
Vol.:(0123456789)

Data Science for Transportation (2024) 6:10 
https://doi.org/10.1007/s42421-024-00095-0

RESEARCH

Modeling MobilityCoins—Charges, Incentives and Multi‑period 
Budgets in Multimodal Transportation Networks

Allister Loder1 · Klaus Bogenberger2

Received: 20 November 2023 / Revised: 20 April 2024 / Accepted: 17 May 2024 / Published online: 4 June 2024 
© The Author(s) 2024

Abstract
MobilityCoins are a tradable mobility credit (TMC) scheme variant. TMC schemes are a cap-and-trade scheme for man-
aging mobility that are designed to limit negative externalities, e.g., congestion, of traffic. Next to having link-specific or 
origin–destination-specific charges for cars as in the common TMC scheme, the MobilityCoin scheme’s distinctive elements 
are accommodating link-specific and origin-and-destination-specific charges and incentives for all modes of transport as 
well as being considered a mobility currency that can be earned, saved, and spent in multiple time periods. These distinc-
tive features of the MobilityCoin scheme does not alter the core behavioral mechanism of TMC schemes of increasing car 
travel costs, but these features interfere with the credit market in terms of market volume and market price that ultimately 
affects traffic outcomes, e.g., an uncontrolled market volume increase can lower the market price that in turns increases the 
attractiveness of using the car. In this paper, we develop a mathematical model of multimodal macroscopic network flows 
and a MobilityCoin market to investigate the impacts of charges, incentives, and multi-period budgets. The model is imple-
mented as a single-day model with an integration of sensitivity for multi-period budgets to study how the outcomes in the 
transportation system change with charges, incentives, and multi-period budgets. Further, we discuss implications for the 
policy design of MobilityCoins schemes.
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Introduction

It has been argued that “economists have had limited suc-
cess in promoting economically efficient transportation and 
environmental externality policies” (Lindsey and Santos 
2020). Around the world, arguably, the primary policies are 
fuel excise taxes and road user charges for toll roads, where 
only a few examples are frequently cited for their (par-
tial) successes, e.g., London and Singapore (Leape 2006; 
Prud’homme and Bocarejo 20058; Metz 2018). Considering 
the urgent need “for deep CO2 mitigation in road transport” 

(Axsen et al. 2020), as well as the thread to the treasury from 
a decline in fuel excise tax revenue due to vehicle electrifi-
cation, one of the essential overarching research questions 
in transport policy is what kind of schemes to implement 
instead?

In economics, a long discussion on “price vs. quantities” 
exists for regulating an economic system in terms of exter-
nalities, i.e., setting standards or limits or charging taxes 
(Weitzman 1974). Here, Dales was one of the first to pro-
pose such a quantitative instrument to manage external costs 
using a cap-and-trade scheme (Dales 1968). In transport, 
such policy instrument based on tradable mobility credits 
(TMC) has been put forward by Verhoef et al. (1997) to 
regulate externalities, but so far have not seen any real-world 
implementation, except first promising field experiments 
(Geng et al. 2023). Nevertheless, such a policy instrument 
has already seen implementation in the energy sector to, e.g., 
manage carbon emissions (Perroni and Rutherford 1993) and 
promote green energy deployment (Bergek and Jacobsson 
2010; Frei et al. 2018).
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In transport, the cap-and-trade scheme usually works 
as follows: credits (or tokens, certificates, or permits) are 
required for traveling on a specific link, entering a specific 
area, or using certain infrastructures. The regulator defines 
an upper limit to the to-be-regulated quantity, e.g., emis-
sions, congestion delays, or car travel, and issues credits 
to use parts of this overall quantity. Travelers obtain these 
credits from the regulator, e.g., free of charge or by auction-
ing, and redeem them for their mobility again at the regula-
tor. Travelers can also sell their excess credits to travelers 
in shortage of credits, which generates additional monetary 
income for the seller. An overview of system designs is pre-
sented in Provoost et al. (2023), and aspects of the overall 
market design have been recently summarized comprehen-
sively by Chen et al. (2023). As TMC market participants 
can negotiate and allocate the credits among themselves, a 
better performance compared to monetary fees can emerge 
in many circumstances (De Palma et al. 2018; De Palma and 
Lindsey 2020). Further, as credits can be initially distributed 
to market participants for free, participants not exceeding 
their initial allocation do not have to pay anything, which 
may support public acceptance of a TMC scheme (Krab-
benborg et al. 2020).

