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Abstract
Routine and consistent data collection is required to address contemporary transportation issues. The cost of data collection 
increases significantly when sophisticated machines are used to collect data. Due to this constraint, State Departments of 
Transportation struggle to collect consistent data for analyzing and resolving transportation problems in a timely manner. 
Recent advancements in sensors integrated into smartphones have resulted in a more affordable method of data collection. 
The primary objective of this study is to develop and implement a smartphone-based application for transportation-related 
data collection. The app consists of three major modules: a frontend graphical user interface (GUI), a sensor module, and 
a backend module. While the frontend GUI enables interaction with the app, the sensor modules collect relevant data such 
as video, gyroscope, motion and accelerometer readings while the app is in use. The backend leverages a real-time database 
to stream and store data from sensors, together with providing the computational resources needed to support the applica-
tion. In comparison to other developed apps for transportation data collection, this app is not overly reliant on the internet 
enabling the app to be used in internet-restricted areas. Additionally, the app is designed for multipurpose applications in 
transportation. The collected data were analyzed for a variety of purposes, including calculating the International Rough-
ness Index (IRI), identifying pavement distresses, and understanding driver’s behaviors and environment. From the sensor 
data, we detected turning movements, lane changes and estimated IRI values. In addition, several pavement distresses were 
identified from the video data with machine learning.
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Introduction

Among today's transportation issues are congestion, safety, 
equity, aging infrastructure, energy, sustainability, security 
among others. To find long-term solutions to these issues, 
there is a need for data-driven approaches that can col-
lect and process quality, high-resolution, and high-fidelity 
streams of data at a reasonable cost. The current state of 
transportation data collection relies on expensive systems 

that are not easily scalable for continuous data streaming. 
The Virginia Department of Transportation (VDOT) for 
example, spends about $1.8 million per year on pavement 
data collection and evaluation using high-end machines 
(Sauerwein et al. 2011). The cost-prohibitive nature of this 
effort could lead to infrequent infrastructure assessment 
for agencies with limited funding. Low-cost data collec-
tion alternatives that are able to produce information com-
parable to these high-end systems are needed. The goal of 
this study is to tap into advancements in consumer-level 
technologies such as smartphones to scale the collecting of 
transportation data for continuous performance evaluation 
and decision-making.

The current generation of smartphones are enabled with 
a plethora of sensors such as accelerometers, gyroscopes, 
compass, and cameras. These sensors can be used to cap-
ture various dynamics of the transportation system. The 
accelerometers for example, detects vibrations caused by a 
moving vehicle. These vibrations are used as a surrogate to 
estimate the roughness of the road. Numerous studies have 
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been conducted to estimate the IRI using smartphone data, 
and the results are comparable to those obtained using high-
end machines with an acceptable margin of error (Aboah and 
Adu-Gyamfi 2020; Aleadelat et al. 2018; Sauerwein et al. 
2011; Zeng et al. 2018). The limitation of these approaches 
is that the type of vehicle used to collect the data influ-
ences its accuracy, as different vehicles respond differently 
to vibration. With the aid of computer vision and machine 
learning techniques, the video cameras and motion sensors 
can be used to understand the driving environment: extract 
vehicle trajectories, understand lane-changing behaviors, 
estimate vehicle density, weather condition, etc. (Aboah and 
Adu-Gyamfi 2020; Aleadelat et al. 2018; Efthymiouet al. 
2019, Dhatbale et al. 2021, Miao et al. 2022, Robinson and 
Cook 2012; Zeng et al. 2018).

The study’s aim is to develop and implement a mobile 
data collection application for collecting transportation data 
for multiple applications including road condition evalua-
tion, naturalistic driving studies, etc. A modular software 
design process was followed to allow for the future expan-
sion of the mobile app. The top module is a high-level user 
interface that uses different layouts, menus, buttons, and 
notifications to create a user-friendly interface for a wide 
range of users. A sensor module manages all key technolo-
gies for data collection including GPS, Camera, Acceler-
ometer and Gyroscope. The back-end module handles com-
munications between the different modules, data storage and 
requests. In comparison to previous smartphone data collec-
tion apps, this current app is not overly reliant on an internet 
connection to transmit data. This means that data can be 
gathered and stored temporarily in the app's library before 
being uploaded to the cloud server for storage when internet 
connectivity is available. This feature enables the data col-
lection from roadways in Wi-Fi dead zones. In addition, the 
use of the firebase backend enables data to be streamed from 
multiple sensors simultaneously and instantly. Recorded data 
can therefore be displayed instantly via web or other apps 
synced with the apps’ database.

