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Abstract

In recent years, Intelligent Transportation Systems (ITS) have seen efficient and faster development by implementing deep
learning techniques in problem domains which were previously addressed using analytical or statistical solutions and also
in some areas that were untouched. These improvements have facilitated traffic management and traffic planning, increased
safety and security in transit roads, decreased costs of maintenance, optimized public transportation and ride-sharing com-
pany’s performance, and advanced driver-less vehicle development to a new stage. This papers primary objective was to
provide a review and comprehensive insight into the applications of deep learning models on intelligent transportation
systems accompanied by presenting the progress of ITS research due to deep learning. First, different techniques of deep
learning and their state-of-the-art are discussed, followed by an in-depth analysis and explanation of the current applications
of these techniques in transportation systems. This enumeration of deep learning on ITS highlights its significance in the
domain. The applications are furthermore categorized based on the gap they are trying to address. Finally, different embed-
ded systems for deployment of these techniques are investigated and their advantages and weaknesses over each other are
discussed. Based on this systematic review, credible benefits of deep learning models on ITS are demonstrated and directions

for future research are discussed.

Keywords Deep learning - ITS - Survey - Transportation systems

Introduction

The emergence of machine learning and its substitution for
several statistical models have led to better problem-solving,
which in turn has led various fields of study to turn their
research paths to take advantage of this new method. Trans-
portation systems have been influenced by the growth of
machine learning, particularly in intelligent transportation
systems (ITS).With the proliferation of data and advance-
ments in computational techniques such as graphical pro-
cessing units (GPUs), a specific class of machine learning
known as deep learning (DL) has gained popularity. The
capability of DL models to address large amounts of data
and extract knowledge from complex systems has made
them a powerful and viable solution in the domain of ITS.
A variety of networks in DL have helped researchers to for-
mulate their problems in a way that can be solved with one
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of these neural network techniques. Traffic signal control for
better traffic management, increasing the security of trans-
portation via surveillance sensors, traffic rerouting systems,
health monitoring of transportation infrastructure, and sev-
eral other problems now have a strong new approach, and for
several challenging problems in transportation engineering,
new solutions have been created.

There have been several surveys of the literature on the
application and enhancement of ITS using DL techniques.
However, most of these have tended to focus on a specific
aspect of DL or a specific aspect of ITS. For instance, Zhu
et al. (2018a) conducted survey of big data analytics in ITS.
A review of computer vision playing a key role in roadway
transportation systems was discussed in Loce et al. (2013).
While (Nguyen et al. 2018) reviews DL models across the
transportation domain, it is not a comprehensive survey that
encompasses all current research publications on the ITS
domain and DL. One dedicated review on enhancing trans-
portation systems via DL was done in Wang et al. (2018a)
where substantial research was included, but it focused pri-
marily on traffic state prediction and traffic sign recognition
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tasks. The ITS domain includes other tasks, such as public
transportation, ride-sharing, vehicle re-identification, and
traffic incident prediction and inference tasks, which are all
represented in this paper to make its extent more comprehen-
sive and holistic. The transportation and research commu-
nity has always taken notice of pivotal research directions,
with the earliest review of neural nets applied to transporta-
tion (Dougherty 1995), where the critical review spanned the
classes of problems, neural nets applied and the challenges
in addressing various problems. It is this that motivates of
the question we address in this paper: How effective and effi-
cient are the current DL research applications for the domain
of ITS? To the best of the authors’ knowledge, the literature
in this field has suffered from the lack of a holistic survey
that takes a broader perspective of ITS as a whole and its
enhancement using DL models.

The purpose of this paper was, therefore, to present the
systematic review we have conducted on the existing state
of the research on ITS and its foray into DL. In “Research
Approach and Methodology”, we discuss our approach taken
to identify relevant literature. In “Background on Techniques
in Deep Learning”, we talk about different methods of DL
network systems and breakthrough research on those meth-
ods. In “Applications in Transportation”, we talk about dif-
ferent applications of DL methods in transportation engi-
neering, specifically six major application categories in ITS.

In “Discussion and Conclusion”, we investigate different
available embedded systems, or devices that can facilitate
the running of neural network experiments. Finally, in “Ref-
erences”’, we provide a summary and an outlook for future
research.

The research methodology which is followed in this
paper is PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) (Moher et al. 2009). Following
this method, we first produced a questionnaire and in each
paper we reviewed, we looked for answers to these ques-
tions. The focus of these questions is about the gap which
each paper tries to address, their proposed solutions, and
finally the performance of these solutions for their datasets.

Research Approach and Methodology

This paper performs a detailed analysis of existing studies
on intelligent transportation systems (ITS) and deep learning
(DL). Articles were searched in multiple databases using the
search strategy described below. The collected articles were
then reviewed and organized. The scope of this review was
restricted to conference proceedings and journal articles,
including existing literature reviews.

Relevant articles were primarily obtained by query-
ing the TRID TRB database (Home—transport research
international documentation 2017), where the search terms
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included “deep learning”, “convolutional”. These search
terms were sought in the title, abstract and notes. Then the
references of the papers identified were examined to trace
other trusted journals and papers. Also, online searches on
various databases such as Scopus, Science Direct, IEEE, and
ArXiv were done. All papers obtained were included in this
review if they met the following criteria:

e Describe solutions to ITS problems using DL, as iden-
tified by methodology sections, that include DL-based
model development

e Published between January 2015 and October 2019 (dur-
ing which period the majority of research so far using DL
in ITS has been conducted)

e Not a book, book chapter, dissertation, thesis or technical
report

e Not a general introduction to ITS

e Not in the domain of autonomous vehicles

Though DL boom was spawned by the ImageNet project
in 2012 (Russakovsky et al. 2015) and applications of DL
on ITS first appeared in 2013, substantial growth in ITS
research by means of DL methodologies did not start until
2015. This is illustrated in Fig. 1. Since then, there has been
a steady growth in the prominence of DL-based ITS studies
across journals and conferences. In the year 2019, up until
October, 43 papers have been published across various ITS
applications. In light of the marked increasing importance of
DL as an ITS research method, in the following section, we
will discuss and review the various DL structures and then
their key applications in the ITS domain.

Background on Techniques in Deep Learning

Deep Neural Networks (DNN)

Deep learning (DL) is a specific subcategory of machine
learning where several layers of stacked parameters are used
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for the learning process (Ketkar 2017). These parameters are
component representations of different aspects which can
affect the result of the network. Each layer contains several
perceptrons (known also as neurons or hidden units) which
carry weights for the parameter. The input of each layer is
multiplied by these parameters and, therefore, the output
is a representation of the impact of each parameter on the
input. Usually after each layer or several layers of neurons,
a nonlinearity function such as the tanh, sigmoid, or recti-
fied linear function (ReLU) (Glorot et al. 2011) is used to
generate the output layer. All these layers combine to form
a deep neural network (DNN) (Schmidhuber 2015). There
are two major challenges in building a DNN: first, designing
the structure of the network, which includes the number of
layers, number of neurons in each layer, and nonlinearity
function type,and second, adjusting the weight of the param-
eters to train the network on how it should perceive the input
data and calculate the output. For the first challenge, what
is usually most helpful is simply trial and error and overall
experience. For the second challenge, the back-propagation
method is the most popular method to train the weight of
parameters in a supervised manner. More details about this
method can be found in Schmidhuber (2015). Although all
the techniques which will be discussed in the rest of this
paper can be classified as a subcategory of DNN, here in
this paper, DNN is defined as the simplest structure of a
network, in other words, fully connected layers. In this fully
connected model, there is a connection between all the neu-
rons of one layer to all the neurons in another layer, and for
each connection, there is a weight which should be deter-
mined through back-propagation method.

Convolutional Neural Networks (CNN)

One of the major applications of neural networks was com-
puter-aided detection (CAD) that aimed to increase clas-
sification accuracy and inferencing time. A revolutionary
method was proposed in LeCun et al. (1989) called convolu-
tional neural networks (CNN). Inspired by the vision system
of cats which are locally sensitive and orientation-selective,
as presented in LeCun et al. (1989) and Hubel and Wiesel
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Fig.2 Figures depicting CNN and RNN schematic

(1962) suggested that instead of using fully connected layers
of neural networks, it is possible to use a single kernel with
shared weights to wisp the entire image and extract the local
features. The proposed method enhanced the detection effec-
tiveness both in terms of accuracy and memory requirement
when compared with traditional methods, which required
handcrafted feature extractions (LeCun et al. 1998).

CNN is a detection architecture that automatically learns
spatial hierarchical features using back-propagation through
the network. A schematic figure of this architecture is pre-
sented in Fig. 2a. These networks usually contain three types
of layers: convolution, pooling, and fully connected, where
the first two are used to extract the features and the last one
used as a classifier (Bengio et al. 2015).