Arguably, the seminal paper that re-initiated TMC 
research is Yang and Wang (2011), which provides the 
fundamental mathematical macroscopic model for a TMC 
scheme. Nevertheless, other modeling approaches have also 
been developed, e.g., an MFD-based approach in a multi-
modal context (Balzer and Leclercq 2022) or agent-based 
modeling approaches (Tian and Chiu 2015), where also the 
aspect of multi-period budgets has been included by (e.g., 
Miralinaghi and Peeta 2016). Further related to multi-period 
budgets are the within-day dynamics of a TMC scheme, 
which has been studied, e.g., by Seshadri et al. (2022), and 
the impact of day-to-day variability in demand and supply 
on the performance of a TMC scheme, which has been stud-
ied, e.g., by Lindsey et al. (2023). Research also studied 
user perceptions, the system’s acceptance, and feasibility 
(Krabbenborg et al. 2020, 2021; Kockelman and Kalmanje 
2005). Further, Servatius et al. (2023b) discussed how the 
ability and willingness to participate in TMC trading can be 
ensured; the authors conclude that it is feasible but challeng-
ing considering the complexity of interactions of parameters 
and interests. The idea of credits also extends to incentives, 
which can be collected and then exchanged for, e.g., money 
or public transport tickets (Hu et al. 2023), where Singa-
pore’s “Travel Smart Journeys”-scheme is presumably one 
of the most prominent schemes (Land Transport Authority 
2023).

Recently, Bogenberger et al. (2021) proposed the TMC-
scheme variant “MobilityCoins” that differs from a conven-
tional TMC scheme in at least two aspects. First, it accom-
modates link-specific and origin-and-destination-specific 

charges and incentives for all modes of transport, not only 
cars, as in most variants present in the literature. Second, 
it is considered a currency in the mobility system that can 
be earned, saved, and spent. It has a natural validity span-
ning over multiple days or weeks, defined as multi-period 
budgets, compared to approaches in the literature that usu-
ally consider only one or a few days (Blum et al. 2022). 
These aspects interfere with the credit market and thus could 
affect the outcomes observed in the transportation system. 
For example, if too many credits are provided as incentives, 
the market price could drop, increasing the attractiveness 
of driving. Here, Schatzmann et al. (2023) recently showed 
using a stated-preference survey that the cost sensitivity for 
the credit price in the generalized travel cost depends on the 
time until the end of the validity period and the amount of 
budget left.

In this paper, we investigate how these multimodal incen-
tives and multi-period budgets of a MobilityCoin scheme 
impact outcomes in the transportation system. We develop 
a mathematical model of static multimodal macroscopic 
network flows and of the MobilityCoin market that accom-
modates charges and incentives as well as considers the 
effects of multi-period budgets. We investigate the effects 
on transportation system outcomes of the interactions of 
charges, incentives, and multi-period budgets in a Mobili-
tyCoins scheme in a small transportation network and derive 
implications for policy design.

This paper is organized as follows. Section 2 presents the 
mathematical model, and Sect. 3 presents the case study net-
work. Section 4 presents the results of the case study analy-
sis before Sect. 5 ends with discussions and conclusions.

Mathematical model

Consider a transport network with N  nodes, A arcs, and M 
modes of transport. Nodes are referenced by i ∈ N  (with 
aliases j and k), arcs are a distinct pair of nodes and are ref-
erenced by the link start-end pair (i, j) ∈ A , modes are refer-
enced by m ∈ M . In this model, three modes are considered: 
M ∈ {car, public transport, bicycle} . Travelers are distin-
guished by their origin–destination pair (o, d) ∈ OD . The 
set of origins and destinations is a subset of the set of nodes, 
i.e., OD ⊆ N  . The overall demand dod between origin o and 
destination d is assumed fixed and exogenous. The Mobility-
Coin system is characterized an initial allocation of credits � 
to travelers, link-specific charges for the car mode �ij as only 
car travelers make route choice and origin–destination-spe-
cific charges �odm for all modes of transport. In this model, 
� is assumed to be uniform. In case 𝜅ij > 0 or 𝜆odm > 0 , the 
charge is subtracted from the available MobilityCoin budget; 
in case 𝜅ij < 0 or 𝜆odm < 0 the charge becomes a subsidy or 
incentive, i.e., it is added to the available budget. Here, the 
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original MobilityCoin conceptualization argues that only 
sustainable modes of transport should be marginally subsi-
dized as well as to limit the amount of MobilityCoins that 
can be earned to avoid induced travel only for such a purpose 
(Blum et al. 2022). Here, Xiao et al. (2019) argue that it 
should be ensured that “negative cycles”, i.e., loops in the 
network with overall negative path costs should be avoided. 
This is not only because of induced travel but also because 
the minimum-cost path problem cannot be solved anymore. 
Hence, in the MobilityCoin system design, providing incen-
tives should focus on �odm rather than �ij to ensure the nonex-
istence of negative cycles while limiting the overall amount 
of incentives provided to avoid induced travel.

In this macroscopic model, travelers make two choices. 
First, they choose their mode m. Second, all users choos-
ing the car also choose their route. Mode choice and route 
choice are made based on the travel costs that comprise 
travel time costs and costs resulting from the charges 𝜅ij > 0 
and 𝜆odm > 0 . In this model, both choices are made simulta-
neously in such a way that the resulting travel costs across 
routes and modes lead to the stochastic user equilibrium 
(Daganzo and Sheffi 1977; Zhou et al. 2012), i.e., no traveler 
can improve her or his perceived travel costs by unilateral 
action. The stochastic user equilibrium relaxes the assump-
tion of perfect knowledge of all travelers in the determinis-
tic user equilibrium, i.e., Wardrop’s first principle (Wardrop 
1952). In the following, the mathematical model is explained 
step by step.

