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Abstract
With the increasing number and capabilities of orbital satellites and their onboard sensors, satellites scheduling plays an
important role in growing demands for Earth observation tasks. A conflict-priority-based variable neighborhood tabu search
method is proposed in this paper. By analyzing the flexibility of resources, the conflict-priority of tasks, and the visible time
window features, the indicators of the impact, the conflict, the flexibility, and the bad impact are first established. On this basis,
a first-come first-served greedy algorithm and a minimum bad impact greedy algorithm are designed for the generation of the
initial solution. some rule-based heuristic strategies are also adopted for optimizing. Additionally, the algorithm incorporates
three types of neighborhood structures including insertion, swapping and rearrangement, and deletion, using a tabu list to
avoid local optima. Experimental results indicate the validity and efficiency of the proposed method. All solutions are within
10% of the optimal solution, with some even within 5%.The proposed method is effective for obtaining optimum solutions
or solutions with a very good quality in various multi-satellite scheduling scenarios of realistic planning.
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1 Introduction

Earth observation satellites primarily focus on observing des-
ignated ground targets according tomission requirements [1]
and transmitting the data to ground receiving stations. In
recent years, the demand for observations under various topo-
graphic and spectral conditions has rapidly increased [2, 3],
leading to a pressing need for satellite resources. Satellite
imaging scheduling involves selecting observation tasks to
be executed within a given time frame and arranging satellite
resources and timing to maximize user demand satisfaction.

The multi-satellite cooperative scheduling is a resource
and execution time cooperated optimization problem, which
has been proven to be NP-hard. It involves optimizing the
allocation of satellite sensor resources and scheduling the
acquisition, processing, and transmission of information
while meeting the constraints of time windows according
to user demands for satellite application tasks. Typically, the
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objective is to complete as many tasks as possible within
a certain time window or consider task profits to maximize
total revenue, thereby minimizing losses. The satellite task
scheduling problem in implementation needs to consider var-
ious factors such as limitations of satellite resources, satellite
trajectories [4, 5], satellite attitudes [6], types of satellite sen-
sors, task priorities, and time window restrictions. Among
these, the accuracy and scientific nature of satellite trajectory
planning are directly related to the success of satellite mis-
sions. The precision and real-time control of satellite attitude
significantly affect the efficiency and effectiveness of satellite
scheduling. Additionally, satellite resources, task priorities,
and the visible time window directly impact the final task
scheduling order. These factors can be contradictory, and
trade-offs are necessary to achieve the optimal solution.
To address these issues, researchers have proposed many
effective algorithms such as greedy algorithms, dynamic pro-
gramming algorithms, genetic algorithms, etc., which have
shown certain effects in practical applications.

This paper designs a variable neighborhood tabu search
algorithm for the problem of multi-satellite cooperative
scheduling, aiming to enhance the capability and efficiency
of task arrangement in such problems. The study focuses on
three main aspects: (1) Selection of either all or part of the
results from the greedy algorithm as the initial solutions for
the tabu search algorithm, comparing the convergence speed
and the quality of the final solutions under different initial
conditions. (2) Utilization of a variable neighborhood tabu
search algorithm that, during operations such as insertion and
replacement of tasks, employs strategies prioritizing conflict
and minimizing bad impact, explicitly evolving towards a
more relaxed resource usage. (3) Compare the gap between
the algorithm results and the ideal optimal solution to evalu-
ate the algorithm performance.

The remainder of the paper is organized as follows. In
Sect. 2, we review the related literature. Section 3 provides an
overview of the multi-satellite cooperative scheduling prob-
lem. Section 4 designs indicators for the selection of tasks and
their observation time windows, describes the calculation of
thesewindows, includingmethods for union and complement
as well as usage scenarios, and introduces four evaluation
indicators for tasks or windows: impact, conflict, flexibility,
and bad impact. Section 5 provides a detailed introduction
to the proposed conflict-priority-based variable neighbor-
hood tabu search algorithm and the methods for analyzing
the results of the algorithm. Experiments and the analysis of
results are reported in Sect. 6. Finally, Sect. 7 concludes the
paper.

2 RelatedWorks

To address the problem of multi-satellite cooperative task
planning and considering operational constraints such as
task execution time dependencies, Chen et al. constructed
a mixed-integer linear programming model incorporating
cutting-plane techniques [7], and proposed an improved
differential evolution algorithm based on task priority and
conflict resolution, which enhances the generation and effi-
ciency of optimal solutions for large-scale task cooperative
planning [8]. Furthermore, Chen et al. [9] conducted a
thorough analysis of scene resources and the spatiotempo-
ral characteristics of tasks within multi-satellite cooperative
planning, developing a unified formal system architecture
tailored for various complex observation challenges. Addi-
tionally, taking into account operational constraints including
task execution time dependencies, Chen et al. [10] proposed a
data-driven, two-stagemulti-satellite data transmission coop-
erative planning method.