The convolution layer consists of a combination of a con-
volution kernel, which counts as a linear part of the layer and
a nonlinear activation function. The main advantage of using
a kernel that shares weights in operation, is extracting the
local features and learning the spatial hierarchies of features
efficiently by reducing the required parameters. Then the
nonlinear activation function maps the results onto the fea-
ture map. In order to reduce the number of parameters, usu-
ally one pooling layer comes after a few convolutional layers
in order to downsample the data, by taking the maximum
unit (max pooling) or the average (average pooling) of a col-
lection of units and substituting it as a representative of these
collections. After extracting features and downsampling the
data by the convolution and pooling layers, they are mapped
onto the final output by fully connected layers. The output of
these layers usually is the same size as the number of classes
and each output indicates the probability of it belonging to
that class. Finally, this string maps onto the final result by an
activation function. This activation function can be sigmoid
for binary/multiclass classification, softmax for single/mul-
ticlass classification or to identity continuous values in case
of regression (Yamashita et al. 2018).

Based on the fact that in order to train a deep model
a large amount of data are needed, CNN and other mod-
els’ popularity only began to rise when a large quantity of
labeled data were provided for the ImageNet challenge (Rus-
sakovsky et al. 2015). Afterward, lots of architectures have
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been proposed which use these CNN blocks to enhance the
efficiency of CAD. Some of these methods are AlexNet,
Inception, VGGNet 16/19, Resnet, etc. However, in order
to increase the accuracy of detection, other concepts have
been used in the process. Some of these concepts are transfer
learning, which uses the knowledge of the network from
retraining on a large dataset in order to train the network on
a smaller dataset (Yamashita et al. 2018). The other method
is training with an equal prior instead of a biased prior in
those cases where the dataset has a bias towards one of the
classes (imbalanced dataset). In this case, different sampling
or resampling rates are applied to the dataset to balance it.
The effect of these different methods of changing the archi-
tecture, using transfer learning and balancing the dataset for
various datasets are investigated in Shin et al. (2016).

Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs), another class of super-
vised DL models, are typically used to capture dynamic
sequences of data. RNNs can successfully store the rep-
resentation of recent inputs and capture the data sequence
by introducing a feedback connection to interpret the data.
This ability can play the role of memory to pass informa-
tion selectively across sequence steps to process data at a
certain time. Thus, each state depends on both the current
input and the state of the network at a previous time. In other
words, there is a similarity between a traditional, simple
RNN and Markov models (Lipton et al. 2015). In 1982, the
first algorithm for recurrent networks was used by Hopfield
(1982) in order to do pattern recognition. In 1990, Elman
(1990) introduced his architecture, which is known as the
most basic RNN. A schematic figure of this architecture is
presented in Fig. 2b. In this architecture, associated with
each hidden unit, there is a context unit which takes the
exact state of the corresponding unit at the previous time as
an input and re-feeds it with the learned weight to the same
unit in the next step.

Although training RNN networks seems to be straight-
forward, vanishing or exploding gradient problems remain
the two main difficulties. These problems can happen during
learning from previous states when the chain of dependen-
cies gets prolonged and, in this case, it is difficult to choose
which information should be learned from past states. In
order to solve the problem of an exploding gradient in
recurrent networks, which can result in oscillating weights,
Williams and Zipser (1989) has suggested Truncated Back-
Propagation Through Time (TBPTT), which sets a certain
number of time steps as a propagation limit. In this case,
to prevent exploding the gradient, a small portion of previ-
ously analyzed data is collected to use during the training
phase. However, this means that in the case of long-range
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dependencies cases, the former information related to these
dependencies will end up lost.

Long Short Term Memory (LSTM) architecture has
been suggested by Hochreiter and Schmidhuber (1997) to
solve both these problems together. The primary idea of
this method is using a memory cell with only two gates of
input and output. The input gate decides when to keep the
information in the cell and the output gate decides when to
access the memory cell or prevent its effect on other units.
In recent years, several corrections and improvements have
been made on LSTM architecture.

As described above, LSTM contains a memory cell that
holds its state over time, and based on its regulation, controls
how this cell affects the network. The most common type of
LSTM cell has been suggested by Graves and Schmidhu-
ber (2005). Several gates and components which are added
to this cell are different from the basic suggested LSTM
by Hochreiter and Schmidhuber (1997). A logistic sigmoid
function is usually used as the gate activation, though due
to the state-of-the-art design of Graves and Schmidhuber
(2005), a tanh function is usually used as the block input
activation and block output activation. The forget gate and
peephole connections were first suggested by Gers and
Schmidhuber (2001) that enables the cell to reset by forget-
ting its current state and passing the current state data from
the internal state to all gates without passing them through
an activation function.

Finally, it is notable that Cho et al. (2014) has proposed
a gated recurrent unit (GRU) inspired by the LSTM block,
where they have eliminated the peephole connections and
output activation function. They have also coupled the input
gate and forget gate into one gate called the update gate and
what passes through their output gate is only recurrent con-
nections to the block input. This architecture is much sim-
pler than LSTM and based on what it eliminates, it avoids a
significant reduction in performance, which makes it more
popular to use.

Autoencoders (AE)

One of the most important task in DL is access to a large
amount of data to train the model. Usually, such a dataset
is not readily available and producing a rich dataset would
be expensive. In this situation, unsupervised methods show
their value. Instead of training models using labeled data,
unsupervised methods extract the features of unlabeled data
and use these extracted features to train the model. Autoen-
coders (AEs) are one such method which aims to reconstruct
the input data and in this manner is similar to principal com-
ponent analysis. AEs are composed of two networks that are
concatenated to each other. The first network extracts and
encodes the input data into its main features and the second
network usess these features to reshape arbitrary random
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data to reconstruct something similar to the input data. The
schematic figure of this architecture is presented in Fig. 3a.
Although the concept of AEs has been used previously as
a denoiser (Vincent et al. 2008) and data constructor (Tan
and Eswaran 2008), it found a new application as variational
AEs (Kingma and Welling 2013). To minimize the differ-
ence from input and output, Kingma and Welling (2013)
have used the variational inference method. They introduced
a lower bound on the marginal likelihood and tried to max-
imize it to minimize the error between input and output.
Doersch (2016) and Le (2015) have explained exactly how
a variational AE can be built.

Usually, an AE’s hidden layer is smaller than its input
layer, although the opposite situation can happen as well.
Also, the horizontal orientation of AEs is defined as combin-
ing two or more AEs horizontally, and this can have differ-
ent motivations such as different learning algorithms (e.g.,
RBM, neural network, or Boolean) or different initialization
and learning rates. In addition to details about these situa-
tions, linear and nonlinear AEs have been studied by Baldi
(2012). It has been shown that a Boolean AE as a nonlinear
type has the ability to cluster data and an AE layer on top
can be used as a pretrainer for a supervised regression or
classification task.

Deep Reinforcement Learning (DRL)

Reinforcement learning (RL) attempts to train a machine
to act as an agent who can interact with the environment
and learn to optimize these interactions by learning from
responses (Arulkumaran et al. 2017). In RL, the agent
observes the environment and gets a state signal and chooses
an action that impacts the environment to produce a new
state. In the next step, a reward from the environment and
the new state is fed to the agent to help it decide more intel-
ligently in the next step. The goal of an agent in this setup
is gaining the maximum reward over the long term by fol-
lowing an optimal policy. The algorithm of RL is usually
based on the Markov Decision Process (MDP) (Silver 2015).
The problems that can be solved by RL algorithms can be
divided into episodic and non-episodic MDP. In episodic
MDP, the state will reset at the end of the episode and the
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return (accumulation of rewards for the episode) is calcu-
lated. In non-episodic MDP, there is no end of the episode
and using a discount factor is vital to prevent an explosion
of return values (Arulkumaran et al. 2017).

There are two functions usually used in RL: the state-
value function, also known as the value function, is the
expected return if the agent starts at a given state (no action
limitation), whereas the action-value function, also known
as the quality function (Q-function) is the expected return
of starting at a given state and taking a particular action.
Usually, one of two methods is implemented to solve an RL
problem. In the first approach, the Q-function is predicted
using different methods of temporal difference controls
such as state—action-reward—state—action (SARSA), which
improves the estimation of Q. The second approach is O
learning, which directly approximates the optimal Q. Both
of these methods use bootstrapping and learn from incom-
plete episodes.