The rest of the paper is divided into the following sec-
tions. The second section reviews relevant literature on 
smartphone applications in solving transportation-related 
problems. Section three contains information about the 
development process, including the design approach, key 
components, and modulus. The fourth section discusses the 
data collection process as it relates to the developed mobile 
application. Section five summarizes the quantitative find-
ings from the collection of field data. Finally, Section six 
summarizes the research, results the findings, and makes 
recommendations for future research in section seven.

Related Studies

This section discusses studies that examine the use of 
smartphone data to solve transportation-related problems. 
Each study is reviewed for its purpose, data collection 
technique, and methodology.

The technology to accurately assess pavement rough-
ness with inexpensive sensors has improved greatly. A 
probe-based monitoring system for slippery and rough 
road surfaces was developed by MDOT in 2010 (Robin-
son and Cook 2012). The vehicle data was collected and 
transmitted to a backend server running on an Android 
platform. It was attached to the windshield in the same 
manner as a navigation device. Various sensors in the vehi-
cle and on the phone were used to collect data, including 
the phone's three-axis accelerometer, the external road sur-
face temperature and humidity, and the vehicle's Control-
ler Area Network. During a two-year period, the system 
was installed in two vehicles driven by MDOT personnel. 
Over thirty thousand miles and more than 13 gigabytes of 
data were captured. To represent the pavement's surface 
irregularities, the vertical accelerometer signal's varia-
tion was employed. The accelerometer's sample rate is 
100 Hz. Data collection was followed by calibration of 
the accelerometer readings using a PASER system curve 
fitting algorithm to the Pavement Surface Evaluation and 
Rating (PASER) scale. Future iterations of the curve fit-
ting algorithm may incorporate data from the MDOT's 
annual PASER rating study. Researchers at Auburn Uni-
versity examined the use of vehicle-mounted sensors to 
determine the condition of road pavements (Dawkin et al. 
2010). The study's primary objective was to compute the 
IRI through the use of automotive sensors. The IRI was 
calculated using information gathered from a variety of 
vehicle sensors, including suspension deflection meters, 
accelerometers, and gyroscopes. On a 1.7-mile (2750-m) 
long test track, the National Center for Asphalt Technol-
ogy conducted controlled speed tests (NCAT). The total 
number of vibrations in a particular section can be deter-
mined by calculating the Root Mean Square (RMS) of 
a signal measurement (i.e., vertical acceleration, gyro-
scopes, or suspension deflection). Acceleration includes 
a section on RMS (Root Mean Squared) (Sect. 3.2). Fol-
lowing that, the aggregated vibrations were compared to 
the pavement segment's true IRI. The root mean square of 
vertical accelerations was found to be the most accurate 
representation of the true IRI. It followed the same gen-
eral trend as the well-known IRI, with the exception of a 
few expected magnitude changes. In summary, this study 
established that the most practical method for calculating 
the IRI is to use an RMS algorithm on vertical acceleration 
readings. In a pilot study, Flintsch et al. (2012) quantified 
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road ride quality and roughness using probing vehicles. 
Once again, vertical acceleration data was used to estimate 
vehicle vibration. At the Virginia Smart Road facility in 
Blacksburg, Virginia, a smoothness profile was created 
using an inertial-based laser profiler, and vertical acceler-
ometer measurements were taken using an instrumented 
car. The frequency of the accelerometer was chosen to 
be 10 Hz. Additionally, GPS coordinates were collected. 
Acceleration data was collected during four runs on the 
test track. The study discovered that acceleration runs are 
highly reproducible. The smoothness profile and accelera-
tion measurements are highly correlated, as determined by 
the coherence function analysis.

