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Abstract
The rapid advancement in the field of deep learning and high performance computing has highly augmented the scope of 
video-based vehicle counting system. In this paper, the authors deploy several state-of-the-art object detection and tracking 
algorithms to detect and track different classes of vehicles in their regions of interest (ROI). The goal of correctly detect-
ing and tracking vehicles’ in their ROI is to obtain an accurate vehicle count. Multiple combinations of object detection 
models coupled with different tracking systems are applied to access the best vehicle counting framework. The models’ 
addresses challenges associated to different weather conditions, occlusion and low-light settings and efficiently extracts 
vehicle information and trajectories through its computationally rich training and feedback cycles. The automatic vehicle 
counts resulting from all the model combinations are validated and compared against the manually counted ground truths 
of over 9 h’ traffic video data obtained from the Louisiana Department of Transportation and Development. Experimental 
results demonstrate that the combination of CenterNet and Deep SORT, and YOLOv4 and Deep SORT produced the best 
overall counting percentage for all vehicles.

Keywords Deep learning · Object detection · Tracking · Vehicle counts

Introduction

Accurate estimation of the number of vehicles on the road 
is an important endeavor in intelligent transportation system 
(ITS). An effective measure of on-road vehicles can have 
a plethora of application in transportation sciences includ-
ing traffic management, signal control and on-street park-
ing (Asha and Narasimhadhan 2018; Khan et al. 2019; Li 
et al. 2016). Technically, most vehicle counting methods are 
characterized into either hardware or software-based systems 
(Lin and Sun 2018). Inductive-loop detectors and piezoe-
lectric sensors are the two most extensively used hardware 
systems till date. Although they have higher accuracies than 

software based systems, they are intrusive and expensive to 
maintain. On the other hand, software based system thats 
use video cameras and run on computer vision algorithms 
present an inexpensive and non-intrusive approach to obtain 
vehicle counts. Similarly, with increasing computing capa-
bilities and recent successes in object detection and tracking 
technology, they manifest a tremendous potential to surro-
gate hardware based systems. Part of the reason to make 
such a claim is due to the rapid advancement in the field of 
deep learning and high performance computing, which has 
fueled an era of ITS within the multi-disciplinary arena of 
transportation sciences.

This study is motivated by the need to present a robust 
vision-based counting system that addresses the challeng-
ing real-world vehicle counting problem. The visual under-
standing of objects in an image sequence must face many 
challenges, perhaps customary to every counting task such 
as difference in scales and perspectives, occlusions, illu-
mination effects and many more (Ciampi et al. 2018). To 
address these challenges, several deep learning based tech-
niques are proposed to accurately detect and count the num-
ber of vehicles in different environmental conditions. Out 
of all the problems associated to counting, one that stands 
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out the most would be the occlusion in traffic videos. They 
appear quite frequently on most urban roads that experience 
some form of congestion. This leads to ambiguity in vehicle 
counting which could likely undermine the quality of traffic 
studies that rely on vision-based counting schemes to esti-
mate traffic flows or volumes (Pang et al. 2007). One of the 
objectives of this paper is to propose a counting system that 
is robust to occlusion problem and can provide a resolve in 
accurately counting vehicles that experience multi-vehicle 
occlusion.

Passenger cars occupy the greatest proportion of on-road 
vehicles and most often than not they get occluded by trucks 
when they are either too near or distant to traffic cameras. 
Therefore, the scope of this study is limited to counting cars 
and trucks only. We focus on real-time vehicle tracking and 
counting using state-of-the-art object detection and track-
ing algorithms. The rest of the paper is outlined as follows: 
Sect. “Related Works” briefly reviews related works in the 
field of vehicle counting. Section “Data” contains data 
description. Section “Methodology” describes the proposed 
methodology including different object detection and track-
ing algorithms. Section “Results” includes empirical results, 
and Sect. “Conclusion” details the conclusions of this study.