Deep reinforcement learning (DRL) is an approach to
solving the RL problem using a DNN. Although the history
of DRL began in the 1990s when Tesauro (1995) developed
a neural network that reached an expert level in backgam-
mon, its rebirth can be considered as Mnih et al. (2015)
who introduced Deep Q-Networks (DQN) as DNNs that can
approximate Q instead of reading its value from a Q table
that indicates for each state what the Q value would be for
taking each action. In this new method, complex and high
dimensional problems have potential to be addressed easily
(Mnih et al. 2015). The model used by Mnih et al. (2015)
extracted images from the Atari games and used a combi-
nation of a CNN model and a fully connected layer on the
data extracted from the images to obtain an estimate of the
0 value.

However, because of the complexity of DRL, it can be
unstable. Therefore, much research has been focused on
solutions able to defeat this instability. Experience replay
(Lin 1992) and target networks (Mnih et al. 2015) are the
two most used techniques to make RL stable. Other tech-
niques include Double-Q learning (Hasselt 2010) and
dueling DQN (Wang et al. 2015), which have also been pro-
posed to make DRL more robust and stable. In Double-Q
learning, the second estimator is used for estimating an extra
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assumptive Q' to approximate the Q value more precisely.
On the other hand, dueling DQN (Wang et al. 2015) uses
a baseline instead of an accurate calculation of Q value to
learn relatives.

Generative Adversarial Networks (GAN)

Generative adversarial networks (GANS) are a specific class
of deep learning networks that learn how to extract the sta-
tistical distribution of training data to synthesize new data
similar to real-world data. These synthetic data can be used
for several applications such as producing high-resolution
images (Ledig et al. 2017), denoising low-quality images,
and image-to-image translation (Isola et al. 2017). Most of
the generative models use the maximum likelihood concept
to create a model that can estimate the probability distribu-
tion of the training data and synthesize a dataset that maxi-
mizes the likelihood of the training data (Dougherty 1995).
Although calculating maximum likelihood can directly result
in the best action of the model, sometimes these calculations
are so difficult that it is more beneficial to implicitly estimate
this amount. In the case of explicit density calculation, three
main types of models are popular:

e Fully visible belief networks
e Variational AEs
e Markov chain approximations

All of these models, however, suffer from the problems
of low speed, low quality, and early stoppage (Goodfel-
low 2016). To overcome these problems, Goodfellow et al.
(2014a) has suggested a method that does not require explicit
definition of the density function. This model can generate
samples in parallel, no Markov chain is needed to train the
model and no variational bound is needed to make it asymp-
totically consistent.

This method has two models: the generative model which
is responsible to pass random noise through a multilayer net-
work to synthesize samples, and the discriminative model,
which is responsible to pass real data and artificial data
through a multilayer network to detect whether the input
is fake or real. A schematic figure of this architecture is
presented in Fig. 3b. Both models use back-propagation and
dropout algorithms: the generative model to create more
realistic data and the discriminative model to achieve better
distinction between real and fake data.

When GANs were first proposed in both their generative
and discriminative models, fully connected networks were
used. However, later in 2015, Radford et al. (2015) suggested
a new architecture named deep convolution GAN (DCGAN),
which uses batch normalization in all layers of both models,
except the last layer of the generator and first layer of the
discriminator. Also, no pooling or unpooling layer is used in
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this architecture. A DCGAN allows the model to understand
operations in latent space meaningfully and respond to these
operations by acting on the semantic attributes of the input
(Goodfellow 2016).

The other improvisation on the GAN architecture has
been conditional GAN (Mirza and Osindero 2014), where
both networks are class conditional, which means the gen-
erator tries to generate image samples for a specific class
and the discriminator network is trained to distinguish real
data from fake data, conditional on the particular class. The
advantage of this architecture is better performance in mul-
timodal data generation (Creswell et al. 2018).

In the next section, we discuss and review the applica-
tions of deep learning models to transportation.

Applications in Transportation
Performance Evaluation

Before reviewing papers that have already used DL meth-
ods to investigate ITS applications, it is necessary to make
clear the model evaluation criteria used. The classification
metrics are accuracy (AC), precision (PR), recall (RL), top
1 accuracy, and top 5 accuracy, while the regression met-
rics are mean average precision (mAP), mean absolute error
(MAE), mean absolute percentage error (MAPE), and root
mean squared error (RMSE):

TP + TN

AC = (D
TP + FP + TN + EN
TP
PR= ——
TP + FP &
TP
RL= ——
TP + EN @)

where TP =true positive, TN =true negative, FP =false posi-
tive, FN =false negative.

Top 1 accuracy means the model’s top answer must match
the expected answer.

Top 5 is when at least one of the model’s five highest
probability answers must match the expected answer.

mAP is the mean of the average precision (AP) scores for
every query, where AP is the area under the PR vs RL curve

IoU is the ratio between area of overlap and area of union,
between the predicted and the ground truth bounding boxes:

n
1 —
MAE = = ) |y~ y,
n & lyi— i | )
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where y; is the actual value of observed travel time, y; is
the predicted value of travel time, and n is the number of
observations.

We now discuss different applications of deep learn-
ing in ITS. The included topics have been selected based
on the functional areas in ITS as mentioned in Sussman
(2008) and have been studied substantially over the period
of 2012-2019.

Traffic Characteristics Prediction

One of the most considered applications of DL in transpor-
tation is related to traffic characteristics prediction. Traffic
characteristics information can help drivers to choose their
routes more wisely and traffic management agencies to man-
age traffic more efficiently. The main characteristics of inter-
est are traffic flow, traffic speed, and travel time. Since these
characteristics are not mutually exclusive, methods that are
used to predict one of them also can be used to predict the
value for the remaining features. Due to this, methods used
to make these predictions are discussed together as follows:

Based on the duration of prediction for each traffic char-
acteristic, a forecast value is usually classified as short-term
(S) for predictions within less than 30 min, medium-term
(M) for a prediction window between 30 and 60 min, and
long-term (L) within more than 60 min (Yu et al. 2017a).
Since driving behavior and traffic characteristics can vary
across locations, results from one dataset are difficult to
apply to other datasets (Wang et al. 2018a). Previously, traf-
fic feature prediction has predominantly used parametric and
statistical methods, such as autoregressive integrated mov-
ing average (ARIMA) modeling, but most of the time these
methods have been incapable of predicting irregular traffic
flows (Wang et al. 2018a). However, through the emergence
of machine learning and furthermore DL methods, nonpara-
metric methods are now being used in traffic characteristics
prediction to achieve higher accuracy.

One of the first attempts to predict traffic characteristics
has used deep belief networks (DBN) as an unsupervised
feature learner. Chen et al. (2017a), Huang et al. (2014)

and Khajeh Hosseini and Talebpour (2019) have imple-
mented DBNGs for traffic flow prediction. Siripanpornchana
et al. (2016) and Hou and Edara (2018) have used the same
concept for predicting travel time and traffic speed. Along
with traffic data, weather data have been fed into DBNs
using data fusion techniques to predict traffic flow more
accurately (Koesdwiady et al. 2016).

However, due to the nature of the above mentioned traf-
fic features and their dependency on past traffic conditions,
several studies have been done to discover correlations
using RNN to predict traffic characteristics. For instance,
Zhang and Kabuka (2018) have used a gated RNN unit to
predict traffic flow with respect to the weather conditions,
where Jia et al. (2016) have used LSTM to overcome the
same challenge. Liu et al. (2017) and Tian and Pan (2015)
have used LSTM to predict travel time as well as traffic
flow, while also taking into account weather conditions.
Finally, Ma et al. (2015) have implemented a combination
of deep RBM and RNN to predict congestion in transpor-
tation network links.

Polson and Sokolov (2017) have tried to increase the AC
of traffic flow prediction especially for nonrecurrent traffic
congestion, such as a special event or harsh weather, by pay-
ing more attention to the spatiotemporal feature of traffic.
This feature is grounded in the assumption that to predict
any traffic characteristic, we need both the historical data on
that particular location and current traffic in the neighboring
areas. To accomplish this, Wang et al. (2016a) have tried
to combine an RNN with a CNN to pay attention to both
the temporal and spatial aspects of traffic. Fouladgar et al.
(2017), Du et al. (2017) and Goudarzi et al. (2018) have
combined the power of LSTM + CNN to understand both
temporal and local dependencies to predict different traffic
characteristics. Yao et al. (2018a) have considered two chal-
lenges, the first being the dynamic dependency of traffic on
temporal features, that is, in different hours of the day, this
dependency may differ from one direction of traffic flow to
another direction. The second challenge has been the proba-
bility of shifting time periods in relation to traffic density. In
other words, a periodic temporal dependency may shift from
one time to another (e.g., on different days of the week). As
aresult Yao et al. (2018a) designed a network consisting of
a flow-gated local CNN network to capture the dynamic of
the spatial dependencies and an LSTM network as a periodi-
cally shifted attention mechanism for handling the periodic
dependencies. One other approach to accounting for both
types of dependencies was taken by Ma et al. (2017). They
converted data into images representing the two dimensions
of time and space. By converting their data matrices into
images, they were able to use a CNN model to extract image
features and predict the network-wide traffic speed. Yu et al.
(2019) improved this approach later by adding a temporal
gated convolution layer to extract temporal features.