Papadimitriou et  al. (2018) used smartphone data to 
detect and analyze risky driving behaviors. The study exam-
ined critical risk indicators such as the number of aggressive 
driving incidents and cell phone use while driving. The study 
gathered data on vehicle speed, distance traveled, accelera-
tions, turning maneuvers, braking events, and cell phone 
use. The study's findings indicate that distraction caused by 
smartphone use has a significant effect on the number of 
severe events occurring per kilometer and, consequently, on 
the relative crash risk. Additionally, smartphone sensor data 
can be used to accurately detect mobile phone use while 
driving in more than 70% of cases. Another application 
of mobile apps is to enhance traffic control devices and to 
alleviate confusion among motorists passing through work 
zones. For example, a smartphone-based audio warning 
message (AWM) was proposed and tested in driving simula-
tors to supplement conventional traffic controls and increase 
worker safety in work zones (Li et al. 2016). The National 
Highway Traffic Safety Administration (NHTSA) and state 
transportation departments have implemented a variety of 
safety countermeasures aimed at reducing forward collisions 
in work zones. Traditional countermeasures, on the other 
hand, frequently fail to prevent crashes in work zones due 
to the complexity of traffic. Craig et al. (2017) conducted a 
study in Minnesota to determine the effect of in-vehicle mes-
sages on drivers' perceptions of work-zone events. Research-
ers at Texas Southern University's Innovative Transportation 
Research Institute developed a warning system application 
that alerts drivers to hazardous traffic situations through a 
variety of warning messages, including sound, visual, and 
voice (Dutzik et al. 2013; Rahman et al. 2016). In addi-
tion, researchers at the University of Minnesota developed 
a smartphone app that uses embedded sensors and Bluetooth 
technology to provide pedestrians with routing instructions 
when upcoming work zones are detected. When a work zone 
is detected, the smartphone vibrates to alert users, and the 
app then broadcasts an audible message to them (Liao 2014). 
Azadi et al. (2020) developed and deployed a work zone 
application for collecting, reporting, and storing real-time 
work-zone activity information. The study indicated that the 

precision of sensors such as GPS was within appreciable 
accuracy of work zone geolocation.

Design Approach

The current app was designed to collect data from the 
onboard IOS sensors and video from the onboard camera 
and then transfer the data instantly to a cloud-based, real-
time database. The current design is made up of three major 
modules: a frontend user interface module, a sensor module, 
and a backend module. Figure 1 shows the interactions and 
information flow between these modules.

Frontend Design

The user interface for this app was designed to provide a 
streamlined view that exposed key aspects of the application 
via a tab bar controller. This enables us to compartmentalize 
the application's various critical components into distinct 
views. As illustrated in Fig. 2, the tab bar contains a Video 
Tab, an Uploads Tab, a Library Tab, a Graph Tab, and a Set-
tings Tab. The Video Tab enables the collection of video and 
sensor data. The Uploads Tab enables the user to keep track 
of the upload status of each package gathered in the Video 
Tab. The Library Tab displays all of the packages that have 
been collected and are currently stored on the device. The 
Graph Tab displays a live graph of the device's acceleration 
in the z direction as measured by its sensors. The Settings 
Tab displays all of the current settings and enables them to 
be modified as necessary.

Backend Design

The primary function of the backend is to provide compu-
tational resources that can be used to accelerate front-end 
user query responses. The analytics performed on the front 
end of the application can be computationally expensive. 
To enable such sophisticated analytics on the front end of 
the app, we built a scalable, cloud-based backend using 
cutting-edge big data analytics techniques. The current 
study's backend is powered by Google Firebase. Firebase 
is made up of several parts, including a Realtime Database, 
a Cloud Firestore, and Cloud Storage. The Firebase Real-
time Database is a relational database management system 
that runs in the cloud. The data is stored in JSON format 
and is synchronized with each connected client in real 
time. Similarly, the Cloud Firestore maintains data consist-
ency across client applications and enables offline support 
for mobile and web applications. Cloud Storage enables 
massive scalability of file storage. It allows users to upload 
and download files directly to and from the Cloud Storage 
"bucket". The developed application stores all sensor data 
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in a Firebase Real-time Database and the videos in Cloud 
Firestore. The use of both the Firebase Realtime Database 
and Cloud Firestore ensure that uploaded data are made 
instantly accessible to other app users. Additionally, they 
allow multiple users to simultaneously push data to the 

cloud storage in real time. Finally, the Cloud Firestore 
caches data that your app is actively using, allowing the 
app to write, read, listen to, and query data even when the 
device is not connected to the internet. The structure of the 
backend real-time database is shown in Fig. 3a.