This paper opts for the tabu search algorithm to solve
the multi-satellite cooperative scheduling issue. The tabu
search algorithm was initially proposed by Glover [11]
and was detailed as a combinatorial optimization algo-
rithm [12]. The tabu search algorithm has been applied
across various domains, demonstrating its wide applicability.
Li et al. [13] employed the tabu search algorithm to solve the
traveling salesman problem with precedence relationships.
Cheng et al. [14] used a taboo search algorithm to solve a
product-service scheduling problem that combines multiple
traveling salesman problems and service matching for mul-
tiple service types. Chen et al. [15] combined the tabu search
algorithm with the genetic algorithm to address the location
problem of distribution centers. Kang et al. [16] used the
tabu search algorithm to solve the NP-hard problem of cir-
cular packing. tabu search has also been applied in power
distribution network planning [17–19]. Award et al. [20]
used the tabu search algorithm to address timetabling issues.
Saleh et al. [21] described the steps of the tabu search algo-
rithm applied to the Global Positioning System surveying
network. Rahdar et al. [22] proposed the application of a
variable neighborhood tabu search algorithm to the bus stop
selection problem.

In using tabu search algorithms to address satellite
scheduling planning problems, Bianchessi et al. [23] dis-
cussed the scheduling of the multi-satellite constellation
and established an integer programming model for the
problem but used an inexact tabu search algorithm for solv-
ing it. Zuo et al. [24] combined the concept of variable
neighborhood search with tabu search, but the initial solu-
tion used a general greedy solution targeting maximum
profit, resulting in slower solving speed. Li et al. [25]
further improved the solving efficiency of tabu search algo-
rithms in satellite scheduling problems, but did not consider

123



Advances in Astronautics Science and Technology

the rearrangement of replaced tasks during neighborhood
searches.Yang et al. [26] used a fast insertion tabu search
with conflict avoidance heuristics to solve the multi-satellite
multi-mode cross-link scheduling problem, they used the
conflict avoidance method to generate a high-quality initial
solution and then optimized the initial solution using a for-
bidden search algorithm.

The multi-satellite cooperative scheduling, as an NP-hard
problem with significant application value, is difficult to
solve within an acceptable time using ordinary traditional
algorithms. The development of intelligent optimization
algorithms, such as genetic algorithms, particle swarm opti-
mization, and ant colony algorithms, has propelled further
optimization in solving problems of multi-satellite cooper-
ative scheduling. Since the introduction of the tabu search
algorithm, this type of intelligent optimization algorithm has
been widely applied to classic and new applied problems.
However, when using the tabu search algorithm to solve
the multi-satellite scheduling problems, in order to make
the algorithm have a better global optimality search capa-
bility and convergence, it should not only be considered to
be limited to a fixed neighborhood and a fixed length of the
tabu list, or the use of a variable neighborhood exploration
in the incorporation of unguided stochasticity, the degree of
neighborhood exploration is shallow, resulting in a generally
slower convergence speed and miss the better solution.

3 TheMulti-Satellite Cooperative Scheduling

3.1 Problem Description

Theproblemofmulti-satellite cooperative scheduling focuses
on the scheduling and observation of ground targets by satel-
lite sensors. In this scenario, there aremultiple ground targets
with observation needs, each having attributes of minimum
continuous observation time and associated profits. Multiple
satellites equipped with various types of sensors orbit the
Earth and can observe targets within a certain radius cen-
tered on the ground. The potential observation periods for
ground targets by these sensorswithin a simulation period are
known as visible time windows. These time windows may
overlap with each other, and since sensors can only observe
one ground target at any given moment, there is a possibility
of mutual exclusivity among the tasks. The challenge for the
algorithm is tomaximize either the total value of profits or the
maximum number of observable targets, all while avoiding
conflicts among the tasks (Fig. 1).

3.2 SchedulingModel

3.2.1 Symbolic Description

Scheduling Simulation Periods. Tasks are planned within the
simulation time interval [SBeg, SEnd ], where SBeg is the ear-
liest start time for sensor allocation and SEnd is the latest end
time for sensor allocation.

Task Set M = {M1, M2, ..., Mn}. Each task represents a
ground target, with a minimum required observation dura-
tion. Each task needs to be continuously observed within
the sensor’s available time window, and each ground target
corresponds to an execution profit.

Sensor Set R = {R1, R2, ..., Rn}, also known as the
resource set. Continuous observation of two tasks on sen-
sor R j requires a minimum transition time, tran j .

Visible Time Slice Set TW = {tw1
i, j , tw

2
i, j , ..., tw

Ni, j
i, j },

where each visible time window twk
i, j has an earliest start

time Begki, j and a latest end time Endki, j . This represents
the collection of assignable time windows for all available
sensors R j for target Mi within a simulation periods.

The continuous allocable time segments for sensors are
denoted as RTW = {r tw1, r tw2, ..., r twn}. By calculating
the intersection of the visible time windows for each task
on every sensor resource, one can obtain the collection of

available time intervals RTWj = {r tw1
j , r tw

2
j , ..., r tw

N j
j }

for the corresponding sensor within a period. For all twk
i, j ,

if Mi ∈ M(R j ),then twk
i, j ⊂ RTWj .

3.2.2 Optimization Variables

(1) For each observable ground target Mi and sensor R j , the
variable xki, j denotes the status of assigning target Mi to

the kth visible time window of sensor R j . If xki, j = 1,
it indicates that the task is allocated to the visible time
window twk

i, j .
(2) After allocating an execution time window to the target

Mi , the start time of execution is denoted as ti , and the
end time of execution is the start time plus the duration
Di of the task.