@ Springer
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To extract both spatial and temporal features, Cui et al.
(2018a) have used a deep model called the stacked bidirec-
tional and unidirectional LSTM (SBU-LSTM) model where
the bidirectional LSTM considers both the backward and
forward dependencies in time-series data. Since traffic con-
ditions have periodicity, by analyzing both backward and
forward features, the AC can be increased.

One of the other models able to consider the spatiotem-
poral property of traffic has been AE, which was proposed
first by Lv et al. (2014) and improved by Duan et al. (2016)
using denoising Stacked AE (dSAE) and Yu et al. (2017a)
by combining LSTM and AE to predict traffic conditions at
peak hours and in post-accident situations. To predict post-
accident situations, they extracted a latent representation 7
of the static features that are common in all accidents from
stacks of AE and combined this with a temporal correlation
to traffic flow that came from stacks of LSTM, using a linear
regression (LR) layer.

Table 1 summarizes all these papers, with the columns
from left to right describing for each study the traffic charac-
teristics investigated and its DL model, dataset, experiment
results (best results achieved), baseline model, and the base-
line model’s best results, prediction window length, hyper-
link to the given paper and its year of publication.

To the best of the authors’ knowledge, all studies match-
ing the meta-analysis criteria described in “Research
Approach and Methodology” of the current paper related to
travel time, traffic speed, traffic flow, traffic conditions, and
traffic density have been tabulated here. For traffic condi-
tions, the goal was to predict if the road is congested or not.
Results performed on multiple datasets are also represented
in Table 1. To have uniformity, the best results are those
achieved when the window length is ‘S’ (short-term). This
table structure is followed across all tables in this paper.

Traffic Incident Inference

The goals of predicting traffic incident risk for a given loca-
tion as well as incident detection based on traffic features are
to help traffic management agencies to reduce incident risk
in a hazardous area and traffic jams in incident locations.
Although there are parameters such as drivers’ behavior, that
are not very predictable, there are several key features that
can help predict traffic incidents.

Human mobility (Chen et al. 2016), traffic flow, geo-
graphical position, weather, time period, and day of the
week [97] are some of these features that can be investi-
gated as indicators of a traffic incident. However, a single
model cannot generally be used in different places because
accident factors in metropolitan areas, where the population
and vehicles are generally dense, are completely different
from accident factors in a small town with a scattered popu-
lation (Yuan et al. 2017). The prediction and detection of an

@ Springer

incident is more challenging than the prediction of incident
risk since data for the former are usually heterogeneous (i.e.,
traffic incidents happen rarely, compared to the amount of
data for the cases where there is no incident). To overcome
this issue, Yuan et al. (2017) in each step changed only one
feature of the data (hour, day, or location) and then checked
if the resulting data point was negative or not. In negative
cases, it was added to the pool of data to be considered.

To measure the traffic incident risk based on surveil-
lance camera data, different approaches have been used. For
example, Chen et al. (2016) have used a stack denoising AE
(SDAE) to learn the hierarchical features of human mobil-
ity and their correlation with a traffic incident. In contrast,
Ren et al. (2017) and (Bao et al. 2019) have implemented an
LSTM model to evaluate risk, but Ren et al. (2017) achieved
better performance due to learning from more features.

To predict traffic incidents in a macroscopic manner,
Yuan et al. (2017) and Pan et al. (2017) have tried imple-
menting DNN models, Yuan et al. (2017) by considering
the curvature of the road as well as the number of inter-
sections and density of the area in order to overcome the
spatial heterogeneity problem. For the same concern, Dong
et al. (2018) have used AE by considering both continuous
and categorical variables, and Yuan et al. (2018) have used
a Conv-LSTM that breaks regions into smaller regions in
order to overcome spatial heterogeneity.

If, following Yuan et al. (2018), we consider the macro-
scopic prediction of traffic incidents as not focused on any
single vehicle, but instead as predicting the probability of an
accident between any pair of vehicles in the wider region,
microscopic incident prediction studies can also be intro-
duced that—by getting data about the location, speed, and
direction of each vehicle in the surrounding area—predict
the probability of an incident in the near future between any
certain pair of vehicles. In this regard, Chen et al. (2018b)
and Theofilatos et al. (2019) have trained a DNN to predict
likely collisions. Theofilatos et al. (2019) have used a simple
NN with four layers, which, though it does not compare well
with the baseline results of machine learning (ML) tech-
niques, is still preferred, as the ML techniques have poor
sensitivities.

Suzuki et al. (2018) have annotated their large dataset
of near-miss traffic accidents to train a quasi-RNN model.
The innovation of their work was introducing an adaptive
loss function for early anticipation (AdaLEA), which gives
their model the ability to predict a collision 3.65 s before it
happens.

Another challenge in traffic incident inferencing is detect-
ing an accident by processing only raw data. To address this,
Hatri and Boumhidi (2018) and Singh and Mohan (2018)
have used a stacked AE (SAE) to extract the features of
traffic patterns in the context of an accident. Also, Hatri
and Boumhidi (2018) have used a fuzzy DNN to control



123

Journal of Big Data Analytics in Transportation (2020) 2:115-145

810¢ (8102) BRIV TIN'S EUA (49 61°¢ SINad Ngda
810¢ (8107) Te 30 Suenyz 1 qvsd SIASINY (urw 6/A)S SGHSINY S1e)SISIU] UO)SUTYSEAL NND
810¢ (e8107) T8 30 N W Lsdoaqg $8°67:ASINY (urw G/A)16'LTHSINYG SINod NNa
810¢ (e8107) 'Te 10 Suex 1 NIST 6S€ LHSINYG (4/u)$6°9:HSINY oyyel], Suillog LS TAUOD
8107 (8107) ‘e 39 1zIepnon TS OSd-VINIIV 6£6 SL'S JIoje[aWIS WnSIA Ngd
810¢ (L10T) Tew Qg 1 WLST 0€0°0:SINY (urwr ¢/A) 820" 0:ASINY SINed  NND+NNY
L10T (L102) TeRoRyZ  TIN'S AvS €9 S0'9 [erRny Sutllog WLST
L10T  (L107) 'Te 30 JeSpe[nog 1 1900°0:ASINY SINAd NND
L10T (eL107) Te@ K TIN'S J[ear wopuey 01 S SIN°d  AVS+INLST
L10T (L102) Tewelf IN‘S WLST ¥8TI 6911 Sury Sufleg  NAA+NLST
9102 (9102) e 10 ueng 1 NN L€T TeT SINAd avsa
(9100)
910¢ [e 30 ApRIMpPSI03] 1 NNV €90°0:dSINY (urw G1/8)90°0:ASINY SINAd Nda
S102 (S107) ued pue uer], TIN'S avs €9°L 6%°9 SINAd WIS
S10T #1020 e AT TIN'S NN 499 L SL9 SINed avS
¥10T (#107) Tee Sueny  TIN'S NN %98:0V %06:0V HSAd SINad Ngd MO dyel],
610T (6107) Te 10 Sueyz S LS ST01 LS6 Sury Sutlieg NOD
610T (6107) 'Te ¥ N 1 LS 198 68'¢ Surfiog ‘SINLY  NYD+INLST
6102 (8107) Te@Of  TI'S WLST (Uu)sL TASING (Wur)gy - SING [NO3S ‘MU dyFeI, NND
610 (6107) T8 10 udAN3N W'S NLST (Uu)$y v ASING (W9 +:ASINI 1uow3as peor 9[[ezoy  LST+NND
610 (6107) T 10 Suepm 'S NN N.LST 1S°0T:dSIN 7€ LIS Susyouenx 1AV NIST'd
610T (6107) Te @ Suiq S 801 BIEP [[0ITYD W1ST1d
810 (e8107) e 30 D S 15910 wopuey €9 vL9'S XTINI NLST+N9S
L10T (L102) 'Te R e S S710 %L 16DV %BIT€6:DV Sury Sutlieg NND
L10T (89107) 'Te 10 Suem S NND 120 61°0 Sury Sutliog NNO¥?
910T (9107) TeWRl 'S NN-dg 896G 608°S euay Sulliog Nga poads ogyei],
auwn
810C  (8107) erepg pue noH y3uo| [oARI) SnoTueRjuRISUL 86 60°L 3ouodsuen smoTIS NNA+IALST
810¢ (L107) Te o nry S 5oy °3pry 900'1 196°0 SIN°d NNA +NLST
(9100
L10T  'Te 3 eueyoultoduedurg TS € SINad Ngda
S10T (S107) Te W Suen W 6L'S ©eJep paje[nwIg qv awp [aAei],
[SPOIN SIYIO  %AdVIN sIYO  %AdVIN
Te9x SQOUAIRJYY  YISuo SJ[NSAI [opow duI[aseyq synsar juowrtradxyg jasere [PPOIN oNsLIRoRIRYD)