Fig. 1  Frontend, and backend modules of the App

Fig. 2  Key components of the app: a video tab, b upload tab, c library tab, d graph tab, e settings tab
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Sensor Module

The developed app leverages multiple modules to allow for 
sensor collection. These modules include CoreMotion, Core-
Location, and AVKit as shown in Fig. 3b. The CoreMotion 
module collects motion and environmental data from the 
onboard hardware of iOS devices, including accelerometers 
and gyroscopes, as well as the pedometer, magnetometer, 
and barometer. This framework enables the access and utili-
zation of data generated by the hardware. The CoreLocation 
determines the altitude, orientation, and geographical loca-
tion of a device. The framework collects data by utilizing 
all available hardware components on the device, including 
barometer, GPS, Wi-Fi, magnetometer, and Bluetooth. In 
addition, the AVKit provides a high-level interface for video 
content playback. These various modules were utilized in 
this current app to access the device motion data (acceler-
ometers and gyroscopes), the GPS location, and the video 
data, respectively.

Data Collection Using Developed App

In order to test the various components of the app, we col-
lected data on both freeways and local routes for a variety of 
applications. Figure 4a shows the study areas for which data 

was collected. The first study was conducted on I-70 West, 
which connects Columbia, Missouri to Kansas City, Mis-
souri. The road segment considered for this test was approxi-
mately 45 miles in length. The second and third study were 
conducted in the city of Columbia as shown in Fig. 4b, c.

To collect data with the app, the mobile phone must first 
be mounted on the car's windshield (see Fig. 5b) to record 
vehicle accelerations, rotations and some other pertinent 
information. The video data were sampled at a frame rate of 
10 frames per second, whereas the accelerometer and vehicle 
location data were collected at a frame rate of 30 samples 
per second (30 Hz). As illustrated in Fig. 5a, the vehicle 
used to collect data was a 2007 Nissan Sentra. The study 
was conducted by a single driver and lasted for a month. A 
total of over 100 h of video data were collected from both 
highway and arterials.

An Interactive User Interface for Data Querying 
using Streamlit

It is critical for the app to be able to sync the numerous 
pieces of information it collects. To accomplish this, the 
study used Streamlit to create an interactive user interface for 
integrating all of the various sensor data (Streamlit 2020). 
Streamlit is a Python library for web application develop-
ment that is completely free and open-source. Streamlit 

Fig. 3  a Real-time posting of data collected, b sensor module
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is compatible with a number of well-known libraries and 
frameworks, including Keras, OpenCV, Vega-Lite, Pytorch, 
Tensorflow, and Python. The study used this library because 
of its ease of use and rapid deployment to create an inter-
active dashboard that enabled effortless data querying by 
timestamp.

The dashboard is divided into three sections: the home-
page, data querying, and data visualization. Users can query 
both raw data and specific video frames by timestamp 
using the data querying page. Users can view changes in 

accelerometer readings while the vehicle is in motion on the 
data visualization page.

Evaluating the Accuracy of the GPS Coordinate 
Points in the App

The GPS coordinates must be precise to synchronize the 
video and accelerometer data from the app. This will allow 
us to map pavement distresses in real time at the exact 
locations where they occurred. Issues arise when GPS 

Fig. 4  a–c The study area where the app was used to collect pavement roughness information
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information is not accurate. Figure 6 is a dashboard show-
ing the synchronization of the various data. The dashboard 
is divided into five sections labeled A-E. Label A displays 
GPS data colored according to the vehicle's speed. The 
changes in the accelerometer readings are depicted in Label 
B, while the changes in the gyroscope readings are depicted 
in Label C. Label D displays the various trip identifiers, and 

Label E displays the speed profile. The accuracy of the GPS 
was determined by calculating the absolute mean deviation 
between the actual road center coordinates and the GPS-
recorded coordinates at the same log mile. The GPS coordi-
nates were found to be approximately 6.6 m off, which may 
affect the data collection's synchronization. Even though the 
study was only concerned with the average deviation, it was 

Fig. 5  a 2007 Nissan Sentra 
vehicle used for the data collec-
tion. b The mounting posi-
tion of the smartphone on the 
windshield

Fig. 6  A dashboard showing data synchronization
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found that significant deviations occur when there is a gradi-
ent change in road alignment (i.e., turning movement, curve 
negotiation, etc.) and in areas with high-rise buildings. The 
spikes in the z-coordinate of the gyroscope data correspond 
to the various turns made during the journey. Additionally, 
the orientation of the spikes indicated whether the turn was 
a left or a right. The spikes in the accelerometer reading 
(accelerometer z) correspond to extremely rough sections 
of the roadway.