3.2.3 Optimization Objective

(1) Maximize the total number of tasks completed.

max
∑

Mi∈M

∑

R j∈R(Mi )

∑

k∈1,2,...,Ni, j

xki, j (1)

(2) Maximize the total profits of task execution.

max
∑

Mi∈M

∑

R j∈R(Mi )

∑

k∈1,2,...,Ni, j

Wi · xki, j (2)
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Fig. 1 Processing of the
multi-satellite scheduling [8]

3.2.4 Constraints Analysis

(1) Number of task execution. Each task, even if observable
by multiple windows of multiple sensors throughout the
entire simulation periods, is observed at most once. For
each task Mi ∈ M , we have:

max
∑

R j∈R(Mi )

∑

k∈1,2,...,Ni, j

xki, j ≤ 1 (3)

(2) Feasibility of task execution start time. Every ground
target Mi ∈ M needs to be assigned within the sensor’s
earliest observable time and latest end time period.

SBeg ≤ ti ≤ SEnd − Di (4)

(3) Observation window constraint. The execution time
interval allocated for each ground target must meet the
sensor’s availability condition and the ground target’s
minimum imaging duration constraint. Within the simu-
lation periods, if the ground target Mi is allocated sensor
R j and the correspondingvisible timewindow twk

i, j , then
the task’s execution time interval must fall entirelywithin
the assigned visible time window. For any Mi ∈ M , and
any R j ∈ R(Mi ), k ∈ 1, 2, ..., Ni, j , this constraint can
be represented as:

Begki, j ≤ ti ≤ Endki, j − Di , if xki, j = 1. (5)

(4) The minimum transition time between two consecutive
tasks on the same sensor. During the process of observing
ground targets, the side-swing angle and rotation angle of
the onboard resources change. Thus, two tasks arranged
to be executed sequentially on the same sensor must sat-
isfy the minimum transition time between them.

Therefore, for any R j ∈ R and any two consecutive obser-
vation task sequences Mi , Mi ′ ∈ M(R j ), considering the
different execution order of the two tasks, the expression 6 is

introduced to represent the temporal constraints before and
after the execution of two tasks.

ti − ti ′ ≥ (Di ′ + �
j
i,i ′) or ti ′ − ti ≥ (Di + �

j
i ′,i ) (6)

Since each target may have multiple visible time windows
on multiple sensors, the Big − M (the value depends on the
size of the scheduling simulation period.) can be adopted to
eliminate the constraint conflicts that occur when multiple
candidate time windows are considered for selection at the
same time. The modified observation window constraint can
be represented as Eq. (7).

ti − Begki, j · xki, j ≥ 0

ti − (Endki, j − Di ) · xki, j − M · (1 − xki, j ) ≤ 0. (7)

Additionally, for the constraint of the minimum transi-
tion time between two consecutive tasks on the same sensor,
since only one condition needs to bemet to eliminate the “or”
condition in the expression, we introduce two binary vari-
ables f j

i,i ′ and f j
i ′,i , with f j

i,i ′ + f j
i ′,i = ∑

k x
k
i, j · ∑

k′ xk
′

i ′, j ,
this constraint can be expressed as:

ti − ti ′ ≥ (Di ′ + �
j
i,i ′) · f j

i,i ′ − (M − Di ′) · (1 − f j
i,i ′)

ti ′ − ti ≥ (Di + �
j
i ′,i ) · f j

i ′,i − (M − Di ) · (1 − f j
i ′,i ) (8)

Equation (7) ensures that when multiple candidate win-
dows on the same resource are taken into account in the
constraint conditions, the sequence of the two executed tasks
can be determined simultaneously without causing a conflict
in the observation times. The variable f j

i,i ′ = 1 indicates that
the tasks Mi and Mi ′ are arranged to be executed simulta-
neously with task Mi executed after Mi ′ , and the variable
f j
i ′,i = 1 indicates that tasks Mi and Mi ′ are arranged to be

executed simultaneously with task M ′
i executed after Mi .

Otherwise, fi,i ′ = 0 and fi ′,i = 0. The introduced binary
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Fig. 2 Schematic of multiple
coverage window calculation

variables must also satisfy the following conditions:

⎧
⎪⎨

⎪⎩

f j
i,i ′ + f j

i ′,i ≤
∑

k∈1,2,...,Ni, j
xki, j

f j
i,i ′ + f j

i ′,i ≤
∑

k′∈1,2,...,Ni, j
xk

′
i ′, j

(9)

Moreover, since each task is considered for execution at
most once during the entire simulation period, the introduced
variables f j

i,i ′ and f j
i ′,i must also satisfy the condition:

∑

Ri∈R(Mi )∩R(Mi ′ )

(
f j
i,i ′ + f j

i ′,i

)
≤ 1 (10)

(5) Constraints on the values of optimization variables.
For any Mi ∈ M , resource R j ∈ R(Mi ),and all k ∈
{1, 2, ..., Ni, j }, the following constraints apply:

xki, j ∈ {0, 1} (11)

4 Design of Indicators for Task Selection and
Observation TimeWindow

Based on the formal description of symbols, variables,
objectives, and constraints for the multi-satellite coopera-
tive scheduling problem as previously discussed, this section
analyzes the degree of flexibility or busyness from the per-
spectives of tasks and resources, respectively. Furthermore,
four indicators have been proposed to evaluate the attributes
of time windows under tasks and resources.