Related Works

Vision-based vehicle counting is an interesting computer 
vision problem tackled by different techniques. As per the 
taxonomy accepted in (Zhang et al. 2017), the counting 
approach could be broadly classified into five main cat-
egories: counting by frame-differencing (Cucchiara et al. 
2000; Tsai and Yeh 2013), counting by detection (Toropov 
et al. 2015; Zheng and Peng 2012), motion based counting 
(Chen et al. 2010; Chen et al. 2012; Mo and Zhang 2010; 
SuganyaDevi et al. 2012), counting by density estimation 
(Lempitsky and Zisserman 2010) and deep learning based 
counting (Arteta et al. 2016; Hsieh et al. 2017; Onoro-Rubio 
and López-Sastre 2016; Sindagi and Patel 2018; Zhang et al. 
2015, 2016; Zhao et al. 2016). The first three counting meth-
ods are environmental sensitive and generally don’t perform 
very well in occluded environments or videos with low 
frame rates. While counting by density estimation follows a 
supervised approach, they perform poorly in videos that have 
larger perspective and contain oversized vehicles. Density 
estimation based methods are also limited in their scope of 
detection and lack object tracking capabilities. Finally, out 
of all these counting approaches, deep learning based count-
ing techniques have had the greatest developments in recent 
years. The advancement in their built architectures have sig-
nificantly improved the vehicle counting performance. In 
this study, we mainly focus on studying counting methods 
that are founded on deep learning based architectures.

(Awang and Azmi 2018) proposed a deep learning based 
technique that tabulates the number of vehicles based on 
the layer skipping-strategy within a convolutional neural 
network (CNN). Prior to performing counts, their approach 
classifies the vehicle into different classes based on their 
distinct features. (Dai et al. 2019) deployed a video based 
vehicle counting technique using a three-step strategy of 
object detection, tracking and trajectory analysis. Their 
method uses a trajectory counting algorithm that accurately 
computes the number of vehicles in their respective catego-
ries and tracks vehicle routes to obtain traffic flow informa-
tion. Similarly, a deep neural network is trained to detect and 
count the number of cars in (Mundhenk et al. 2016). This 
approach integrates residual learning alongside inception-
style layers to count cars in a single look. Lately, it has been 
demonstrated that single-look techniques have the potential 
to excel at both speed and accuracy (Redmon et al. 2016) 
requirements useful for object recognition and localization. 
This could also, prove beneficial to process image frames at 
much faster rates that can accurately produce vehicle counts 
in real-time conditions. (Liu et al. 2017) deliberate counting 
as a computer vision problem and present an adaptive real-
time vehicle counting algorithm that takes robust detection 
and counting approach in an urban setting.

Although video-based counting systems have emerged 
as an active research area, there are issues with detection 
and re-identification of vehicles, while they cross each other 
in separate road lanes. To counter this problem, (Bui et al. 
2020) successfully deployed state-of-the-art YOLO and 
SORT algorithms to perform vehicle detection and track-
ing, respectively. To further improve their video-based vehi-
cle counter, they followed a distinguished region tracking 
paradigm that works well for intricate vehicle movement 
scenarios. Similarly, (Chakraborty et al. 2018) used semi-
supervised techniques to obtain vehicle trajectories which 
is a precursor to obtaining an accurate counting framework. 
Generally, most object counting literature (Arteta et al. 2016; 
Onoro-Rubio and López-Sastre 2016; Zhang et al. 2016; 
Zhao et al. 2016) approximates the object densities, maps 
them and computes densities over the entire image space 
to obtain vehicle counts. However, the accuracy of these 
methods drop whenever a video has a larger perspective or 
if a large bus or truck appears. The FCN-rLSTM network 
proposed in (Zhang et al. 2017) tackles problems associ-
ated to larger perspective videos by approximating vehicle 
density maps and performing vehicle counts by integrating 
fully convolutional neural networks (FCN) with long short 
term memory networks (LSTM) in a residual learning envi-
ronment. This approach leverages the capabilities of FCN 
based pixel wise estimation and the strengths of LSTM to 
learn difficult time-based vehicle dynamics. The counting 
accuracy is thus, improved by putting the time-based cor-
relation into perspective.
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Data

Traffic images and video feeds were the two kinds of 
dataset used in this study. These datasets were obtained 
from the cameras located at six different roadways over a 
7-day period. The cameras were installed across different 
roadways in New Orleans and maintained by the Louisi-
ana Department of Transportation and Development (La 
DOTD). To train and generate robust models, datasets per-
taining to different weather conditions were collected. To 
incorporate that, video feeds were recorded at the start of 
every hour for one minute and followed the same loop for 
the entire 24 h in a day. This recording was further contin-
ued for 1 week at all the six roadways. Traffic images and 
videos consist of daylight, nighttime and rain. To train all 
the models used in this study, altogether 11,101 images 
were manually annotated for different classes of vehicles 
viz. cars and trucks. A total of 29,242 cars were annotated, 
where 24,901, 2793, and 1548 annotations were performed 
for daylight, nighttime and rainy conditions. Similarly, for 

trucks, altogether 3042 instances of annotations were com-
pleted for day (2590), night (297) and rain (155) settings.