The presented multimodal extension is a generalization 
of the seminal mathematical formulation presented by Yang 
and Wang (2011) and continuous the multimodal work of 
(Servatius et al. 2023a). The mathematical model describes 
a macroscopic traffic assignment and uses built-in param-
eters to simulate the impact of multi-period budgets. The 
model defined in the following is formulated as a mixed-
complementarity problem (MCP) (Ferris et al. 1999) and is 
implemented in GAMS (GAMS Development Corporation 
2018). The model’s variables and parameters are summa-
rized in Table 1.

This demand is distributed across modes using a logit-
based assignment. As shown in Eq. 1, the choice of modes 
depends on the minimum travel costs Wodm between o and d 
using mode m and a scale parameter  �.

In this mathematical model, the costs for MobilityCoins 
enter the travel costs of all modes through link-specific 
and origin-and-destination-specific charges and incen-
tives, each multiplied by the MobilityCoin market price P. 
The MobilityCoin system is characterized by multi-period 
budgets which means that MobilityCoins can be earned, 
saved, and spent at and over various different days through-
out a certain validity period. To describe such multi-period 
budget behavior, consider parameters b and t that describe 

(1)Xodm =
exp

�

−�Wodm

�

∑

m�∈M exp
�

−�Wodm�

�

Table 1   Variables and 
parameters in the model

Symbol Explanation

P Tradable mobility credit market price
Xodm Share of travelers using the car on origin–destination pair (o, d)
Tij Travel time on link (i, j)
Cij Perceived travel cost on link (i, j)
Qij Flow on link (i, j)
Yijk Partial flow on link (i, j) towards k
Wodm Minimum perceived travel costs from origin–destination (o, d) using mode m
Mijm Minimum perceived travel costs between i and j
� Random component to represent travelers’ perception error with E

(

�ij
)

= 0

� Mode choice scale parameter
� Initially issued credits per traveler
�odm Origin–destination-specific MobilityCoins charges
�ij Link-specific MobilityCoins charges
�odm Free-flow travel time between origin o and destination d using mode m
b MobilityCoin budget status parameter with b ∈ [0;1]

t MobilityCoin time period parameter with t ∈ [0;1]

� MobilityCoin cost sensitivity
t0
ij

Free-flow travel time on link i-j
cij Capacity on link i-j
� BPR function parameter
n BPR function parameter
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the budget status and the time until the end of the validity 
period, respectively. In this mathematical model, we follow 
the findings as reported by Schatzmann et al. (2023). Cost 
sensitivity increases with fewer MobilityCoins available in 
the budget, but there is an interaction effect between the 
number of MobilityCoins left and the number of days until 
the end of the validity period: with the same number of 
MobilityCoins left, the cost sensitivity is higher with more 
days left until the end of the validity period. We integrate 
these findings as follows. Consider that both parameters have 
values between zero and one and that budget status b is equal 
to one if all MobilityCoins are available and zero if none are 
available anymore; t is equal to one at the start of the valid-
ity period and is zero at the end of the validity period. We 
approximate this for the cost sensitivity � as shown in Eq. 2.

By approximation, we mean using the relationships reported 
by Schatzmann et al. (2023) and integrating them into the 
simplest functional form with interaction effect as defined in 
Eq. 2 because no further information is currently available 
on the behavioral model. Note that a better behavioral model 
can replace this functional relationship once data for this is 
available. It is important to mention that Schatzmann et al. 
(2023) obtained these findings not at the interval boundaries 
but around the midpoint of each interval. Consequently, the 
relationship in Eq. 2 is only meaningful around the midpoint 
values

Figure 1 illustrates the cost sensitivity for different param-
eter values of b and t. If the MobilityCoin budget is almost 
fully available, i.e., b is large, � becomes small, while it gets 
smaller the shorter the time period until the end of the validity 
period given the same available MobilityCoin budget. Impor-
tantly, in this model, the feature of multi-period budgets are 
only considered in the cost sensitivity � , but not in the market 
clearing condition.

In this mathematical model, the MobilityCoin charges with 
their respective cost sensitivity enter the resulting stochastic 
user equilibrium travel costs Wodm as given in Eq. 3. The ori-
gin-and-destination charges �odm weighted by the product of 
the MobilityCoin cost sensitivity � and the MobilityCoin mar-
ket price P is added to the minimum travel costs Modm for each 
mode. Parameter �odm can accommodate incentives, e.g., for 
cycling, but also charges for cars, e.g., for parking.

In this model, we consider that only cars experience conges-
tion effects and have link-specific charges � , while public 
transport and bicycles have fixed travel times on their respec-
tive origin-and-destination pair. Thus, we conveniently set 
for public transport and bicycles Modm ≡ �odm , where �odm is 
the free-flow travel time between origin o and destination d. 