4.1 Analysis of Visible TimeWindow Features

4.1.1 Analysis of Task Arrangement Flexibility

Multiple coverage windows refer to a classification of visi-
bility time windows for a certain type, usually categorized
based on the same satellite resources or the same mission
objectives. These are intersected in time to obtain a set of
time windows with overlap. In the problem of multi-satellite

cooperative scheduling, the order in which these windows
are scheduled significantly influences the quality of the algo-
rithmic outcomes. And the scheduling sequence depends on
the objective function and other metrics such as window con-
tention or observational target flexibility. These metrics are
often calculated based on the overlap results. Specifically:

(1) From the resource perspective, the degree of overlap in
the multiple coverage windows represents the number
of tasks that can be observed by the resource at a given
moment.

(2) From the task perspective, the degree of overlap in the
multiple coverage windows represents the number of
resources that can observe the task at a given moment.

As shown in Fig. 2, the calculation of dual and triple coverage
windows from the mission perspective is demonstrated.

4.1.2 Analysis of Resource Availability

During the execution of the algorithm, originally visible
time windows may become fully or partially unavailable due
to their occupation by previously scheduled tasks. Conse-
quently, it is necessary to compute the complement of each
task’s entire set of visible time windows with all previously
scheduledwindows to ascertain the actual available timewin-
dows.

As shown in Fig. 3, for all the visible time Windows of
a task, complement operations should be performed with all
the scheduled time Windows on the same resource of the
window to obtain the real visible time window.

In the specific process of task scheduling, the comple-
ment operation must also take into account the transition
times between the current task and the subsequently sched-
uled tasks, these transition times need to be subtracted as
well. The situation is shown in Fig. 4. The transition time
between the preceding tasks needs to be considered accord-
ing to the situation in determining the execution time stage.
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Fig. 3 Complement operation schematic

Fig. 4 Schematic of complement operation considering subsequent
transition time

4.2 Design of SelectionMetrics for the Resource and
Corresponding ObservationWindow

4.2.1 Impact Degree

The impact degree is a metric used to assess the degree of
hindrance a scheduled task or observation window poses to
the scheduling of other tasks or windows. BI ki, j denotes the
impact degree of the kth visible window of ground task Mi

on sensor R j . BIi represents the impact degree for task Mi .
For observation windows:

i t Lengthx jzi jk = min(Endki, j + tran j , End
z
x, j + tran j )

− max(Startki, j − tran j , Start
z
x, j − tran j )

× (x �= i) (12)

BI ki, j =
∑

twz
x, j∈TW∩x �=i

⎛

⎝ i t Lengthx jzi jk

Endki, j − Startki, j
× wx

⎞

⎠ (13)

For tasks:

BIi =
∑

twk
i, j∈TW

BI ki, j (14)

In this context, i t Lengthx jzi jk refers to the actual duration
of overlap between the kth visible window for ground task
Mi on sensor R j and all other visible windows on the same
sensor, taking into account the transition times before and
after. The outcome is utilized as a weight for other tasks on
the sensor, which when multiplied by the task profit, yields
the impact degree of the observation window.

The impact degree of task BIi is derived by summing the
impact degrees of all visible windows associated with task i .

4.2.2 Conflict Degree

The conflict degree is an indicator used to evaluate the level
of contention for time windows. CFLCT k

i, j denotes the
contention degree for the kth time window of resource R j

allocated to task Mi . The conflict degree is computed by:

i t Leng jz
i jk = min(Endki, j ,UEndzj )

− max(Startki, j ,UStart zj )

CFLCT k
i, j =

∑

utwz
j∈UTWj

i t Leng jz
i jk × multi zj (15)

Assuming a window is fully scheduled, the intersection
of the union set of windows from the resource perspective
is sequentially calculated. The length of the intersection,
denoted as i t Leng jz

i jk , is multiplied by the degree of over-
lap of the union window set, termed multi zj , and the results
are summed to derive the window’s conflict degree.Where
UEnd is the minimum possible end time for other tasks on
that resource and UStart is the latest possible start time for
other tasks on that resource.

4.2.3 Flexibility

Flexibility is an indicator that measures the number of usable
time windows for a task. Flexi denotes the flexibility of task
Mi .

Flexi =
∑

twz
x,y∈TW∩x=i

count(Endzx,y − Start zx,y ≥ Dx ) (16)

Flexibility is calculated by counting the number of visible
time windows for the task. Each counted window must have
a duration greater than or equal to the required minimum
observation time.

4.2.4 Bad Impact

Bad impact is a comprehensive assessment of task schedul-
ing, where Ii denotes the bad impact for ground task Mi .

Ii = BIi × Flexi
wi

(17)
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A lower impact degree indicates that scheduling the task
causes fewer bad side effects on the scheduling of other tasks.
Less flexibility signifies that the task is more susceptible to
being influenced by tasks previously scheduled, thus making
it more likely that its limited available time windows will be
occupied. The bad impact metric is derived by multiplying
the task’s Impact Degreewith its flexibility, and then dividing
by the weight. A lower value of this metric indicates a higher
priority for task consideration.

This metric, which comprehensively considers weights,
available time windows, and their impacts on other time win-
dows, serves as an integrated indicator developed through the
collection and analysis of global information. It offers sig-
nificant guidance in task scheduling.