Figure 1 shows all the six different cameras maintained by 
La DOTD and their respective camera views. Similarly, any 
vehicle that travelled across those green and blue polygons 
were counted and appended in the north and southbound 
directions, respectively.

Methodology

The study compares the combination of different object 
detectors and trackers for performing vehicle counts. As 
shown from Fig. 2, the proposed vehicle counting frame-
work initiates by manually annotating traffic images. This is 
followed by training several object detection models which 
can then be used to detect different classes of vehicles. All 
the object detection models are trained on NVIDIA GTX 
1080Ti GPU.

After obtaining detection results for each video frame, 
different tracking algorithms are used for multi-object 

Fig.1  Camera locations

Fig. 2  Detection-tracking based 
vehicle counting framework
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tracking. In this study, we used both online and offline track-
ing algorithms. Although offline tracking algorithms yield 
better results, the advantage of using online trackers could 
be realized in applications that involve online traffic control 
scenarios. Similarly, based on the detection outcomes, each 
vehicle is counted only once as per their trajectory match-
ing function’ intrinsic to every object tracking algorithm. 
The green and blue polygons drawn on the cameras (see 
Fig. 1) assigns the entrance and exit zones for every vehi-
cles’ trajectory and computes the number of vehicles passing 
through the north and southbound directions, respectively. 
Altogether, four different state-of-the-art object detectors 
and trackers were used making a total of 16 different detec-
tor-tracker combinations. Upon obtaining vehicle counts, all 
these detector-tracker combinations were further analyzed 
and had their performance capabilities compared based off 
different environmental conditions. The object detectors and 
tracking algorithms used in this study are further explained 
in detail in the subsequent sections.

A. Object Detectors

CenterNet

With the advancement in deep learning, object detection 
algorithms have significantly improved. In this study, the 
authors implemented an object detection framework called 
CenterNet (Duan et al. 2019) which discovers visual patterns 
within each section of a cropped image at lower computa-
tional costs. Instead of detecting objects as a pair of key 
points, CenterNet detects them as a triplet thereby, increas-
ing both precision and recall values. The framework builds 
up on the drawbacks encountered by CornerNet (Law and 
Deng 2018) which uses a pair of corner-keypoints to perform 
object detection. However, CornerNet fails at constructing a 
more global outlook of an object, which CenterNet does by 
having an additional keypoint to obtain a more central infor-
mation of an image. CenterNet functions on the intuition that 
if a detected bounding box has a higher Intersection over 
Union (IoU) with the ground-truth box, then the likelihoods 

of that central keypoint to be in its central region and be 
labelled in the same class is high. Hence, the knowledge 
of having a triplet instead of a pair increases CenterNet’s 
superiority over CornerNet or any other anchor-based detec-
tion approaches. Despite using a triplet, CenterNet is still a 
single-stage detector but partly receives the functionalities 
of RoI pooling. Figure 3 shows the architecture of Center-
Net, where it uses a CNN backbone that performs cascade 
corner pooling and center pooling to yield two corner and a 
center keypoint heatmap. Here, cascade corner pooling ena-
bles the original corner pooling module to receive internal 
information, whereas center pooling helps center keypoints 
to attain further identifiable visual pattern within objects that 
would enable it to perceive the central part of the region. 
Likewise, analogous to CornerNet, a pair of detected corners 
and familiar embeddings are used to predict a bounding box. 
Then after, the final bounding boxes are determined using 
the detected center keypoints. In this study, CenterNet was 
trained on NVIDIA GTX 1080Ti GPU which took approxi-
mately 22 h. A constant learning rate of 0.000025 was used 
throughout the training.