(2)� = t(1 − b)

(3)Wodm = Modm + �P ⋅ �odm

Thus, only Mod,car has to be computed from the stochastic 
user equilibrium flow pattern in the network.

The minimum travel costs Mod,car are obtained as follows. 
Consider that the car travel costs Cij on link i-j comprises 
two elements. First, the travel time Tij . The link travel time 
is defined in Eq. 4 and follows the Bureau-of-Public-Roads 
(BPR) function (Bureau of Public Roads 1964) with the usual 
parameters and is a function of link flow Qij.

The second element is the MobilityCoin link charge �ij val-
ued at MobilityCoin market price P weighted by the cost 
sensitivity � . As aforementioned, both elements, the travel 
time costs as well as the MobilityCoin link charges, con-
stitute the perceived link travel costs for car travelers Cij 
as defined in Eq. 5. Here, �ij is the corresponding random 
component (Zhou et al. 2012).

The arbitrage condition for car drivers to use link (i, j) fol-
lows a stochastic user equilibrium (Daganzo and Sheffi 
1977) that relaxes the assumption of perfect knowledge of all 
travelers in the deterministic user equilibrium or Wardrop’s 
first principle (Wardrop 1952). It is formulated in this model 
as given in Eq. 6 based on Van Nieuwkoop et al. (2016), but 
modified using the perceived link travel costs Cij . Yijk are 

(4)Tij = t0
ij

(

1 + �

(

Qij

cij

)n)

(5)Cij = Tij + �P ⋅ �ij + �ij

Fig. 1   MobilityCoin cost sensitivity as a function of budget depletion 
b and time until the end of the validity period t 
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the partial flows on that link towards k. When the minimum 
perceived travel costs from node i to k over j equal the mini-
mum perceived travel costs from node i to k, the link is used 
for car drivers towards k. In other words, Eq. 6 considers the 
perceived travel costs from i to k, i.e., origin and destination, 
while exploring route alternatives connected to node i over 
j. It is from this Equation from which Mod,car can be derived.

The partial link flows Yijk can then be aggregated to link 
flows Qij as the sum over all partial flows along those links 
as defined in Eq. 7.

In the model, it must be ensured that the inflows and out-
flows at each node in the network are balanced. This is 
ensured by Eq. 8.

Last, as the MobilityCoins scheme is a market-based sys-
tem, Eq. 9 resembles the market clearing condition. Here 
� is amount of credits initially issued per traveler. In other 
words, the left-hand side of Eq. 9 results into the total mar-
ket volume of MobilityCoins. �ij is the MobilityCoins link 
charge for car travelers and �odm is a origin–destination 

(6)Cij +Mjk,car ≥ Mik,car ⟂ Yijk ≥ 0

(7)Qij =
∑

k

Yijk

(8)dodXodcar =
∑

(o,j)∈A

Yojd −
∑

(j,o)∈A

Yjod

mode-specific charge for all other travelers. The comple-
mentarity conditions ensure that the MobilityCoins market 
price P is only non-zero when supply and demand are bal-
anced. If the market is over-supplied, the market price would 
be consequently zero.

In conclusion, the presented mathematical model is a single-
day model with an integration of sensitivity for multi-period 
budgets. Hence, this model cannot be used to simulate and 
study the actual performance of a TMC or MobilityCoin 
system over time during a validity period, but rather to 
study how the average outcomes in the transportation sys-
tem change when pivoting slightly the cost sensitivity as a 
consequence of changes in the available budget or time until 
the end of the validity period.

Case study definition

The objective of a MobilityCoin scheme is to reduce the 
external cost of car travel (Blum et al. 2022), which typi-
cally includes congestion externalities as well as pollution, 
noise, etc. It is the agency that defines � , �ij , and �odm in 

(9)

� ⋅
∑

(o,d)∈OD

dod ≥
∑

(i,j)∈A

�ijQij

+
∑

(o,d,m)∈OD

�odm ∗ dod ∗ Xodm ⟂ P ≥ 0

Fig. 2   Case study network
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such a way that the targets in terms of reduction in exter-
nal costs are achieved. In doing so, the agency can weigh 
which external costs to prioritize over others. In this case 
study, the simple policy objective of reducing overall car 
travel is assumed because it is generally associated the 
most with external costs. This can lead to counter-intuitive 
outcomes that total travel time increases as the travel costs 
of faster modes, i.e., the car, are not competitive anymore. 
To illustrate the primary transport and economic mecha-
nisms of a MobilityCoin scheme following the assumed 
policy objective, we apply the model developed in Sect. 2 
to the simple network shown in Fig. 2. It is important to 
note that the presented model does not capture the effects 
of transaction costs of credits between parties (e.g., Nie 
2012) and the effects of income (e.g., Krabbenborg et al. 
2020), but both can be relevant in the performance and 
success of TMC schemes.