uonorpaid onsLLIoeIRYD dyJer) Joj sanbruyod) Sururesd] doop Suisn sroded Jo ma1AIAQ | 3|qeL

pringer

Ns



Journal of Big Data Analytics in Transportation (2020) 2:115-145

124

(6107) mModqare],
6107 pue urassoy yaleyy S VINIIY ¥E'6 89°¢ Ioje[nuIrg dyyery, NNO
8107 (L107) uyos pue Sunyy) NNDO pamo1) 601" LASINY (qunoored) 614 ASINI UOnO0SIAN] [N0AG NNO  Aisuep oyyerf,
610T (6107) Te 10 ono S for:cs) %T6'LL-OV %65 L6:0V BIEp UBZUSYDS-TXE], NN +NNO
610T (6107) Te 10 nx NN 10°9T:ASINY (urur) 69 ZT:HSINY eep odie g4 YAS+NAA
(8107
810C Te 30 K110qED{RYD) INAS %L S8:IV %Y 16:0V ALOD LOA VMOI OTOX
8102 (810 enureq av %S 0L:IV %68:0V SN ‘eseiep AeMIololN  NNO+NTA
8102 (e8107) TeI0 WYY  TIN'S NLST S8T'0:HSINY [+T0:ASINY BUTYD) “URUI[ SYJA NNO
S10C (S107) 'Te 10 BN 1 INAS %BILOV %T'88:0V eury) ‘0qSUIN NN +NGY  SUODIPUOD oyjel],
610C (6100) Te 10 oryZ S NNdg Sl 4! Ie) Sullieg  NNA+HVS
610C (L107) Suep pue 1] S INLST 80T HSINY 0¢'8T:HSINY speoy Sulliog qvs
610C (e8107) Te ¥ ury S qvs €9°LE 16'9¢ SIWed NVD
(6107) Auno
6107  -Aseg-Id pue Yoojme], 68°0:parenbs-y SUOTI0ISIAU] BIRQ[Y NNA
610C (6107) TR NS NNOO ¥21o S01°0 SIWAd NND
(6107) modqorey,
610C  pue IUIassoy yoleyyy S UAS 96'8 ¥8'¢ INISON NND
810C (8107) Te 10 291 g o)1 uewey 9868 ASINI (998'A)1€6'LASINY uonoasIsul NNSINIV INLST
810C (Q8107) TeR M) 1 NLST-0DS YLE 87°¢  omedg BIep XNINI NND+ANLST
810C (e8107) Te 10 0vX W PN-LSAINA 9¢'LT €91 e/ AN NNO+ALST
8107 (L102) RO NL 'S Yo ydern 1€°6 16 SN + A g NND
[OPOIN SO %AIVIN SO %AIVIN g
Teox SQOUAIRJYY  YISuo SI[NSAI [opow duI[aseq synsar juowtradxyg josereq [OPOIN onSLIORIRY) mP

w
(ponunuoo) Lajqer &l



Journal of Big Data Analytics in Transportation (2020) 2:115-145

125

the learning of traffic-incident-related parameters. Zhang
et al. (2018a) have trained their DBN model on a dataset
that includes tweets related to traffic accidents, showing that
non-traffic features can be used along with traffic feature data
to validate traffic incident detection.

Incident severity prediction based on recorded incident
features have been studied in Wang et al. (2016a), Sameen
and Pradhan (2017) and Alkheder et al. (2017). The artificial
neural network (ANN) trained in Alkheder et al. (2017) has
shown an improvement in baseline performance as com-
pared to the LSTM model with fully connected layers in
Sameen and Pradhan (2017).

Table 2 summarizes all these papers, shows their model,
the dataset which their model was trained on, evaluation of
their model for their testing dataset as well as comparison
of their model’s performance to that of their baseline model.
In the first section of this table, different studies regarding
parameters effective in predicting increased incident risk and
the manner in which incident risk is affected are listed. In the
next section, macroscopic studies on incident prediction are
categorized as “traffic incident prediction,” whereas micro-
scopic studies are categorized as “collision prediction.”
In the incident detection 9 section, all studies focused on
detecting incidents by analyzing raw traffic data have been
gathered and, finally, in the last section, investigations pre-
dicting the severity of the incident are listed.

Vehicle Identification

Applications of re-identification (Re-ID) vary from calculat-
ing travel time to automatic ticketing. Since license plates
are unique to each vehicle, the first task in Re-ID is recog-
nizing them.

Zang et al. (2015) and Abedin et al. (2017) have imple-
mented DL models to recognize license plates by using a
visual attention model that first generates a feature map
using a combination of the most commonly used colors in
license plates, extracts data from plates using a CNN model,
and ultimately runs an SVM on the extracted data. How-
ever, bad lighting, blurriness due to vehicle movement, low
camera quality, and even traffic occlusion where the plate
is covered behind other cars can make reading license plate
characters impossible. To overcome this, Liu et al. (2016)
have proposed a CNN layer to extract conspicuous features
such as the color and model of the vehicle and have used a
Siamese neural network to distinguish similar plates. (This
network has been used before in signature verification tasks).
Note that for some feature extractions, such as vehicle color
recognition, solutions like what Hu et al. (2015) did using a
combination of CNN for feature extraction and SVM for cat-
egorizing are also available. Tang et al. (2018) have similarly
used a histogram-based adaptive appearance model like what
Zheng et al. (2017) did for target re-identification, detecting

and saving other features of each car besides the scheme of
the license plate to do Re-ID. Also, Yu et al. (2017b) have
used faster RCNN to detect vehicles in images. In addition, a
modified version of the Single Shot Detection (SSD) method
to localize and classify the different types of construction
equipment by employing MobileNet as the feature extrac-
tion network has been done by Arabi et al. (2020). Wu et al.
(2018b) has worked on the same idea but trained their model
based more on spatiotemporal data, pruning their results
with the fact that (1) a vehicle cannot be in two places at
one time and (2) a vehicle that has already passed a section
is unlikely to pass it again. However, their model could not
compete with the model defined in Tang et al. (2018) that
proposed a Markov chain random fields to prepare several
queries based on a visual spatiotemporal path and then used
a combined Siamese-CNN and path-LSTM model.

Table 3 summarizes all these papers, shows their mod-
els, the dataset which model is trained on, and their per-
formances on those dataset and comparison to the baseline
model.

Traffic Signal Timing

One of the main tasks of ITS management based on multiple
types of data is controlling traffic via traffic signal lights.
For several years, research on optimizing signal light timing
to have the best performance has been one of the greatest
challenges in the transportation field. The results of studies
in this area have endowed traffic agencies with analytical
models that use mathematical methods to address this opti-
mization problem. However, through emerging DL studies,
modeling the dynamics of traffic to achieve the best perfor-
mance has taken a new path. This is because the nature of
RL has facilitated its application in different studies to find
the best traffic signal timing.

Li et al. (2016) has used DRL to tackle traffic light tim-
ing. In DRL, a DL model is usually used to implement the
Q-function in a complex system to capture the dynamics
of traffic flow. A dSAE network is used to take the state
as input and give the Q-function for any possible action
as the output of the network. Li et al. (2016) has shown
a 14% reduction in cumulative delay in the case of using
an SAE to predict the Q-function instead of conventional
prediction.