Detectron2

Detectron2 (Wu et al. 2019), is a platform for object detec-
tion and segmentation algorithms, that builds up on the 
Mask R-CNN benchmark. Fueled by the PyTorch deep 
learning framework, it includes features such as panoptic 
segmentation (Kirillov et al. 2019), dense-pose (Alp Güler 
et al. 2018), Cascade R-CNN (Cai and Vasconcelos 2018), 
rotated bounding boxes, etc. To perform object detection 
and segmentation, Detectron2 requires images and its anno-
tated database to follow annotation format as followed by the 
COCO dataset. The annotation consists of every individual 
object present in all images of the training database. Detec-
tron2 supports implementation to multiple object detection 
algorithms using different backbone network architectures 
such as ResNET {50, 101, 152}, FPN, VGG16, etc. Hence, 
it can be used as a library to support a multitude of projects 

Fig. 3  Architecture of CenterNet
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on top of it. In this study, Resnet-50 with Feature Pyramid 
Network is used.

YOLOv4

You Only Look Once (YOLO) is the state-of-the-art object 
detection algorithm. Unlike traditional object detection 
systems, YOLO investigates the image only once and 
detects if there are any objects in it. Out of all the ear-
lier versions of YOLO, YOLOv4 is the latest and most 
advanced iteration till date (Bochkovskiy et al. 2020). 
It has the fastest operating speed for use in production 
systems and for optimization in parallel computations. 
Some of the new techniques adopted in YOLOv4 are: 
(1) Weighted-Residual-Connections (Shen et al. 2016), 
(2) Cross-Stage-Partial-Connections (Wang et al. 2020), 
(3) Cross iteration batch normalization (Yao et al. 2020), 
(4) Self-adversial-training (Chou et al. 2018), (5) Mish-
activation (Misra 2019), etc. To obtain higher values for 
precision, YOLOv4 uses a Dense Block, a deeper and 
more complex network. Similarly, the backbone of its 
feature extractor uses CSPDarknet-53, which deploys the 
CSP connections alongside Darkenet-53 from the earlier 
YOLOv3. In addition to CSPDarknet-53, the architecture 
of YOLOv4 comprises of SPP additional module, PANet 
path-aggregation neck and YOLOv3 anchor-based head. 
The SPP block is stacked over CSPDarknet53 to increase 
the receptive field that could discretize the most remark-
able context features and makes sure that there is no drop 
in its network operation speed. Similarly, PANet is used 
for parameter aggregation from several levels of backbone 
in place of Feature Pyramid Network (FPN) that is used 
in YOLOv3. YOLOv4 models took approximately 24 h to 
train and shared the same hardware resources with Cen-
terNet. A batch-size of 64 and the optimizer weight decay 

of 0.0005 is used. Similarly, the initial learning rate of 
0.01 is used and the momentum is set to 0.9 throughout 
the training process. The inference time for CenterNet was 
approximately 340 ms per image.

EfficientDet

EfficientDet is a state-of-the-art object detection algorithm 
that basically follows single-stage detectors pattern (Tan 
et al. 2020). The architecture of EfficientDet is shown in 
Fig. 4. Here, the ImageNet-pretrained EfficientNets has 
been deployed as the network’s backbone. Similarly, to 
obtain an easier and quicker multi-scale fusion of fea-
tures, a weighted bi-directional feature pyramid network 
(BiFPN) has been proposed. BiFPN here, serves as the fea-
ture network and receives approximately 3–7 features from 
the backbone network and continually performs top-down 
and bottom-up bidirectional fusion of features. These syn-
thesized features are transferred to a class and box network 
to achieve vehicle class and bounding box predictions cor-
respondingly. Also, all the vehicle class and box network 
weights are jointly shared across every feature level. Simi-
larly, to achieve higher accuracy, a new compound scaling 
method is proposed for EfficientDet. This compound scal-
ing approach scales up the overall dimensions of width, 
depth, backbone resolution, BiFPN along with box and 
class prediction networks. Although, the primary goal of 
EfficientDet was to perform object detection, it could also 
be deployed to perform tasks such as semantic segmenta-
tion. Training an EfficientDet model took approximately 
36 h on an NVIDIA GTX 1080Ti GPU. Similarly, the 
learning rate is steadily increased from 0 to 0.16, while 
the momentum and weight decay is set to 0.9 and 0.00004, 
respectively, during training.