Applications of Data Collected from the App

The app collects a variety of data, including accelerometer 
and gyroscope readings, roadway video, and GPS location 
data. This section discusses some of the possible uses for 
the app's data.

Estimating Road Roughness Index (IRI)

The accelerometer, gyroscope, and speed data collected 
by the app were used in the study to forecast IRI values 
for road segments. The smartphone was mounted on the 
vehicle's windshield during data collection. The study 
also obtained ground truth IRI values from the MoDOT's 
ARAN viewer portal shown in Fig. 7. The portal includes 
three tabs for pavement information: Condition, IRI, and 
Rut. Each tab contains records spanning the years 2009 
to 2019. The portal includes a search box for locating 

roadways with relevant pavement information. To select a 
section of a roadway, the information for the road section's 
Start log (Begin log) and End log is entered in the search 
boxes shown in Fig. 7.

The goal is to learn IRI values from telemetry data. The 
independent variables used in this application include accel-
erometer reading, gyroscope reading, and vehicle speed. The 
dependent variable on the other hand was the IRI values 
extracted from MoDOT’s ARAN viewer portal.

The study utilizes a TabNet model from the Fastai librar-
ies. Fastai is a deep learning framework built on top of 
PyTorch's libraries. The model was trained on an NVIDIA 
GTX 1080ti GPU. The number of training sample was 432. 
Due to the small size of the dataset, it was divided into ratios 
of 0.80:0.10:0.10, with each ratio representing the training, 
validation, and testing datasets, respectively. The root-mean-
squared-percentage-error (RMSPE) metric was used to eval-
uate the performance of the developed model. The RMSPE 
was calculated by subtracting the predicted IRI value from 
the actual IRI value for each prediction and expressing the 
result as a percentage. Figure 8 shows a convergence plot of 
the training and validation loss for the selected attributes. 
The plot demonstrates that the developed model is capable 
of rapidly learning the underlying relationships in the data-
set. The RMSPE was approximately 0.174 after 18 itera-
tions. This indicates that the error associated with predicting 
with this model was approximately 17.4%. The developed 
model had training and validation losses of 0.015 and 0.032, 
respectively.

Fig. 7  The MoDOT ARAN viewer portal [8]
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The model was used to estimate the IRI values of the 
test data. The average-root-mean-squared-error (ARMSE) 
of the test prediction was 5.6. This means that our predic-
tions are 5.6 units off the mark when compared to the actual 
IRI estimates provided by road profilers. Furthermore, the 
root-mean-square-percentage-error (RMSPE) metric indi-
cates that the model's predictions were approximately 17.4% 
off target IRI values which is within the acceptable range of 
error (Adeli et al. 2021). As illustrated in Fig. 9a, the road 
conditions' trends and amplitudes are correctly matched. As 
illustrated in Fig. 9b, there is a linear relationship between 
the true and predicted IRI values. The r-squared value of 
the linear plot was 0.79. This indicates that the true and 
predicted IRI values are highly correlated.

Pavement Distress Detection

Pavement distresses pose a potential threat to the safety 
of road users. As a result, detecting distresses in a timely 
manner is regarded as one of the most important steps 
in limiting further degradation of pavement surfaces. To 

make the best use of financial resources, it is necessary 
to assess the condition of pavement surfaces on a regular 
basis and keep up with maintenance. As a result, the study 
developed a pavement distress detection model using video 
images collected by the developed app. We learned the vis-
ual and textual patterns associated with the various types 
of distress using a single-stage object detection algorithm, 
You Only Look Once (YOLOv5) algorithm.

YOLOv5 is the most recent version of the YOLO series 
and is a state-of-the-art single-stage object detection algo-
rithm. The YOLOv5 network is divided into three distinct 
components: the Backbone, the Neck, and the Head. The 
Backbone is a convolutional neural network that bundles 
and shapes image representational features at varying 
granularities. The neck of the architecture is composed of 
a series of layers that combine and integrate image repre-
sentational features to advance to prediction. Similarly, the 
head makes use of neck-derived features and acquires box 
and class prediction functionality. Within YOLOv5, the 
CSPDarknet53 backbone contains 29 convolutional layers 
3 × 3, a receptive field size of 725 × 725, and an overall 
parameter count of 27.6 M. Additionally, the SPP block 
attached to YOLO's CSPDarknet53 increases the propor-
tion of receptive fields without impairing its operation. 
Similarly, feature aggregation is accomplished via PANet, 
which makes use of multiple backbone levels. YOLOv5 
pushes the envelope of efficiency by incorporating features 
such as weighted residual connections, cross-stage partial 
connections, cross mini-batch, normalization, and self-
adversarial training. In this study, we used the PyTorch 
[28] framework to train and deploy our YOLOv5 model. 
To improve the YOLOv5 model's performance in detect-
ing vehicles, the following hyperparameters are adjusted: 
64-batch size, 0.0005 decay rate for the optimizer's 
weights, 0.01 initial learning rate, and 0.937 momentum.