Gao et al. 2017) has suggested an alternative novel idea
for choosing RL states. They argue that instead of taking
raw data as the state, it could be more effective if the CNN
extracts important features from the raw data—e.g., the posi-
tion of the cars and their speeds—and feeds it to a DRL net-
work with a fully connected network to predict the Q-value
for each of four states of green, yellow, red, and protected
left turn light, considering cumulative staying time as the
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Table 2 Overview of papers using deep learning techniques for traffic incident inference

Characteristic Model Dataset Experiment results ~ Baseline results References Year
RMSE Others RMSE Others Model
Incident risk SdAE 7 month Heteroge- 1 1.41 Logistic Regr Chen et al. (2016) 2016
neous data
LSTM Accident records 0.63 0.75 SdAE Ren et al. (2017) 2017
(Beijing)
LSTM NYPD 9.44 10.46 CNN Bao et al. (2019) 2019
DNN  Accident records AC:85% AC:69% Decision Tree(DT) Ali et al. (2019) 2019
(VTTI)
DBN  Civil Aviation Data MSE:0.2 MSE:0.05 SVR Ni et al. (2019) 2019
Traffic incident DNN  Accident records AC:95.12% AC:89.58% RF Yuan et al. (2017) 1207
prediction (IOWA)
DBN Highways dataset  1.48 1.6 Bayesian ANN Pan et al. (2017) 2017
AE TRIMS and PMS MAE:0.150 MAE:0.660 SVM Dong et al. (2018) 2018
LSTM Accident records 0.078 0.121 7 year Avg Yuan et al. (2018) 2018
(IOWA)
Collision predic- DNN Internet of vehicles Chen et al. (2018b) 2018
tion DBN  Collision Data, 15.24 16.51 Bayesian NN Pan et al. (2018) 2018
Ontario
LSTM Annotated data mAP:62.1% mAP:57.8% RNN Suzuki et al. 2018
(2018)
DNN Attica Tollway AC:68.95% AC:72.15% DT Theofilatos et al. 2019
(2019)
Incident detection SAE  SUMO MSE:0.13 MSE:0.18 DNN Hatri and Boum- 2018
hidi (2018)
DBN NYC+NOVA AC:85% AC:79% SVM Zhang et al. 2018
accidents (2018a)
Incident severity LSTM Accident records AC:71.77% AC:70.30% Bayesian LR Sameen and Prad- 2017
prediction (Malaysia) han (2017)
DNN  Accident records AC:74.6% AC:59.5%  Ordered Probit Alkheder et al. 2017
(AbuDhabi) (2017)
CNN  Accident records 0.231 Das et al. (2018) 2018

(Louisiana)

reward. They have also used the experience replay and target
network techniques to stabilize the algorithm and converge
it to the optimal policy as suggested in Tan and Eswaran
(2008).

Liang et al. (2018) have also used CNN to map states. They
use several state-of-the-art techniques such as the target network,
experience replay, double Q-learning network, and dueling net-
work methods to increase the performance of the network and
make it stable. Their results have shown a great reduction in
waiting time (more than 30%) for a fixed-time scenario.

Genders and Razavi (2018) have investigated the impor-
tance of choosing delay time states. The main goal of this
study was investigating whether the data from conventional
sensors, such as occupancy and average speed, are satisfac-
tory or more precise data are needed, such as vehicle density
and queue length, or even data with the highest resolution,
such as discretizing each incoming lane into cells and con-
sidering the presence of a vehicle in each cell separately.

@ Springer

The results of this study showed that using high-resolution
data is not substantially effective and conventional data are
good enough for their model. However, one of the reasons
that may have contributed to this conclusion is that they used
a simple fully connected model that could not extract deep
features from more precise states very well.

Finally, Wei et al. (2018) have tested their model on real-
world traffic data to see how effective its results could be. They
suggest that instead of only studying the reward, we need to
consider different policies that may result in the same reward
and then take the most feasible one. The final results of this
study have shown great performance in reducing queue length,
delay time, and duration compared with other methods.

Table 4 summarizes all these papers, shows their model,
the dataset which their model was trained on, and the per-
formance of their model for the testing dataset as well as
comparison of their model’s performance to that of the base-
line model.
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Table 3 Overview of papers using deep learning techniques for vehicle id tasks
Charac- Model Dataset Experiment results Baseline rResults Refer- Year
teristic ences
AC% Others AC% Others Model
License SIFT+SVM Chinese PR:98.6 PR:98.4 CNN+SVM  Zang 2015
plate license et al.
recog- plate (2015)
nition  CNN Onroad data 99 Bulan 2017
et al.
(2017)
CNN Bangla 92 Abedin 2018
license et al.
plate (2017)
Kernel-CNN Chinese 96.38 93.35 SVM-RBF Yang 2018
license data Kernel et al.
(2017)
CNN Thailand 96.94 Puarun- 2018
license groj and
plate Boon-
siri-
sumpun
(2018)
CNN AOLP PR:99.5 PR:90.7 Single shot Xieetal. 2018
detector (2018)
Vehicle CNN Generated 99.07 Huang 2015
type dataset et al.
classi- (2015)
fication
CNN BIT-vehicle  96.1 93.7 SVM Dong 2015
dataset etal.
(2015)
Faster RCNN Vehicle 89 Yuetal. 2017
dataset (2017b)
CNN VEDAI/ 54.6/73.7 32/53.9 Fast RCNN Zhong 2017
Munich et al.
dataset (2017)
CNN ILSVRC2012 98.29 83.78 Ensemble Fang etal. 2017
classifiers (2016)
CNN Iowa CCTV PR:95 Adu- 2017
data Gyamfi
etal.
(2017)
Deep CNN CarFlag/ 98.67/99.3 90.34/93.58 Huetal. 2017
CompCars (2017a)
Deep CNN XMUPlus 99.1 99.07 Pre-trained Soon 2018
CNN et al.
(2018a)
Deep CNN MIT-CBCL/  94.12/95.04 93.71/94.27 RCNN Liet al. 2018
Caltech (2018a)
CNN COSMO- 97.66 95.48 CNN Wang 2018
SkyMed et al.
(2018b)
CNN CompCars 54.56 42 Pre-trained Wang 2018

CNN

et al.
(2017a)
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Table 3 (continued)

Charac- Model Dataset Experiment results Baseline rResults Refer- Year
teristic ences
AC% Others AC% Others Model
Faster RCNN+RPN  ILS- mAP:89.93% mAP:89.12% Faster RCNN  Xiang 2018
VRC-2012 et al.
(2018)
LSTM Fleetmatics 85 Simoncini 2018
data, US et al.
(2018)
D-CNN CompCars Top 5:0.922 Top 5:0.917 CNN Yanetal. 2018
(2017)
Fast RCNN + RPN MIT/ 84.4 84 Fast RCNN Suhao 2018
CALTECH et al.
dataset (2018)
Deep CNN + AE Chengdu 97.62 95.18 CNN Chang 2018
express- et al.
ways (2018)
CNN LabelMe/BIT 98.95/95.12 Hussain 2019
datasets et al.
(2018)
PCA-CNN PLUS Malay- 99.51 98.65 Ensemble Soon 2019
sia NSE Classifier etal.
(2018b)
RE ID CNN+SNN VeRi-776 mAP:27.77% mAP:18.49% CNN Liuetal. 2016
(2016)
MRF+SNN+LSTM VeRi-776 mAP:58.27% mAP:46.25% LSTM+CNN Shenetal. 2017
(2017)
CNN VOT2016 54 54 CNN Tapuetal. 2017
(2017)
CNN Al City Chal- PR:99.25 Tang et al. 2018
lenge (2018)
CNN+ AFL VeRi Al City mAP:57.43% mAP:58.27% CNN Wuetal. 2018
Challenge (2018b)
CNN Al City Chal- PR:99.25 Mafin- 2018
lenge Reyes
etal.
(2018)
RNN Brisbane PR:37.5 Choi etal. 2018
vehicle data (2018)
Faster RCNN Korea High- MAPE:3.4% MAPE:4.9% SSD Kimetal. 2019
ways (2019a)
Vehicle CNN SVM Vehicle Color 93.78 91.89 SVM Huetal. 2015
color Dataset (2015)
recog-
nition

Ride Sharing and Public Transportation

Public transportation systems (including bus or metro
systems, taxis, etc.) are one of the main means of moving

has endowed companies with increasingly optimal routing
maps that take into account data such as passenger demand

passengers within cities. To increase city planning perfor-  rate compared to existing ML techniques.
mance and also passenger satisfaction, the nature of DNN

@ Springer

for a given mode of 11 travel at particular places and times.
DL has been adopted to make predictions even more accu-
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Saadi et al. (2017) have investigated the performance of
several ML techniques and a fully connected DL model with
only two hidden layers and have shown that their very simple
DL model outperforms almost all other techniques except a
boosted decision tree. Besides the simple DNN models in
Dominguez-Sanchez et al. (2017), Jung and Sohn (2017),
Wan et al. (2018) and Zhu et al. (2018b), a hybrid model
containing a stacked AE and a DNN has been implemented
by Liu and Chen (2017) to predict hourly passenger flow.