Fig. 4  Architecture of EfficientDet (Tan et al. 2020)
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B. Object Tracker

IOU Tracker

IOU tracker is built on the assumption that every object 
is tracked on a per-frame basis such that there are none or 
very few gaps present in between detections (Bochinski 
et al. 2018). Similarly, IOU assumes that there is a greater 
overlap value for intersection over union while obtaining 
object detections in successive frames. Equation (1) meas-
ures the Intersection over Union which forms the basis for 
this approach:

IOU tracker specifically tracks objects by assigning detec-
tion with the highest IOU value (Eq. 1) to the last detection 
in the earlier frame if a specific threshold value is satisfied. 
In cases, where any detection was not assigned to an exist-
ing track, then it begins with a new one. Likewise, any track 
that was devoid of an assigned detection will end. Since, 
we aim to track vehicles in this study, the IOU performance 
could be further enhanced by canceling tracks that don’t 
meet a certain threshold time length and where no detected 
vehicle exceeded the required IOU threshold. It is important 
to note that IOU tracker is heavily reliant on how accurately 
vehicles are recognized by object detection models, so spe-
cial focus should be laid out on effectively training object 
detection algorithms. IOU’s ability to handle frame rates of 
over 50,000 fps in conjunction to its low computational cost 
makes it an incredibly powerful object tracker.

Similarly, Kalman-IOU (KIOU) tracking has been further 
explored. The Kalman filter’s ability of performing predic-
tions allows users to skip frames while still keeping track 
of the object. Skipping frames allows the detector to speed-
up the process as in a tracking-by-detection task, smaller 
number of frames wedges lower computational require-
ment. Using an appropriate object detector with Kalman-
IOU tracker, and configuring the frames to skip two-thirds 
of frames per second could enable the tracker to run in real-
time. Likewise, this feature could also improve the perfor-
mance of Kalman-IOU tracker compared to the original IOU 
tracker.

SORT

Simple Online and Realtime Tracking (SORT) is an imple-
mentation of tracking-by-detection framework, where the 
main objective is to detect objects each frame and associate 
them for online and real-time tracking application (Bewley 
et al. 2016). Methods such as Kalman Filter and Hungarian 

(1)IOU(a, b) =
Area(a) ∩ Area(b)

Area(a) ∪ Area(b)
.

algorithm are used for tracking. The characteristic feature 
of SORT is that it only uses detection information from the 
previous and current frames, enabling it to competently per-
form online and real-time tracking. In SORT, after a detec-
tion is linked to the target object, the detected bounding box 
is utilized to update the state of target object, where the 
components of velocity are solved through Kalman filter 
(Kalman 1960).

Feature Based Object Tracker

In Feature-based object tracking, there is the usage of 
appearance information to track objects in respective traf-
fic scenes. This method is useful in tracking vehicles in 
occluded settings. The system extracts object features 
from one frame and then matches appearance information 
with successive frames based on the measure of similar-
ity. Feature-based object tracking consists of both feature 
extraction and feature correspondence. The feature points 
are extracted from the objects in an image using various 
statistical approaches. Feature correspondence is considered 
an arduous task, since a feature point in one image may have 
analogous points in other images which could perhaps, pose 
ambiguity problems in feature correspondence. To under-
mine ambiguity, most contemporary algorithms use exhaus-
tive search along with correlation over larger pixels of image 
neighborhood. Likewise, the minimum value of cosine dis-
tance is also useful at computing any resemblance between 
some of the characteristic features which is useful for object 
tracking. In the current study, a feature-based object tracker 
called Deep SORT is deployed. Some of the features of this 
tracking algorithm is explained in detail as follows.

Deep SORT

The Simple Online and Realtime Tracking with a Deep 
Association metric (Deep SORT) enables multiple object 
tracking by integrating appearance information with its 
tracking components (Wojke et al. 2017). A combination of 
Kalman Filter and Hungarian algorithm is used for tracking. 
Here, Kalman filtering is performed in image space, while 
Hungarian technique facilitates frame-by-frame data asso-
ciation using an association metric that computes bounding 
box overlap. To obtain motion and appearance information, 
a trained convolutional neural network (CNN) is applied. 
By integrating CNN, the tracker achieves greater robust-
ness against object misses and occlusions while preserving 
the trackers ability to quickly implement to online and real-
time scenarios intact. The CNN architecture of the system is 
shown in Table 1. A wide residual network with two convo-
lutional layers followed by six residual blocks is applied. In 
dense layer 10, a global feature map of dimensionality 128 
is calculated. Finally, batch and ℓ2 normalization features 
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over the unit hypersphere accesses compatibility with cosine 
arrival metric. Overall, Deep SORT is a highly versatile 
tracker and can match performance capabilities with other 
state-of-the-art tracking algorithms as seen from the MOT16 
benchmark for Multi-object Tracking (Milan et al. 2016).