5 Variable Neighborhood Tabu Search
Algorithm

Based on the multi-satellite cooperative scheduling model
and the task and observation window selection metrics ana-
lyzed under the characteristics of task visible time windows,
this chapter further designs an improved variable neigh-
borhood tabu search algorithm to solve the multi-satellite
cooperative scheduling problem. Initially, the paper imple-
ments an initial solution constructed through various greedy
methods, designs task scheduling strategies using multiple
rule-based heuristic methods, and proposes three neighbor-
hood structures: insertion, exchange with re-arrangement,
and deletion. Moreover, two types of tabu list structures are
designed: one based on the characteristics of individual time
windows and the other on the characteristics of the solution
itself. Additionally, the algorithm employs a weighted ran-
domness method to escape local optima and to incorporate
randomness globally or locally when arranging tasks, thus
preventing the solution process from being trapped in local
optima.

5.1 Initial Solution Construction Based on Greedy
Rules

5.1.1 First-Come, First-Served Greedy Algorithm

The execution steps of the greedy algorithm based on first-
come-first-served design in this paper are shown as follows.

Step 1: Select the scenario and read the information on
tasks and time windows.

Step 2: Calculate the coveragemultiplicity, conflict degree,
and flexibility for each task.

Step 3: Sort all visible time windows (TWS) within the
scenario by start time, from earliest to latest.

Step 4: Enter a loop and check; if the index equals the
length of TWS, proceed to the next step; other-
wise, go to Step 4-1.

Step 4-1: Determine whether the task corresponding to
TWS has been observed. If it has, go to Step
4-2; if not, return to Step 4-2 and increment the
index by 1.

Step 4-2: Execute the earliest arrangement algorithm.

Step 5: End.

5.1.2 Minimum Bad Impact Greedy Algorithm

Thegreedy algorithmbasedonminimumbad impact(Min_BI)
designed in this paper is different from the greedy algorithm
based on first-come-first-served in that it employs the ranking
evaluation metric of minimum bad impact to rank the tasks.

5.2 Rule-Based Heuristic Strategies

5.2.1 Far-Left Scheduling Algorithm

In the context of multi-satellite cooperative scheduling, once
an available time window for task observation has been
selected, it is necessary to evaluate whether this window can
accommodate the minimum required observation time for
the task and the transition times between adjacent tasks, and
then select an appropriate segment of the window for task
execution.

While the timing algorithm used for deciding the exe-
cution times of tasks in the exchange and re-arrangement
neighborhood of the tabu search algorithm slightly differs,
all algorithms and neighborhood structures discussed in this
paper utilize the same execution timing determination algo-
rithm after identifying the insertion window for a task,
referred to as the far-left scheduling algorithm.

The algorithm is described as follows. Initially, a set
complement operation is performed between the visible
observation windows and the already scheduled windows on
the same sensor, followed by a sequential traversal of the
resulting time windows TW . The first step is to verify if
the length of TW meets the minimum observation duration
required for the task. If it does, the task window is sched-
uled in one of three scenarios. Since the transition duration
with subsequent tasks has already been accounted for in the
set complement operation, it is only necessary to arrange
the transition duration and execution time based on the gap
between TW and the preceding tasks.

The following strategies are employed for scheduling
time:
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Fig. 5 Safety offset schematic

(1) If there is no already scheduled window LTW to the left
of TW , the transition duration need not be considered,
and the task is scheduled from the far-left side of TW .

(2) If there is an already scheduled window LTW to the left
of TW and the gap between TW and LTW is equal to or
greater than the transition duration, the task is similarly
scheduled from the far-left side of TW .

(3) If the gap between TW and LTW is less than the transi-
tion duration, it implies that part ofTW on the leftmust be
used for the transition period, with the task being sched-
uled from the far-left side immediately after the transition
period from LTW .

Employing such a strategy maximizes the use of visible time
windows for observations, placing the transition periods in
idle times, thereby enhancing the utilization rate of time win-
dows.

When inserting tasks, a random execution time selection
algorithm is also considered. Based on the three aforemen-
tioned strategies, a safety offset is calculated, and a start time
is randomly selected within this offset range for observation,
as shown in Fig. 5.

The risk associated with this random strategy is that it
may lead to fragmented idle windows being unused, thereby
reducing the overall utilization rate of visible time windows.
However, it helps to avoid falling into local optimum solu-
tions.

5.2.2 Absolute Optimal TimeWindows

There exists a type of visible time window that, even with
maximized consideration for transition times, does not inter-
sect with any other visible windows of the same resource.
This means that scheduling this time window does not badly
impact the scheduling of other tasks, and the length of the
window meets the minimum observation time required for

Fig. 6 Absolute optimal time window

the associated task. Such time windows are referred to as
absolute optimal time windows, as illustrated in Fig. 6.

During the initial phase of the tabu algorithm, a priority
is placed on identifying and scheduling all absolute optimal
time windows. Throughout the course of the algorithm, these
absolute optimal time windows are protected, and they are
not deleted, replaced, or considered for the rescheduling of
tasks to other windows.

5.2.3 Weighted Randomness

In the execution of the algorithm, it is necessary to incor-
porate some randomness to explore broader search domains
and prevent stagnation in local optima. For instance, when
selecting tasks for insertion, one might initially attempt to
arrange tasks based on decreasing flexibility or increasing
bad impact. However, this approach could lead to a uni-
directional search pattern, potentially missing intermediate
solutions that could lead to the optimal result. A completely
random selection method, on the other hand, would result
in inefficient and unpredictable search outcomes. Therefore,
this paper employs aweighted randomnumber algorithm that
balances randomness with directional searching needs.