To capture all related features such as the spatial, tempo-
ral, and exogenous features impacting passenger demand,
a fusion convolutional LSTM network (FCL-Net (Ke et al.
2017) has been proposed. This network includes stacked
Conv-LSTM layers to analyze spatiotemporal variables, such
as historical demand intensity and travel time, and LSTM
layers to evaluate nonspatial time-series variables, such as
weather, day of the week, and time of the day. With the
same idea, Zhang et al. (2017) has proposed a spatiotem-
poral Resnet (ST-Resnet) which includes several convolu-
tional layers. Liao et al. (2018) has implemented both of
these techniques on a New York City taxi record dataset and
their comparison has shown that better performance with a
faster training time can be achieved using ST-Resnet. The
authors suggest two reasons for this. First, LSTM captures
fine temporal dependencies which are not as fundamental as
the coarse-grained dependencies from the convolutional lay-
ers. Their second explanation is that spatial features may be
more important than temporal ones and since the ST-Resnet
focuses more on spatial features, it outperforms the FCL-
Net. Zheng et al. (2017) and Lin et al. (2018b) work directly
on graphs structures to leverage structural information by
considering the nodes as stations and the edges as depend-
encies among stations. Finally, Yao et al. (2018b) and Ma
et al. (2018) have proposed a deep multiview spatiotemporal
network to capture all dependencies separately.

Another research area related to public transportation
deals with travel mode selection. Nam et al. (2017) has
implemented a simple fully connected DNN on Swiss Metro
data to reveal demand based on mode. Another issue for
transportation network companies is route scheduling for
their drivers to pick up passengers in order to minimize pas-
senger waiting time as well as cost for the driver and com-
pany. Shi et al. (2018) has suggested a DRL model aiming
to give drivers the best route. This paper considers different
factors such as the current location of vehicles, time of day,
and competition between drivers, resulting in a significantly
shorter search time and more long-term revenue for drivers.

Table 5 summarizes all these papers, shows their model,
the dataset which their model was trained on, and evaluation
of their model for their testing dataset as well as comparison
of their model’s performance to that of their baseline model.
(In this table, “travel mode” refers to studies which tried to
predict the mode of transportation that passengers would

choose at each time point. Also, “passenger flow” is defined
as the number of passengers flowing in or out of a given
location at a certain time point).

Visual Recognition Tasks

One of the most significant applications of DL is the use
of nonintrusive recognition and detection systems, such as
camera-image-based systems. These applications can vary
from providing a suitable roadway infrastructure for driving
vehicles to endowing the autonomous vehicles with a safe
and reliable driving strategy.

One of the first visual recognition challenges tackled has
been obstacle detection via exploiting vehicle sensors. To
do this, a variety of networks with unique architectures have
been implemented. Kim and Ghosh (2016) have merged data
from an RGB camera and LIDAR sensors to increase obsta-
cle detection performance in different illumination condi-
tions. Dairi et al. (2018a, b), on the other hand, have con-
fronted obstacle detection as an anomaly detection problem.
They have used a hybrid encoder model to extract features of
Deep Boltzmann Machine (DBM) and then an autoencoder
to reduce the dimensionality and obtain vertical disparity
(V-disparity) map coordinate system data from images. The
key feature of V-disparity data is that these data are mostly
stable with small variations from noise and they change
drastically only if an obstacle appears in an image.

Wang et al. (2016b) and Cai et al. (2016) have used data
from far-infrared sensors to improve vehicle detection at
night. While the former used only far infrared data, the lat-
ter, in order to decrease the false positive percentage used
both camera and far-infrared data. Wang et al. (2016c) have
tried to address requirements in regard to vehicle following,
which include detecting brake lights. They used the Histo-
gram of Oriented Gradient (HOG) approach implemented
with LIDAR and camera data. To decrease the false positive
rate and speed up the process, they also used the vanishing
point technique. Next, they used AlexNet to detect if the rear
middle brake light was on or off.

Another important task in navigating safely is traffic
sign detection. These signs obligate, prohibit or alert driv-
ers. One of the most common DL models to detect traffic
signs are CNNs. Qian et al. (2015), Yang et al. (2015), Lin
et al. (2016, 2019), Lim et al. (2017), Zeng et al. (2016),
Hu et al. (2017b), Yuan et al. (2016), Arcos-Garcia et al.
(2018), Natarajan et al. (2018), Lee and Kim (2018), Li et al.
(2018b) and You et al. (2018) have all used CNN as their
main feature extractor, each trying to tune their model to get
the best results. Qian et al. (2015) have used RCNN to derive
regions of interest from RGB images. Lim et al. (2017) have
focused on low-illumination images. They used a classifier
to detect regions of interest and an SVM to verify if any traf-
fic signs were present inside the region or not. Then, a CNN
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Table 4 Overview of papers using deep learning techniques for traffic signal timing

References Year Model Dataset State Reward Actions
Liet al. (2016) 2016 SAE+DRL PARAMICS Queue length —Queue length difference— 2
Pol and Oliehoek (2016) 2016 DQN SUMO Position, speed Number of stop switch and 2
delay
Gao et al. (2017) 2017 CNN+DRL SUMO F (position, speed) (Cumulative staying time)
Liang et al. (2018) 2017 CNN+DRL SUMO Position, speed (Cumulative waiting time)
Mousavi et al. (2017) 2017 DQN SUMO Snapshot of the current state Difference between the total
of a graphical view of the cumulative delays oftwo
intersection consecutive actions
Genders and Razavi (2018) 2018 DRL SUMO Occupancy and speed/vehicle ~ Change in cumulative delay 4
density and queue length/pres-
ence of vehicles in each lane
Wei et al. (2018) 2018 DRL SUMO Queue length, number of vehi-  F(queue length, delay, updated 2
cles, updated waiting time, waiting time, light switches
current phase, next phase and indicator, number of vehicles
an image of the intersection pass the intersection, travel
analyzed by CNN time)
Wan and Hwang (2018) 2018 DQN VISSIM Current phase, green and red System delay 8
duration, remaining carsand
left turn bay occupation
Muresan et al. (2019) 2018 DRL VISSIM Queue length, signal state, and ~ Discharged vehicle 2
time of day
Liang et al. (2019) 2019 3DQN SUMO The position and speed of Change of the cumulative 8
vehicles waiting time between two
neighboring cycles
Gong et al. (2019) 2019 3DQN Simulatedtraffic Current traffic state and current Difference between the current 4
signal phase and previous waiting times of
all vehicles
Huang et al. (2019) 2019 DQN SUMO Number of input and output Summation of que length in 4

vehicles of adjucents intersec-
tions

multiple intersections

model using the Byte-MCT technique classified the traffic
sign. Experiments have shown that this method is robust in
deficient lighting, outperforming other methods in cases of
low illumination.

Zeng et al. (2016) have suggested that the RGB space
cannot provide as much useful data as the perceptual lab
color space. Therefore, after space changing, they extracted
the deep perceptual features using a CNN and fed these fea-
tures to a kernel-based ELM classifier to identify the traffic
sign. This classifier used the radial basis function to map the
features in a higher dimension space in order to disconnect
features to get the best outcome.

Arcos-Garcia et al. (2018) have tried different optimi-
zation methods on a CNN model containing several con-
volutional layers and spatial transformer networks (STN)
that make the CNN spatially independent, resulting in no
need for supervised training, data augmentation or even nor-
malization. In contrast, Li and Yang (2016), instead of using
a CNN, have used a DBM that is boosted with canonical
correlation analysis for feature extraction and then an SVM
for classification. Also, they have used certain conventional
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image-processing techniques such as image drizzling and
gray-scale normalization to reduce noise.

Weber et al. (2016), Behrendt et al. (2017) and Kim
et al. (2018a) have focused more on traffic light detection
and classification. This has a very significant role in man-
aging traffic, and correct detection has a high correlation
to reduced risk. Weber et al. (2016) have proposed their
deep traffic light recognition (DeepTLR) model that first
classifies each fine-grained pixel of the input data, calcu-
lating the probability for each class. Then, for the regions
with higher probability toward the presence of a traffic
light, a CNN was used to classify the status of the traf-
fic light. (In this model, temporal data were not used and
each frame was analyzed separately). However, Behrendt
et al. (2017) have used traffic speed information as well
as stereovision data to track detected traffic lights. Lin
et al. (2016) have used a combination of region-of-interest
(ROI) performance, CNN feature extraction and an SVM
as a classifier to detect arrow signs on the roadway and
classify their direction. Gurghian et al. (2016) have used
a CNN to detect lane position in the road.
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Finally, the monitoring of civil infrastructure has always
been a focus for engineers and researchers. Various moni-
toring techniques have been used for infrastructure perfor-
mance evaluation, ranging from conventional short-term
(Arabi et al. 2018) and long-term (Arabi et al. 2019, 2017,
Constantinescu et al. 2018) sensor-based monitoring to non-
destructive and noncontact techniques (Moll et al. 2018).
Among the applications of nondestructive damage detec-
tion, pavement crack detection, in particular, has received
attention, due to its importance in civil infrastructure man-
agement. For instance, Hosseini et al. (2020) and Hosseini
and Smadi (2020) developed pavement prediction models
that can help agencies to come up with more accurate main-
tenance and rehabilitation activities. Zhang et al. (2018c¢)
have proposed a unified pavement crack detection approach
that can distinguish between cracks, sealed cracks, and back-
ground regions. Through their approach, they have been
able to effectively separate different cracks having similar
intensity and width. Moreover, Bang et al. (2019) have pro-
posed pixel-level pavement crack detection in black-box
images using an encoder-decoder network and found that
ResNet-152 with transfer learning outperformed other net-
works. Additionally, CrackNet, which performs pixel-level
pavement crack detection on laser-based 3D asphalt images,
was introduced by Zhang et al. (2018d). In a separate
study, Zhang et al. (2018d) extended their previous study
to CrackNet-R, which utilizes RNN with a gated recurrent
multilayer perceptron (GRMLP) to update the memory of
the network, showing their model outperforms other models
based on LSTM and GRU. Also, Nhat-Duc et al. (2018) have
investigated pavement crack detection performance using
metaheuristic-optimized Canny and Sobel edge detection
algorithms, comparing these algorithms with their proposed
CNN and confirming the superior performance of DL over
conventional edge detection models.