The network has 17 nodes of which 13 are origin and 
destination nodes and four are through nodes, i.e., the 
demand entering or exiting the network at these nodes is 
0. The network has directed arcs as shown in Fig. 2. In the 
network, three modes of transport operate: cars, public 
transport, and bicycles, where only cars experience con-
gestion effects. It is assumed that the same technology and 
infrastructure, i.e., level of service, for bicycles and public 
transport, is available in the entire network, irrespective of 
whether being in the CBD or not. For example, the same 
strategy of providing dedicated bus lanes or priority at 
signals.

This network is centered around node “9”, while hav-
ing symmetry with the line from nodes “2”, “10”, “9”, 
“11”, “7”; hence we consider the area defined by all six 
mentioned nodes as the “CBD” (central business district) 
area of the network with all links between these six nodes 
belonging to the “CBD”. Table 3 shows the parameters for 
the volume-delay function of each link.

We generate a random origin–destination matrix that 
is provided in Table 4. There is sufficient travel demand 
in the network to lead to congestion effects considering 

the link parameters shown in Table 3. We define the ori-
gin–destination travel times �odm for public transport and 
bicycles as follows. First, we calculate the car free-flow 
travel times in the network shown in Fig. 2. Second, we set 
the public transport travel times �od,pt on each origin–desti-
nation pair and the bicycle travel times �od,bicycle to a mul-
tiple of the car free-flow travel times, which is randomly 
sampled from a uniform distribution between 1.35 and 
1.45 for public transport and between 1.40 and 1.50 for 
bicycles. Tables 6 and 5 provide the resulting travel times.

In this case study analysis, the status-quo scenario is 
defined by having no MobilityCoin system in place, i.e., 
the MobilityCoin market price is set to zero or P ≡ 0 . 
When implementing the MobilityCoin scheme, the fol-
lowing five policy design and system status parameters 
affect the transportation system outcomes and, thus, factor 
into the efficiency and success of the MobilityCoin system 
implementation.

•	 The initial allocation of credits � : all else being equal, 
an increasing � leads to an increase in market volume, 
decreasing the market price and thus decreasing the 
generalized travel costs for the car, making it more 
attractive.

•	 The link-specific charges and incentives �ij for cars: all 
else being equal, increasing �ij increases the generalized 
travel costs for cars, making it less attractive. However, 
considering the limited market volume of MobilityCoins, 
�ij also determines the maximum car travel in the net-
work. In case of 𝜅ij < 0 , i.e., it becomes an incentive; it 
increases the total supply of MobilityCoins and reduces 
the MobilityCoin market price, thus the general travel 
cost, making the car more attractive. If this incentive 
is unconditional and unrestricted, an upper limit to car 
travel is not given anymore.

•	 The origin-and-destination charges and incentives �odm : 
all else being equal, an increasing �odm increases the 
MobilityCoin market price and thus the generalized 
travel costs. In the case of 𝜆odm < 0 , it becomes an incen-

Table 2   Trips and travel time in the status-quo scenario

General statistics

Total number of trips 306,837
Total travel time (10e6 min) 9.45
Total travel distance by car (10e6 km) 26.26

Modal share

 Mode of transport By number of trips By travel time

Car 33.2% 67.8%
Public transport 33.4% 15.8%
Bicycle 33.4% 16.4%
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tive; it increases the total MobilityCoin market volume 
and decreases the MobilityCoin market price, hence 
reducing the generalized travel costs, eventually making 
the car more attractive.

•	 The multi-period budget indicators of budget status b and 
time until the end of the validity period t: all else being 
equal, the less budget is available, i.e., b decreases, and 
the longer the time period until the end of the Mobili-
tyCoin validity period, i.e., t increase, travelers become 
more cost sensitive for MobilityCoin charges, i.e., their 

perceived generalized travel costs increase for modes 
with 𝜆odm > 0 or 𝜅ij > 0 , or decreases for modes with 
𝜆odm < 0 or 𝜅ij < 0.

It can be seen that these five parameters of policy design 
and system status parameters strongly interact and affect the 
outcomes in the transportation system, eventually interfering 
with the intended policy targets of the MobilityCoin system. 
We measure the outcomes in the transportation system using

Fig. 3   Changes in system outcomes with link-specific charges for car drivers in the core of the network compared to the status quo outcomes
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•	 The number of trips per mode and their shares,
•	 The total distance traveled by the car mode as it is the 

primary source of externalities, which are likely to be 
regulated by a tradable credit scheme,

•	 The total travel time by mode and their shares
•	 The MobilityCoin market price.