Given an integer P, a weighted random number generation
algorithm with greater weight closer to zero is used, where
P is determined by the number of tasks.

Algorithm 1Weighted Random Selection
1: Generate a random number randNum, uniformly distributed

between 0 and P
2: Calculate invRandNum = 1.0/(randNum + 1)
3: Generate a second random number randProb, uniformly dis-

tributed between 0.0 and 1.0
4: if randProb > invRandNum then
5: Reject randNum and regenerate it
6: end if
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5.3 Neighborhoods Design

5.3.1 Insertion Neighborhood

The insert neighborhood operation attempts to insert a new
task arrangement into the current solution, with the following
process:

Step 1: Sort the task list in ascending order according to
flexibility.

Step 2: Select a task with a weighted random probability.
If the task is already scheduled, return to Step2 to
re-select a task; otherwise, proceed to the next step.

Step 3: Perform the complement operation on all visible
time windows of the task with all scheduled time
windows to obtain available timewindows, and sort
these available timewindows according to the least
bad impact.

Step 4: Schedule the task using the leftmost scheduling
algorithm. If the task is successfully scheduled,
move to the next step; otherwise, select the next
time window and re- execute the far-left schedul-
ing algorithm.

Step 5: If the scheduled time window is in the taboo list,
select the next time window and return to Step4;
otherwise, continue to the next operation.

Step 6: Insert this new window into the current solution to
generate a new neighbor, and the algorithm termi-
nates.

5.3.2 Exchange and Rearrangement Neighborhood

The exchange and rearrangement neighborhood attempts to
replace an already scheduled task with a new task and tries to
rearrange the replaced task to a different position, the steps
are as follows.

Step 1: Deleting the old task. Traverse the global tasks
sorted by decreasing flexibility, selecting a task
to be replaced through weighted random proba-
bility in each iteration. If the selected task has
been observed and its corresponding window is not
an absolute optimal time window, then delete this
scheduled task from the current solution.

Step 2: Inserting a new task. Search for a new task to insert
in ascending order of flexibility, ensuring that the
task has not been observed and is not the old task.
Perform a set complement operation on all visible
time windows of the new task to obtain feasible
time windows, and sort these by increasing bad
impact. Traverse the feasible windows of the new
task, ensuring that these windows overlap with the
deleted task’s windows to achieve an ’exchange’

effect, and apply the far-left scheduling algorithm.
If not on the tabu list, insert the new task into the
current solution.

Step 3: Perform the complement operation on all visible
time windows of the task with all scheduled time
windows to obtain available timewindows, and sort
these available timewindows according to the least
bad impact.

Step 4: Rearranging the old task. Traverse the visible
time windows of the deleted task, considering
new time windows that do not overlap with the
deleted execution window to achieve an solution
movement effect. If there is no overlap, apply the
far-left scheduling algorithm, and upon successful
arrangement, insert the rearranged old task’s exe-
cution window into the current solution.

5.3.3 Deletion Neighborhood

The delete neighborhood operation aims to try removing time
windows from the current solution. The steps are as follows:

Step 1: Sort the already scheduled windows (ATWS) in
descending order of bad impact, and select a task
with greater bad impact through weighted random
probability.

Step 2: If the time window corresponding to the task is
in the taboo list, or is the absolute optimal time
window, then return an empty neighbor and skip to
Step4; otherwise, proceed to the next step.

Step 3: Delete that window and generate a neighbor.
Step 4: The algorithm terminates.

5.4 Implementation Process of the Algorithm

This paper presents a variable neighborhood tabu search
algorithm applied to multi-satellite cooperative scheduling.
The algorithm treats the collection of already scheduled time
windows as solutions and neighbors, and designs three types
of neighborhood structures: insertion, exchange and rear-
rangement, and deletion. It utilizes two types of tabu lists: one
based on the characteristics of the scheduled time windows
and the sequential order of tasks scheduled on the same sen-
sor, with the tabu list length being adaptively variable. The
algorithm also employs strategies such as counting unim-
proved iterations and random escaping to avoid local optima.

The process of tabu search algorithm designed in this
paper is as follows.

Step 1: Select a scenario and read the information on tasks
and time windows.

Step 2: Calculate the coverage multiplicity, degree of con-
flict, and flexibility for each task.
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Step 3: Perform the greedy algorithm with the least bad
impact, and select all or part of the schedule results
of the greedy algorithm as the initial solution.

Step 4: Sequentially explore the insert neighborhood oper-
ation, explore the exchange and reschedule neigh-
borhood operation, and explore the delete neigh-
borhood operation.

Step 5: Update the current solution.

Step 5-1: Identify the optimal neighbor based on the
objective function, update the current solution
to the optimal neighbor, and if this neighbor is
better than the global optimal neighbor, then
update the global optimal neighbor.

Step 5-2: If no improvement is made after a specified
number of iterations, randomly select one from
all neighbors as the current solution and add the
current solution to the taboo list. If the length
of the taboo list exceeds the specified length,
remove the element that entered the taboo list
earliest.

Step 6: If the specified number of iterations for the algo-
rithm has been reached, then the algorithm ends;
otherwise, go back to Step4 and continue the
neighborhood exploration operation.