Results

This section evaluates the performance of different combi-
nations of object detectors and trackers. The main goal of 
this study is to identify the best performing object detector-
tracker combination. For comparative analysis, the models 
are tested on a total of 546 video clips of length 1 min each 
comprising of over 9 h’ total video length. Figure 1 shows 
all the camera views with manually generated green and blue 
polygons that record the number of vehicles passing through 
them in both north and southbound directions, respectively. 

The vehicle counts are evaluated based on four different 
categories: (1) overall count of all vehicles, (2) total count 
of cars only, (3) total count of trucks only, and (4) overall 
vehicle counts for different times of the day (i.e., daylight, 
nighttime, rain). To establish ground truth, all the vehicles 
are manually counted from the existing 9 h’ video test data. 
The performance is assessed by expressing the automatic 
counts obtained from different model combinations over the 
ground truth value expressed in per hundredth or percentage.

To examine the performance of object detectors, heat 
maps showing False Negatives (FN), False Positives (FP) 
and True Positives (TP) are plotted in Fig. 5 for all the object 
detectors used in the study. The models were tested on alto-
gether six camera views at different times of the day. The 
left, center and right columns show the heat maps gener-
ated for CenterNet, YOLOv4 and EfficientDet, respectively. 
For all these respective object detectors, the first column 
represents FN, the second column designates FP and the 
third column denotes TP. The detection is classified as False 
Negative (FN) if the detector fails at detecting the vehicle 
despite it being present at that spot. Therefore, the column 
showing FN should necessarily not have brighter intensity 
of colors around those sections of the roadway. Almost all 
object detectors have performed well at detecting FN in 
most camera views except for CenterNet’s 5th camera view, 
where it generates heat maps in its south bounds as well. 
This is largely because certain camera views had insuffi-
cient number of traffic images used for training and could 
have possibly experienced heavy congestion at those sites. 
For instance, heat maps closer to the camera in night views 
are mostly produced when the heavy gross vehicles such as 
buses and trucks remain congested at those spots for a very 
long time.

Similarly, the detection is classified as False Positive (FP) 
if the detector erroneously detects a vehicle at a spot with 

Table 1  Overview of Deep SORT’s CNN Architecture

Name Patch size/stride Output size

Conv1 3 × 3/1 32 × 128 × 64
Conv2 3 × 3/1 32 × 128 × 64
Max Pool 3 3 × 3/2 32 × 64 × 32
Residual 4 3 × 3/1 32 × 64 × 32
Residual 5 3 × 3/1 32 × 64 × 32
Residual 6 3 × 3/2 64 × 32 × 16
Residual 7 3 × 3/1 64 × 32 × 16
Residual 8 3 × 3/2 128 × 16 × 8
Residual 9 3 × 3/1 128 × 16 × 8
Dense 10 128
Batch and ℓ2 normaliza-

tion
128

Fig. 5  Heat maps generated for different object detectors
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no vehicles present. As observed from the heat maps, the 
FP columns for object detectors are generally clean with 
a few camera views in EfficientDet generating incorrect 
classifications. The camera view with flyovers or overpass 
roads caused the model to misclassify some of the detec-
tions. Sometimes, camera movements and conditions such 
as rain sticking on the camera lens and pitch darkness also 
cause such misclassifications. Ideally, we do not aim at see-
ing intense heat maps for both false negatives and false posi-
tives. However, if we have higher false positives but obtain 
lower false negatives, then the model might have been too 
confident which is not very ideal. Finally, True Positive (TP) 
is the one that correctly detects vehicle when there are any 
actual vehicles present on the roadways. Most object detec-
tion models generated correct true positives except for a few 
camera views, where the vehicles are either too distant or 
encounters lowlight or nighttime conditions, where only the 
vehicles’ headlights were visible.

Figure 6 shows the overall count percentage for all vehi-
cles. As seen from the figure, the overall count percentage 
for some of the model combinations exceed over 100 per-
cent, while a couple combinations obtain counting results 
below 45 percent of the actual counts. Any model combina-
tion that either over-counts or under-counts the actual num-
ber of vehicles are considered faulty match, while the ones 
that perform counts in the order closer to 100 percent are 
termed an optimal match. The best performing model com-
binations that obtained a more accurate count estimate for 
all vehicles were YOLOv4 and Deep SORT, and CenterNet 
and Deep SORT. Thus, both these model combinations can 
be considered an optimal match.