Fig. 8  A plot of training and validation losses of the proposed model

Fig. 9  Proposed model performance: a plot of true IRI values and predicted IRI values and b scatter plot of true IRI values against predicted IRI 
values
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The model was trained using 3,000 images obtained from 
the developed app and tested on 800 images. Four pave-
ment distress types were annotated in this study. They are 
longitudinal crack (D00), transverse crack (D10), alligator 
crack (D20), and pothole (D40). The 3,000 images were dis-
tributed as follows: D00-900 samples, D10-836 samples, 
D20-614 samples, and D40-650 samples. We assessed the 
performance of the model using precision (P), F1 score (F1), 
and recall value (R). The F-1 score is the harmonic aver-
age of the recall and precision values. Precision is defined 
as the ratio of true positives (tp) to all predicted positives 
(tp + fp). Similarly, recall is the ratio of true positives to all 
true positives (tp + fn). The model was trained for 4-h using 
an NVIDIA GTX 1080ti GPU.

After 1000 iterations, the results summary is shown in 
Fig. 10. The training and validation losses converged after 
500 iterations as shown in Fig. 10a, b, respectively. In addi-
tion, the best precision and recall values were obtained 
around the 500ith iteration shown in Fig. 10c, d, respectively.

As shown in Table 1, the precision scores for all distress 
types range between 0.65 and 0.82, while the recall values 
range between 0.58 and 0.61. Distress type D00 had the 
highest precision score of 0.82 and recall value of 0.61. The 
overall F1 score for the developed model was 0.68.

Figure 11 shows detected pavement distresses from road 
images. Three pavement distresses were detected in this 
figure. They are designated as longitudinal crack (D00-red 
bounding box), alligator crack (D20-blue bounding box), 
and pothole (D40-green bounding box). The results show 
that the app can produce high-resolution videos images that 
can be used by the current generation of machine learning 
algorithms for pavement evaluation.

Naturalistic Driving Studies

Naturalistic driving studies (NDS) are cutting-edge research 
techniques that involve continuously recording driv-
ing data in real-world driving conditions using advanced 

instrumentation. NDSs enable the assessment of driving 
risks that would otherwise be impossible to assess using 
traditional crash databases or experimental methods (Guo 
2019). The NDS findings have a significant impact on pol-
icy-making, safety research and the development of safety 
countermeasures. The developed application in this study 
collects NDS data using iPhone’s dual camera system. One 
camera monitors the driver's environment outside the vehi-
cle, while the other is used to record the driver's activities 
inside the vehicle as illustrated in Fig. 12a,b. This setup 
enables us to visually identify traffic incidents and corre-
late them to specific driving behaviors (driver sleeping, dis-
tracted, using phone, etc.).

The objective of this task is to develop a model for auto-
matically detecting driving events from naturalistic driving 
videos. To achieve this objective, we formulated the problem 
as a time series segmentation and classification problem. 
The segmentation task was achieved by developing a novel 
segmentation algorithm that utilizes the principle of energy 
maximization to detect the start and end of any driving event 
from the telemetry data (gyroscope in the z-direction). This 
step was necessary to facilitate and expedite the annota-
tion of driving events. All annotated driving events were 
standardized to a fixed length before feeding it to the model. 
Seven main classes of events were defined: lane changing 
(left and right), driver stopped, left turns, left curves, right 
turns, right curves, and lane-keeping. The model was trained 
with 86,000 training samples using NVIDIA GTX 1080ti 

Fig. 10  Results from model training a training loss, b validation loss, c precision and d recall

Table 1  Precision, recall, F1-score values for the various distress 
types

Distress type Precision Recall F1-score

D00 0.82 0.61 0.70
D10 0.73 0.59 0.65
D20 0.65 0.60 0.62
D40 0.67 0.58 0.62
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GPU. We used a 50:50 split for model training and testing. 
The training data was fed through a multi-layered LSTM 
consisting of 30 hidden layers and 5 LSTM layers.