6 Experimental Analysis

6.1 Dataset

The dataset used in this paper consists of a group of public
datasets, which are classified based on periodic length into
two categories: 24h and 48h. They are further divided into
two categories based on the number of available resources
and into five categories based on the number of ground tar-
gets, as shown in Table 1. The term ‘available resources’
refers to the total number of available sensors across all satel-
lites in the scenario. The ‘number of ground targets’ refers to
the number of tasks that have potential visible time windows.

The minimum observation duration for ground targets is
a random integer in the interval [3, 10], and the observation
profit for ground targets is a random integer in the interval
[1, 10]. It is assumed that the simulation periods begins at
2023-01-01 00:00:00 and has a length of either 24h or 48h.

Each dataset provides detailed information about scenar-
ios, satellites, sensors, and targets, It is generated with CSTK
(China Satellite Tool Kit), which is developed by the Spatial
Information Engineering Team, China University of Geo-
sciences (Wuhan). The scenarios contain multiple satellites,
tasks, and visible timewindows that describe all the informa-
tion necessary for scheduling and planning tasks, including
the scenario name, the earliest start time, and the latest end

Table 1 Characteristics of the dataset

Number Simulation Available Number of
period resource ground
length (h) number targets

1 24 3 100

2 24 3 200

3 24 3 300

4 24 5 100

5 24 5 200

6 24 5 300

7 24 5 400

8 24 5 500

9 48 5 100

10 48 5 200

11 48 5 300

12 48 5 400

13 48 5 500

time, as well as satellites, tasks, and visible time windows.
The visible time window labels include the satellite name,
sensor name, the observed task name, and the start and end
times. Task labels include the name of the ground target, the
required minimum observation duration, the profit obtained
from the observation task, the sensor type needed for the
observation, and the earliest start and latest end times of the
task. Satellite labels include the satellite name and multiple
sensors. Sensor labels further include the sensor name, the
type of coverage provided by the sensor, the minimum tran-
sition duration required between two adjacent tasks on the
sensor, and whether the sensor is operational.

The dataset provides theoretical optimal values for the
objective functions, which are the total profits and total num-
ber of completed observation tasks, as shown in Table 2. The
maximum profits refers to the upper boundary of profits that
can be achieved by a dataset. The maximum number of tasks
refers to the upper boundary of the number of observation
tasks that can be achieved by a dataset.

Using the optimal dataset allows for an intuitive evaluation
of the algorithm’s results, particularly the gap relative to the
best results can reflect the algorithm’s capability to escape
better solutions and achieve the optimal.

6.2 Results of the Greedy Algorithm

Tables 3 and 6 presents the scheduling results of the greedy
algorithms based on FIFO and Min_BI for the dataset
selected in this paper. Within the FIFO-based greedy algo-
rithm, the scheduling results of 8 datasets have a gap within
20% of the maximum profit, and the gap between the FIFO
scheduling results and the maximum profit is not less than
10% for any case, with the maximum number of tasks com-
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Table 2 Theoretical optimal value of the dataset

Number Max profits Max number of
tasks scheduled

1 194 26

2 599 82

3 629 85

4 318 44

5 888 129

6 928 131

7 1198 163

8 1348 179

9 495 72

10 1042 155

11 1226 176

12 1787 265

13 2034 290

Table 3 Comparison of scheduling profit results for greedy algorithms

Number Max profits FIFO Min_BI
Scheduling
result

Gap Scheduling
result

Gap

1 194 153 21.1% 188 3.1%

2 599 508 15.2% 534 10.9%

3 629 505 19.7% 573 8.9%

4 318 252 20.8% 307 3.5%

5 888 755 15.0% 806 9.2%

6 928 747 19.5% 813 12.4%

7 1198 940 21.5% 975 18.6%

8 1348 1032 23.4% 1081 19.8%

9 495 435 12.1% 467 5.7%

10 1042 922 11.5% 940 9.8%

11 1226 1015 17.2% 1072 12.6%

12 1787 1421 20.5% 1496 16.3%

13 2034 1610 20.8% 1695 16.7%

pleted being within 10% of the optimal solution. On the
other hand, the Min_BI-based greedy algorithm shows sig-
nificant improvement in scheduling results when targeting
maximum profit, with all cases having a gap within 20% of
the maximum profit and 6 cases having a gap within 10%
of the optimal solution. However, when targeting the max-
imum number of tasks completed, the performance of the
Min_BI-based algorithm decreases, with the gap between
the scheduling results and the maximum number of tasks
completed being not less than 10% for any case (Table 4).

Table 4 Comparison of results on the number of tasks scheduled by
the greedy algorithm

Number Max number of
tasks scheduled

FIFO Min_BI

Scheduling
result

Gap Scheduling
result

Gap

1 26 24 7.7% 23 11.5%

2 82 79 3.7% 73 11.0%

3 85 82 3.5% 68 20.0%

4 44 40 9.1% 40 9.1%

5 129 122 5.4% 116 10.1%

6 131 123 6.1% 115 12.2%

7 163 157 3.7% 138 15.3%

8 179 171 4.5% 153 14.5%

9 72 68 5.6% 66 8.3%

10 155 146 5.8% 139 10.3%

11 176 163 7.4% 155 11.9%

12 265 243 8.3% 220 17.0%

13 290 270 6.9% 246 15.2%

6.3 Results of the Tabu Search Algorithm

When the objective function is set to maximize profits, the
tabu search algorithm is run using the superior results of
the Min_BI-based greedy algorithm as the initial solution,
with the scheduling results presented in Tables 5 and 7. For
all cases, the variable neighborhood tabu Search algorithm
proposed in this paper achieves resultswithin a 10%gap from
the optimal solution, and for 4 cases, the gap to the optimal
solution is merely within 5%, indicating an improvement
over the results of the greedy algorithm and the traditional
tabu search algorithm.