In the case study, we intentionally exaggerate the selected 
policy design and system status parameters or their ranges 

to highlight the effects of these on the transportation sys-
tem outcomes: we set � = 0.1 MobilityCoins per traveler 
and �ij,car ∈ {0.5;0.8;1;1.2;1.5} MobilityCoins per link for 
all “CBD” links and to zero for all other links. When intro-
ducing, we set the origin–destination specific charges to 
�od,bicycle ∈ {−0.1; − 0.2} , where the minus sign indicates 
that it is a subsidy or incentive compared to a charge that has 
a positive sign. When considering the multi-period budgets, 

Fig. 4   Changes in system outcomes with incentives for cyclists and link-specific charges for car drivers in the core of the network compared to 
the status quo outcomes
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we set t ∈ {0, 0.3, 0.8} and t ∈ {0.3, 0.8, 1} . Further, we set 
the scale parameter for the mode choice to � = 0.001.

In the following section, we investigate the system out-
comes with increasing complexity from the status quo with 
no tradable credit scheme (see Sect. 4.1), a MobilityCoin 
system only with link-specific charges for cars, i.e., a com-
mon tradable credit scheme, in Sect. 4.2, a MobilityCoin 
system with link-specific charges for cars and incentives 
for bicycles in Sect. 4.3, and a MobilityCoin system with 
link-specific charges for cars, incentives for bicycles, and 
considering multi-period budgets in Sect. 4.4.

Case Study Investigation

In this section, we use the mathematical model from Sect. 2 
to investigate and discuss the system outcomes with the 
increasing complexity of adding policy design and system 
status parameters of that model. First, we present the sta-
tus quo or the benchmark without any MobilityCoins of the 
case study presented in Sect. 3. Second, we introduce link-
specific MobilityCoin charges for cars on the “CBD” links 
(see Fig. 2), which is similar to a common tradable credit 
scheme. Third, we additionally introduce incentives, i.e., 
negative charges, for cyclists. Fourth, we add to the previous 

car charges and bicycle incentives the aspect of multi-period 
budgets.

Status Quo

Table 2 summarizes the transportation system outcomes for 
the status quo scenario defined in Sect. 3. Overall, more than 
300,000 travelers are navigating the multimodal network. 
These travelers distribute almost equally to all three modes. 
This is intuitive as it can be expected that the car is chosen 
by travelers until travel costs similar to public transport and 
bicycles result. Considering the modal share by travel time, 
it can be observed that those taking the car in the network 
have substantially larger travel times compared to public 
transport and bicycle users.

MobilityCoins only with Link‑specific Charges 
for Cars

In Fig. 3 we show the outcomes in the case study trans-
portation system when a MobilityCoin scheme with only 
link-specific charges on all links connecting to node “9” 
are introduced. Here, as already mentioned, we set the ini-
tially allocated budget to � = 0.1 MobilityCoins per traveler 
and the link-specific charge to �ij,car ∈ {0.5;0.8;1;1.2;1.5} 
MobilityCoins per link. Note by simulating different link 
charges �ij,car we investigate the sensitivity of the outcomes. 
Generally, we find in Fig. 3 that for �ij,car = 0.5 no impact 
compared to the status quo is observed. In other words, the 
number of initially allocated MobilityCoins exceeds the 
number of MobilityCoins required by all car travelers navi-
gating the links in the center of the network. When we then 
increase the charge, we observe the expected pattern, namely 
that car travel declines and the MobilityCoin market price 
increases. Here, the market price is expressed in time units 
as in the case study model, all cost elements are expressed 
in time. For example, a MobilityCoin market price as seen 
in Fig. 3d of 5 min per MobilityCoin means that for link 
charge of one MobilityCoin per link, the travel costs increase 
by 5 min, which is a multiple of the free-flow speed (see 
also Table 3). Hence, travel on these links becomes highly 
unattractive. With car users following the equilibrium prin-
ciple, drivers distribute to other routes until an equilibrium 
is reached. This explains the substantial increase in car travel 
distance seen in Fig. 3a and total travel time seen in Fig. 3b 
when increasing the charges from �ij,car = 0.5 to �ij,car = 1.5 . 
Arguably, the desired effect of introducing a TMC-scheme 
seems fading, which is also emphasized by the fact that no 
further market price increase is seen in Fig. 3b, suggesting 
that the shifting potential has been almost fully exploited.

Fig. 5   Investigation of the multi-period aspect in transportation sys-
tem outcomes compared to the status quo. The market clearing with 
parameters �ij,car = 1.5 and �od,bicycle = −0.1 is assumed and fixed. 
MobilityCoin budget status b (greater means more MobilityCoins are 
available) and time until the end of the MobilityCoin period t (greater 
means more time until the end of the validity period)
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MobilityCoins with Charges and Incentives

The additional introduction of incentives for cyclists to 
the case study network with only link-specific charges 
means that the total market volume of MobilityCoins 
will increase. Consequently, it can be expected that the 
observed effects in Fig. 3 are attenuated. Investigating with 
�od,bicycle ∈ {−0.1; − 0.2} per bicycle trip, i.e., an incentive 
of 0.1 and 0.2, respectively, we find exactly this attenua-
tion as seen in Fig. 4. Here, we also see that with increas-
ing incentives, the attenuation is stronger: we find that at 
�od,bicycle = −0.1 the MobilityCoin market is inactive at 
�ij,car = 0.5 , while it stays inactive until �ij,car = 0.8 when 
�od,bicycle = −0.2 . The MobilityCoin market price also does 
not reach the levels of the link-charges-only scenario from 
Fig. 3, leading to a less substantial shift to other modes and 
routes, in particular, is the rebound in car travel as seen in 
Fig. 3a not observed anymore.