Similarly, Figs. 7, 8 compare the performance of different 
model combinations for counting cars and trucks, respec-
tively. From Fig. 7, it can be observed that CenterNet and 

IOU, CenterNet and SORT, EfficientDet and Deep SORT, 
and YOLOv4 and Deep SORT obtained the best counting 
results. These detector-tracker combinations performed 
well in both north and southbound directions, respectively. 
Occlusion issues created a hindrance in correctly locat-
ing cars which would often be obstructed by larger vehi-
cles whenever they are too close to the camera. Likewise, 
in Fig. 8, the truck counter performance is assessed. Out 
of all the model combinations, only EfficientDet and Deep 
SORT obtained acceptable counting performance in both 
north and southbound directions. Although, the combina-
tion of CenterNet and KIOU, and EfficientDet and SORT 
separately obtained accurate counting results, their scope 
was limited to only either North or Southbound directions, 
respectively. Most of the other model combinations didn’t 
accurately count trucks due to the presence of other heavy 
gross vehicles (HGV) such as buses, trailers, and multi-axle 
single units. These HGVs often confused the models and 
were assigned as trucks that generated an over-estimate of 
truck counts. Exaggerating the actual number of vehicle 
counts (either trucks or cars) could be attributed to that fact 
that some of the detectors produced multiple bounding boxes 
for the same vehicle while traversing the video scene. This 
impelled the tracker to confuse the same vehicle as different 
ones and assign them with newer values every time a bound-
ing box re-appears.

Likewise, Table 2 illustrates the performance comparison 
of models at different times of the day and rainy conditions. 
The counting results show that the best performing model 
combinations were YOLOv4 and Deep SORT, and Center-
Net and Deep SORT, analogous to the comparison chart, as 
shown in Fig. 6. Vehicle counting accuracies largely depends 
on the precision of object detection models. However, it is 
evident from Table 2 that the models didn’t achieve optimal 

Fig. 6  Performance of model 
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results for the most part. The reasons could be partly attrib-
uted to the inferior camera quality, unstable camera views 
due to the wind blowing on highways, and the presence of 
fog or mist on camera lens. During daylight, nighttime and 
rainy conditions, EfficientDet’s combination with SORT and 
KIOU failed miserably at counting the number of vehicles. 
EfficientDet mainly suffered with its detection capability. 
For model combinations that recorded count percentage over 
100 typically had both detector and tracker at fault. Object 
detectors generated multiple bounding boxes for the same 
vehicle that resulted in over-counting of the number of vehi-
cles. Also, some of the trackers did not perform ideally at 

predicting vehicle trajectories and assigned them as separate 
vehicles at certain occasions.

Conclusion

In this study, a detection-tracking framework is applied to 
automatically count the number of vehicles on roadways. 
The state-of-the-art detector-tracker model combinations 
have been further refined to achieve significant improve-
ments in vehicle counting results although there are still 
many shortcomings which the authors aim to address in the 

Fig. 7  Performance of model 
combination for car counts only
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future study. Occlusion and lower visibility created identity 
switches and same vehicles were detected multiple times 
which caused the model to sometimes over-exaggerate the 
number of vehicles. Although, conditions such as inferior 

camera quality, occlusion and low light conditions proved 
tricky in accurately detecting different classes of vehicles, 
certain combinations of detector-tracker framework func-
tioned fine for challenging conditions as well. Deep learning 
based object detection models coupled with both online and 
offline multi-object tracking systems could integrate real-
time object detections in conjunction to tracking vehicle 
movement trajectories. This outline was accepted which in 
turn facilitated accurate vehicle counts. Moreover, we exper-
imented with the detector-tracker ability to correctly detect 
different classes of vehicles, estimate vehicles’ speed, direc-
tion and its trajectory information to identify some of the 
best performing models which could be further fine-tuned 
to remain robust at counting vehicles in different directions 
and environmental conditions. The figures and tables pre-
sent a systematic representation of what model combina-
tions perform well at obtaining vehicle counts in different 
conditions. Overall, for counting all vehicles on the roadway, 
experimental results from this study prove that YOLOv4 and 
Deep SORT, and CenterNet and Deep SORT were the most 
ideal combinations.
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