A convergence plot of the training and validation loss is 
shown in Fig. 13. After 4000 iterations, the model’s accu-
racy was approximately 94%. This implies that 94% of the 
time, the model can predict accurately the driving maneu-
vers of a vehicle. The training and validation losses of the 
developed model were 0.1402 and 0.2703, respectively. This 
means that the model is overfitting the training data, but it is 
not able to generalize correctly to validation data.

The developed models were evaluated using accuracy 
and precision. Accuracy was computed as the ratio of the 
true positive (TP) predictions to the sum of true positives 
(TP) and true negative (TN) predictions expressed as a per-
centage. Precision, on the other hand, was computed as the 
number of true positives divided by the total number of true 
positives and false positives predictions.

From Table 2, precision scores range between 0.889 and 
0.978 for all types of driving maneuvers, while recall val-
ues range between 0.898 and 0.962. Left turns achieved the 
highest precision of 0.978, while right turns achieved the 
highest recall of 0.962. Right lane changes, on the other 
hand, had the lowest precision score of 0.889, while left lane 
changes had the lowest recall score of 0.898. Overall, the 
model received an F1 score of 0.936. The precision, recall, 

and f1 score of all driving maneuvers are summarized in 
Table 2.

Conclusion

This study developed and deployed a mobile application for 
collecting data for multiple applications including road con-
dition evaluation, naturalistic driving studies, etc. The app 
collects road surface data via in-built smartphone sensors. 
The data can be streamed directly to a cloud-based database 
or stored in the app's library and uploaded to cloud storage 
at a later time if Wi-Fi is unavailable. The app's settings 
allow users to change the sampling frequency and frame rate 
during data collection. Additionally, while driving, the app 
is able to display the accelerometer readings on the video 
tab interface.

The application was developed using a modular approach. 
The design framework of this app is composed of three 
major modules: a frontend user interface (UI) component, a 
sensor component, and a backend component.

The app's functionality was evaluated by collecting data 
on the road surface on the I-70 W highway connecting 
Columbia, Missouri and Kansas City. The collected data 
was used to build a predictive model for estimating IRI val-
ues using a deep learning architecture. The accuracy of the 

Fig. 11  Pavement distresses detected from video data
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model was used as a proxy for the quality of data collected 
by the app. ARMSE, R-squared, and RMSPE were used as 
metrics for evaluation. The model predictions indicate that 
the predicted IRI values from the smartphone data are com-
parable to those estimated using high-end machines such as 
the ARAN van. When the predicted IRI values were com-
pared to the ground truth IRI values, a goodness-of-fit value 
of 0.79 was obtained. This demonstrates a high degree of 

correlation between them. Also, the video information from 
the app was used to identify pavement distresses. Finally, 
information from the gyroscope and the accelerometer read-
ings were used to determine the turning and lane-changing 
maneuvers of vehicles.

In a nutshell, when tested, the developed mobile applica-
tion for collecting road surface information and estimating 
road surface roughness demonstrated a high degree of poten-
tial for producing accurate and reliable results.

Limitations and Recommendations

The developed roughness app's future updates should 
address the following limitations.

• The first constraint is that the app was designed exclu-
sively for the iOS operating system. Given a large 
number of Android users, the app's next update should 
include support for the Android operating system.

• Additionally, when used, the app does not provide IRI 
values directly. Future updates should incorporate the 
developed deep learning model into the backend, allow-
ing the app to directly predict the IRI value of road sec-
tions in real-time while in use.

• Another limitation observed is that the GPS coordinates 
were approximately 6.6 m off. Next update of the app 
will have an improved GPS.
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Fig. 12  a Back camera recording activities outside the vehicle. b 
Front camera recording activities inside the vehicle (face of driver 
masked)

Fig. 13  A plot of training and validation losses of the Proposed model

Table 2  Precision, recall, F1-score values for the various driving 
events

Driving maneuvers Performance matrix

Precision Recall F1 score

Right turn 0.945 0.921 0.932
Left turn 0.978 0.942 0.960
Right curve 0.969 0.962 0.965
Left curve 0.943 0.929 0.936
Right lane change 0.889 0.901 0.895
Left lane change 0.907 0.898 0.902
Lane keeping 0.949 0.938 0.943
Stop 0.961 0.944 0.952
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