MobilityCoins with Charges, Incentives, 
and Multi‑period Budgets

In the analysis of the impact of multi-period budgets, we 
assume the market clearing with parameters �ij,car = 1.5 and 
�od,bicycle = −0.1 from Fig. 4, leading to P = 3.26 min. In 
other words, for this investigation, the market is considered 
fixed to investigate the impact of budget status b (greater b 
means more MobilityCoins are available) and time until the 
end of the validity period t (greater t means more time until 
the end of the validity period is available).

In Fig. 5 we show the results of this investigation. First, it 
can be seen that different parameter combinations of b and 
t impact the transportation system outcomes compared to 
the status quo differently. Nevertheless, the changes in car 
kilometers, car share and total travel time are all in the same 
direction as observed before. Generally, the results are intui-
tive: we find that the strongest impact occurs when much 
time is left until the end of the validity period, but not much 
is left of the available budget ( b = 0.3, t = 0.8 ); contrary, 
the smallest impact is found when much of the budget is 
available and the time until the end of the validity period is 
short ( b = 0.8, t = 0.3).

Synthesis

The presented investigation emphasizes the complex inter-
actions of charges, incentives, and multi-period budgets 
with respect to the outcomes of a multimodal transporta-
tion system. The presented case study is a simple network 
with exaggerated parameters to clearly point out what could 
happen and what should be considered in the policy design 
to avoid, e.g., the market is becoming inactive, or the market 
outcomes support substantial car detours, likely thwarting 

the objective of reducing overall car travel. As travel demand 
is distributed in the network according to the well-known 
Wardrop equilibrium principle, it is thus not trivial to opti-
mize single policy parameters of a MobilityCoin or TMC 
scheme as the entire transportation system response in the 
equilibrium must be evaluated and considered for the deci-
sion making.

Discussion and Conclusions

In this paper, we introduced a mathematical model to study 
the impact of charges, incentives, and multi-period budgets 
in a MobilityCoin scheme, a variant of tradable mobility 
credits. The model was implemented as a single-day model 
with an integration of sensitivity for multi-period budgets to 
study how the outcomes in the transportation system change 
with charges, incentives, and multi-period budgets. We 
applied the introduced model to a simple multimodal case 
study network to illustrate transportation system outcomes 
under different design configurations. We have shown that 
the different aspects of the MobilityCoin scheme (charges, 
incentives, and multi-period budgets) interfere strongly with 
the outcomes compared to the status quo. Although all sys-
tem implementations proved the capability of achieving the 
targeted reduction in car travel, it became apparent that it 
is likely not trivial to set policy parameters in such a way 
that the desired targets, e.g., emission or congestion levels, 
result. Here, using a mathematical program with equilibrium 
constraints (MPEC) could be a starting point (e.g., Ferris 
et al. 2005). Nevertheless, the aspect of heterogeneity in 
travelers’ preferences as well as the possibility for a more 
heterogenous initial allocation of MobilityCoins or credits 
must be considered too for the policy design of a Mobility-
Coin scheme.

In closing, tradable mobility credits or MobilityCoins are 
an alternative to price-based instruments like congestion 
charges or parking fees. With these instruments becoming 
more and more unpopular in public and politics, their imple-
mentation and thus ability to optimize the performance of 
the transportation system is likely to subside. Consequently, 
despite the complexity and challenges of a real-world imple-
mentation of a MobilityCoin scheme, investigating such a 
scheme further is promising, in particular as its feature of 
providing incentives and providing travelers the opportu-
nity to trade in credits or travel time for additional mon-
etary income, might support its introduction and ability to 
optimize the outcomes of the transportation system. Here, it 
should also be mentioned that such a tradable mobility credit 
scheme could also be seen as a novel opportunity to design 
and operate transportation systems that support agglomera-
tion effects (Graham 2007; Loder et al. 2021).
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Table 3   Parameters of the 
network links shown in Fig. 2

i j length [m] t0
ij
 [s] � [s] n [-] cij [veh/h]

