ra value (SR)

The main effect plot for data means as shown in Fig. 14 
is showing the effect of individual parameter at different 

(16)𝛼̂ = 𝛼m +

q∑

i=1

(
𝛼i − 𝛼m

)

Table 4   Calculated values for grey relational grades

Sr. no. S/N ratio Normalization Deviation sequence Grey relational coefficients Grades

Surface roughness MRR Surface roughness MRR Surface roughness MRR Surface roughness MRR

1. − 5.483 3.046 0.52136 0.23629 0.47864 0.76371 0.48954 0.67908 0.58431
2. − 6.021 3.807 0.58473 0.28168 0.41527 0.71832 0.46094 0.63965 0.5503
3. − 6.848 4.711 0.68235 0.3356 0.31765 0.6644 0.42289 0.59837 0.51063
4. − 6.444 4.558 0.6347 0.32649 0.3653 0.67351 0.44064 0.60497 0.52281
5. − 7.235 5.249 0.72787 0.36773 0.27213 0.63227 0.40721 0.57622 0.49171
6. − 7.310 6.021 0.73674 0.41375 0.26326 0.58625 0.40429 0.54719 0.47574
7. − 9.396 15.417 0.98279 0.9743 0.01721 0.0257 0.3372 0.33914 0.33817
8. − 7.959 13.255 0.81327 0.84533 0.18673 0.15467 0.38073 0.37166 0.37619
9. − 9.542 15.848 1 1 0 0 0.33333 0.33333 0.33333
10. − 1.062 − 0.915 0 0 1 1 1 1 1
11. − 3.522 0.828 0.2901 0.10398 0.7099 0.89602 0.63284 0.82784 0.73034
12. − 6.064 4.711 0.58984 0.3356 0.41016 0.6644 0.45878 0.59837 0.52858
13. − 4.137 0.828 0.36258 0.10398 0.63742 0.89602 0.57966 0.82784 0.70375
14. − 5.105 1.584 0.47682 0.14907 0.52318 0.85093 0.51186 0.77034 0.6411
15. − 7.604 6.966 0.77146 0.47016 0.22854 0.52984 0.39325 0.51538 0.45431
16. − 7.959 11.126 0.81327 0.71832 0.18673 0.28168 0.38073 0.4104 0.39556
17. − 8.627 14.855 0.89209 0.94074 0.10791 0.05926 0.35917 0.34704 0.35311
18. − 8.232 13.442 0.84553 0.85648 0.15447 0.14352 0.3716 0.3686 0.3701

Table 5   Grey relational grade response table

Factor Parameter Level-1 Level-2 Level-3

A Taper angle 0.4648 0.57521 —
B Peak current (Ip) 0.65069 0.54824 0.36108
C Pulse on time (Ton) 0.59077 0.52379 0.44545
D Pulse off time (Toff) 0.49637 0.4971 0.56654
E Dielectric flow rate 0.52329 0.47129 0.56542
Average grey relational grade = 0.52

Table 6   Confirmation of experiment

Predicted value Experimentation

Level A2B1C1D3E3 A2B1C2D1E1

SR (µm) 1.48 1.13
MRR (g/min) 1.04 0.8
Grade 0.73034 1
Improvement in grey relational grade: 0.2697
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level of SR (Ra). For the measurement of SR, smaller is 
better (S/N ratio) was utilized because the minimum 
value of SR means the higher value of surface finish.

The rank given in Table  7 shows the influence of 
parameters on surface roughness. For surface roughness, 
peak current and Ton is the most influencing parameters, 
whereas the dielectric flow rate has the least significance.

The value of surface roughness is minimum at 1.5° 
of taper angle, level-1 of Ip, level-1 of Ton, level- 3 of Toff 
and level-3 of the dielectric flow rate as shown in Table 8. 
Therefore, these are the best optimized values for surface 
roughness.

4.4 � Influence of input constraints on MRR

The main effect plot for data means for MRR is shown 
in Fig. 15. For MRR, larger is better (S/N ratio) was used 
because the maximum value of MRR means higher the rate 
of production.

The value of MRR is maximum at 3° of taper angle, 
level-3 of Ip, level-3 of Ton, level-1 of Toff and level-3 of the 
dielectric flow rate as shown in Table 9. Therefore, these 
are the best optimized values of parameters for MRR. Peak 

Fig. 14   Main effect plot for data means—SR-(smaller is better)

Table 7   Response table for means (SR)

Level Taper angle Peak current Ton Toff Dielectric 
flow rate

1 2.026 1.787 2.028 2.263 2.172
2 2.361 2.088 2.133 2.242 2.252
3 – 2.705 2.418 2.075 2.157
Delta 0.336 0.918 0.390 0.188 0.095
Rank 3 1 2 4 5

Table 8   Levels of selected input parameters at minimum SR

Factor Taper angle Peak current Ton Toff Dielectric 
flow rate

Level 2 1 1 1 3
Rank 3 1 2 4 5

Fig. 15   Main effect plot for data means—MRR-(larger is better)

Table 9   Levels of selected input parameters at maximum MRR

Factor Taper angle Peak current Ton Toff Dielectric 
flow rate

Level 1 3 3 1 3
Rank 4 1 3 2 5

Table 10   Response table for means (MRR)

Level Taper angle Peak current Ton Toff Dielectric 
flow rate

1 2.453 1.402 2.435 3.028 2.720
2 2.990 1.675 2.635 2.800 2.565
3 – 5.088 3.095 2.337 2.880
Delta 0.537 3.687 0.660 0.692 0.315
Rank 4 1 3 2 5
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current and pulse off time has the most influence on MRR 
whereas the dielectric flow rate has the least significance 
as shown in Table 10.

5 � Conclusions

This paper represents the application of ANFIS model 
for the prediction of output responses, namely surface 
roughness and MRR of WEDM parameters. The five input 
parameters of WEDM, i.e. taper angle, peak current, pulse 
on time, pulse off time and dielectric flow rate are used 
as input for ANFIS models for the prediction of output 
responses. The ANFIS models are compared with a regres-
sion model to measure the output performance. From 
comparison, it is concluded that the ANFIS model perfor-
mance is better for prediction of surface roughness and 
MRR than Regression models. The results predicted by 
ANFIS model have been used to measure the influence of 
various input parameters on the performance parameters 
along with the surface view. The developed ANFIS models 
provide better responses and can be used for more reli-
able results.

An attempt has also been made to attain minimum 
and maximum evaluation of surface roughness (SR) and 
MRR respectively; using multi-parametric optimization 
namely GRA (grey relational analysis) coupled with Tagu-
chi method. The optimized parameters for the response 
of SR and MRR in WEDM are: 1.5° of taper angle, 110 
amps of peak current, 104 µs of pulse on time, 63 µs of 
pulse off time and 115 Ltr/min of dielectric flow rate. The 
attained optimum outcomes had also been examined 
through a real experiment and established to be satisfac-
tory. For surface roughness, the Ip and Ton are the most 
influencing parameters, whereas for MRR, the Ip and Toff 
are the most influencing parameters. The dielectric flow 
rate has the least influence on SR as well as on MRR. The 
experimental results showed the considerable advance-
ment in the process and obtained results will facilitate 
the WEDM industries to improve the productivity and 
performance.
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