When the objective function is to maximize the number of
tasks completed, the experimental results are shown inTables
6 and 8. Considering the FIFO-based greedy algorithm as a
comparative object, the variable neighborhood tabu search
algorithm also achieves the best results, with the gap to the
optimal solution for all cases within 5% (Figs. 7, 8).

7 Conclusion

This paper studied the flexibility features and availability of
visible timewindows, and described the significance of union
or complement operations considering the post-transition
duration. The proposed indicators of the impact degree, the
conflict degree, the flexibility, and the bad impact can effec-
tively evaluate the features of resources and corresponding
time windows. For the focus window selection issue, this
paper has designed a leftmost arrangement algorithm to select
the start execution time after confirming the specific window
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Table 5 Comparison of scheduling profit results for multiple algo-
rithms

Number Max
profits

Min_BI Traditional
tabu search

Variable
neighbor-
hood tabu
search

1 194 188 190 190

2 599 534 563 575

3 629 573 591 597

4 318 307 311 311

5 888 806 815 820

6 928 813 826 850

7 1198 975 1054 1089

8 1348 1081 1189 1236

9 495 467 470 473

10 1042 940 962 973

11 1226 1072 1108 1121

12 1787 1496 1577 1627

13 2034 1695 1836 1836

Table 6 Comparison of the number of task scheduling results for mul-
tiple algorithms

Number Max number
of tasks
scheduled

Min_BI Traditional
tabu
search

Variable
neighbor-
hood
tabu search

1 23 23 24 25

2 73 73 79 79

3 68 68 82 83

4 40 40 41 42

5 116 116 122 124

6 115 115 124 127

7 138 138 159 159

8 153 153 172 173

9 66 66 70 70

10 139 139 148 151

11 155 155 166 171

12 220 220 245 258

13 246 246 273 278

for observation. The concept of the absolute optimal time
window has been proposed, which, once marked, remains
unchanged throughout the algorithm execution, serving to
reduce the solution space and improve the quality of the solu-
tion. The concept of weighted randomness is also introduced
for the selection of resources and execution time windows
with a tendency towards randomness while simultaneously
ensuring the controllability of the exploration direction.

This paper has solved datasets of various sizes through
an improved tabu search algorithm, focusing on the variable

Table 7 Comparison of the gap in task scheduling profits results of
multiple algorithms to maximum profits

Number FIFO Min_BI Traditional tabu
search

Variable
neighborhood
tabu search

1 21.1% 3.1% 2.1% 2.1%

2 15.2% 10.9% 6.0% 4.0%

3 19.7% 8.9% 6.0% 5.1%

4 20.8% 3.5% 2.2% 2.2%

5 15.0% 9.2% 8.2% 7.7%

6 19.5% 12.4% 11.0% 8.4%

7 21.5% 18.6% 12.0% 9.1%

8 23.4% 19.8% 11.8% 8.3%

9 12.1% 5.7% 5.1% 4.4%

10 11.5% 9.8% 7.7% 6.6%

11 17.2% 12.6% 9.6% 8.6%

12 20.5% 16.3% 11.8% 9.0%

13 20.8% 16.7% 9.7% 9.7%

Table 8 Comparison of the gap in the number of tasks scheduled by
multiple algorithms to the maximum number of tasks scheduled

Number FIFO Min_BI Traditional tabu
search

Variable
neighborhood
tabu search

1 7.7% 11.5% 7.7% 3.8%

2 3.7% 11.0% 3.7% 3.7%

3 3.5% 20.0% 3.5% 2.4%

4 9.1% 9.1% 6.8% 4.5%

5 5.4% 10.1% 5.4% 3.9%

6 6.1% 12.2% 5.3% 3.1%

7 3.7% 15.3% 2.5% 2.5%

8 4.5% 14.5% 3.9% 3.4%

9 5.6% 8.3% 2.8% 2.8%

10 5.8% 10.3% 4.5% 2.6%

11 7.4% 11.9% 5.7% 2.8%

12 8.3% 17.0% 7.5% 2.6%

13 6.9% 15.2% 5.9% 4.1%

neighborhood structure of the tabu search algorithm to solve
the multi-satellite collaborative scheduling problem, design-
ing insertion, deletion, and swapping and rearranging three
types of neighborhood results for exploring neighbors. The
tabu list for the sequence of internal sensor observation tasks
uses a variable-length design, positively correlated with the
current solution count, thus adaptively solving different task
or window scales. Experimental results validate the effec-
tiveness and efficiency of the proposed method.

Based on the above content, further research in the follow-
ing areas is still to be conducted: (1) When solving for better
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Fig. 7 Gap ratio to the optimal solution

Fig. 8 Gap ratio to the maximum number of tasks completed

solutions in larger datasets, the solving speed is slow. (2) The
maximum number of iterations allowed without improve-
ment has not been set to a variable adaptive length, which
cannot effectively handle datasets of different magnitudes,
limiting the direction of the solution.
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