1 2 3000 240 0.15 4 1974
2 1 3000 240 0.15 4 2030
2 3 2900 232 0.15 4 1991
3 2 2900 232 0.15 4 2037
1 4 3100 248 0.15 4 2009
4 1 3100 248 0.15 4 2059
4 6 3000 240 0.15 4 2070
6 4 3000 240 0.15 4 1969
6 7 2900 232 0.15 4 2029
7 6 2900 232 0.15 4 1947
7 8 3100 248 0.15 4 1908
8 7 3100 248 0.15 4 1993
5 8 2900 232 0.15 4 1989
8 5 3100 248 0.15 4 2004
5 3 3000 240 0.15 4 1909
3 5 2900 232 0.15 4 1983
1 14 183 14.64 0.15 4 1731
14 1 255 20.4 0.15 4 1773
4 14 235 18.8 0.15 4 1879
14 4 279 22.32 0.15 4 1857
4 16 108 8.64 0.15 4 1876
16 6 187 14.96 0.15 4 1869
14 12 206 16.48 0.15 4 1783
12 14 113 9.04 0.15 4 1700
12 16 177 14.16 0.15 4 1899
16 12 218 17.44 0.15 4 1835
14 10 288 23.04 0.15 4 1892
10 14 218 17.44 0.15 4 1797
2 10 1498 98.05 0.15 4 4171
10 2 1501 98.25 0.15 4 3996
10 9 1474 96.48 0.15 4 4000
9 10 1519 99.43 0.15 4 3897
12 9 1550 101.45 0.15 4 3823
9 12 1462 95.70 0.15 4 4107
16 11 157 12.56 0.15 4 1713
11 16 176 14.08 0.15 4 1820
7 11 1487 97.33 0.15 4 3928
11 7 1512 98.97 0.15 4 3804
9 11 1504 98.44 0.15 4 3946
11 9 1550 101.45 0.15 4 3913
9 13 1455 95.24 0.15 4 4083
13 9 1549 101.39 0.15 4 3808
11 17 273 21.84 0.15 4 1862
17 11 143 11.44 0.15 4 1827
13 17 177 14.16 0.15 4 1776
17 13 252 20.16 0.15 4 1749
10 15 262 20.96 0.15 4 1814
15 10 238 19.04 0.15 4 1715
13 15 173 13.84 0.15 4 1875
15 13 251 20.08 0.15 4 1783
15 3 284 22.72 0.15 4 1720
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Table 3   (continued) i j length [m] t0
ij
 [s] � [s] n [-] cij [veh/h]

3 15 183 14.64 0.15 4 1878
15 5 273 21.84 0.15 4 1865
5 15 240 19.2 0.15 4 1710
17 5 265 21.2 0.15 4 1871
5 17 243 19.44 0.15 4 1881
17 8 216 17.28 0.15 4 1847
8 17 260 20.8 0.15 4 1789

Table 4   Origin and destination table for the case study

The unit is number of travelers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 1860 1404 2550 1506 2448 1104 1794 2754 1245 1740 1827 2490 0 0 0 0
2 1149 0 2406 2019 2346 918 1746 960 2034 2694 2430 2298 2145 0 0 0 0
3 1815 1743 0 2781 1365 2802 2832 1008 2556 1743 2370 2880 1194 0 0 0 0
4 2496 2250 1416 0 1743 2193 1050 2973 1989 2715 1170 1968 1761 0 0 0 0
5 1884 2601 2430 1830 0 2328 2433 2352 2088 1965 2109 2055 1293 0 0 0 0
6 2274 906 2553 2058 1038 0 1755 2160 2979 2088 987 2544 2451 0 0 0 0
7 2526 1248 1326 2643 1293 2193 0 1149 1671 2871 2943 993 1257 0 0 0 0
8 1110 2436 2565 1560 1515 2271 2364 0 1083 2028 2307 2934 1776 0 0 0 0
9 972 1530 1422 1479 1002 1557 2103 1494 0 951 2397 1401 1026 0 0 0 0
10 1953 1224 2091 2781 1212 2166 1203 2940 2448 0 1890 966 2730 0 0 0 0
11 1845 2094 1983 2271 1821 1446 2301 2691 2937 2283 0 2391 2631 0 0 0 0
12 1872 1653 2313 2121 1998 2700 2529 1608 2145 2973 1965 0 2484 0 0 0 0
13 1209 1371 1824 1578 2760 2271 1689 1371 1287 1869 2715 2997 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5   Origin–destination 
travel times in seconds for 
bicycles in the network

Origin

1 2 3 4 5 6 7 8 9 10 11 12 13

Destination 1 200 100 57 111 391 230 138 175 56 87 44 103
2 201 187 198 196 546 382 251 282 142 228 183 194
3 115 200 124 63 477 259 109 195 62 117 110 53
4 53 200 103 115 350 234 138 188 58 89 45 102
5 118 208 51 92 427 198 59 194 61 64 104 52
6 89 233 133 35 85 189 90 177 94 42 41 80
7 229 374 233 175 195 344 186 285 224 139 185 183
8 145 239 93 87 54 448 201 178 104 56 98 45
9 186 283 185 179 187 526 298 190 138 146 151 145
10 53 142 50 62 56 403 239 109 142 92 48 47
11 81 238 86 30 44 379 142 48 142 88 40 37
12 45 187 99 37 93 374 189 94 137 50 44 82
13 111 197 50 94 59 448 205 60 135 60 62 99
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Appendix A. Case study network parameters

See Tables 3, 4, 5 and 6.
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