Table 6 summarizes all these papers, shows their model,
the dataset which their model was trained on, and evaluation
of their model for their testing dataset as well as comparison
of their model’s performance to that of the baseline model.

Discussion and Conclusion
Hardware

Generally, there are two types of intelligent decision-mak-
ing, namely cloud-computing-based and edge-computing-
based. While computing services are delivered over the
internet via the cloud computing approach, they are per-
formed at the edge of the network via the edge-computing
approach. The edge-computing approach has introduced

several advantages, such as efficient and fast intelligent deci-
sion-making as well as decreased data transfer cost. Emerg-
ing technologies such as DL have significantly increased the
importance of edge computing devices. Though discussing
edge computing devices in detail goes beyond the scope of
this paper, we briefly overview and compare the edge com-
puting devices popularly used for DL. Figure 4 illustrates the
various edge computing platforms discussed in this section.
Also, Table 7 summarizes the technical specifications of the
covered hardware.

The Jetson Xavier is the high-end system-on-a-chip (SoC)
computing unit in the Jetson family, which exploits the Volta
GPU. An integrated GPU with Tensor Cores and dual Deep
Learning Accelerators (DLAs) make this module ideal to
deploy computationally extensive DL based solutions.
NVIDIA Jetson Xavier is capable of providing 32 TeraOPS
of computing performance with a configurable power con-
sumption of 10, 15 or 30 W.

Another widely used embedded SoC is NVIDIA Jet-
son TX2 which takes advantage of NVIDIA Pascal GPU.
Although it delivers less computing performance than
NVIDIA Xavier, it can be a reliable edge computing
device for certain applications. The module can provide
more than 1TFLOPS of FP16 computing performance
using less than 7.5 W of power consumption. The Jetson
Nano, which utilizes the Maxwell GPU, is newest product
from the Jetson family introduced by NVIDIA. It is suit-
able for deploying computer vision and other DL models
and can deliver 472 GFLOPS of FP16 computing perfor-
mance with 5-10 W of power consumption.

Another family of edge computing devices is the Rasp-
berry Pi family, which introduces affordable SoCs capable
of high performance in basic computer tasks. The Rasp-
berry Pi3 Model B +is the latest version of the Raspberry
Pi which uses a 1.4-GHz 64-bit quad-core processor and
can be used alongside deep learning accelerators to achieve
high performance in computationally expensive tasks.

Finally, the Intel Neural Computing Stick 2 (NCS 2) is a
USB-sized fanless unit, which utilizes the Myriad X Vision
Processing Unit (VPU) that is capable of accelerating com-
putationally intensive inference on the edge. Very low power
consumption along with supporting popular DL frameworks
such as Tensorflow and Caffe have made the NCS 2 ideal to
use with resource-restricted platforms such as Raspberry Pi3
B +. There have been limited studies investigating the infer-
ence speed of these hardware, though Arabi et al. (2020) has
compared the inference speed of an SSD-MobileNet model
of the abovementioned embedded devices on a construction
vehicle dataset. Utilizing the Jetson TX2, they achieved 47
FPS, and utilizing a Raspberry Pi and NCS combination,
they achieved 8 FPS.
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Table 5 Overview of papers using deep learning techniques for ride sharing and public transportation

Charac-  Model Dataset Experiment Results Baseline Results References  Year
teristi
erse RMSE  Others RMSE  Others Model
Travel DNN Swiss Metro AC:66.1% AC:65.57% ANN Nam et al. 2017
mode dataset (2017)
CNN GPS—GeoLife AC:84.8% AC:78.1% RF Dabiri and 2018
project Heaslip
(2018)
Route DRL Didi Chuxing Shi et al. 2019
sched- (2018)
uling
Passenger SAE4+DNN  Xiamen bus 50.4 51.4 SVM Liu and 2017
flow station Chen
(2017)
CNN Passenger data AC:96% Dominguez- 2017
Sanchez
et al.
(2017)
CNN AFC, Seoul AC:60.10% AC:54.83% Statistics  Jung and 2017
Sohn
(2017)
DNN Unity-3D envi- Wan et al. 2018
ronment (2018)
DNN Shanghai rail MSRE:0.00000125 MSRE:0.00178 Lin. Regr Zhu et al. 2018
transit (2018b)
CNN California HTS AC:93.59% AC:69.76% RF Cui et al. 2018
(2018¢)
LSTM Nanjing Metro ~ 8.19 11.54 ARIMA Liuetal. 2019
System (2019)
AE+LSTM Singapores 20.37 24.82 LSTM Hao et al. 2019
Metro System (2019)
Passenger ConveLSTM  Didi Chuxing 0.016 0.0175 CNN Ke et al. 2017
demand (2017)
predic-  CNN Beijing taxi/NY  16.69/6.33 18.18/7.43 DNN  Zhangetal. 2017
tion bike (2017)
DNN Didi Chuxing 20.09 16.41 DT Saadietal. 2017
(2017)
CNN+LSTM Didi Chuxing 9.642 10.012 XGBoost Yao et al. 2018
(2018b)
GCNN-DDGF Citi Bike data, 2.12 2.43 XGBoost Lin et al. 2018
NY (2018b)
LSTM TAZ MAPE:46.49% MAPE:65.128% XGBoost Xu et al. 2018
Nanjing,China (2018)
CNN+RNN  Porto Taxi Tra- AC:78.80% AC:75.62% CNN Zhangetal. 2018
jectory (2018b)
DQN London travel Waiting time:158.2 Wen et al. 2018
data (2017)
CNN Citi Bike Sys- 18.995 19.784 NN Yangetal. 2018
tem, NY (2018b)
DNN NYC taxi data 11.13 16.05 LSBoost Liao et al. 2018
(2018)
CNN+LSTM  Beijing metro 7.5 8.89 LSTM Maet al. 2019
(2018)
GCN Seouls Bike data 2.26 245 LSTM Kim et al. 2019
(2019b)
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Summary

Below, we provide a summary of the studies cited in the cur-
rent paper. We have classified these studies according to our
six ITS application categories in relation to the DL models
they use (see Fig. 5). The following are our observations:

e Traffic characteristics: CNN, RNN, and CNN-RNN
hybrid models are most frequently used. The main rea-
son is undoubtedly related to the nature of traffic that has
two main dependencies: spatial and temporal. Because
various datasets and performance evaluation metrics
have been used, it is hard to compare different studies
related to traffic characteristics, but in traffic flow stud-
ies, the PeMS dataset has been widely used. The major-
ity of research has used hybrid CNN and RNN models,
which can identify both long temporal dependencies and
local trend features. Although most papers have defined
their own CNN model rather than using an existing archi-
tecture, CNN has generally shown better performance
across papers when compared to RNN, which shows
lower computation/training time.

e Traffic incidents: the most widely used model is RNN,
since the result of an incident shows itself at a specific
time that requires a powerful network model to identify.
Autoencoders are also popular models, since they can
learn traffic patterns and then detect and isolate acci-
dent conditions from regular conditions.

e Vehicle ID: CNN is the most widely used model, given
its power in inferencing from images, as detection and
tracking is the main task in license plate and vehicle
type/color identification. Existing CNN architectures
that have been popularly utilized are AlexNet and VGG
models that have been pretrained on ImageNet.

e Traffic signal timing: RL has been the most commonly
used model, given the control strategy nature of the traf-
fic signal timing task. Hybrids of CNN and SAE have
been used to approximate or learn Q-values to improve
DRL performance.

e Ride-sharing and public transportation: CNN, RNN,
and DNN have been the most frequently used models in
the domain. Most researchers have built their own DL
architecture to accomplish tasks in this category. Public
transportation demand and traffic flow prediction tasks
have generally been done by either CNN or hybrid CNN
models.

e Visual recognition tasks: CNN has been the most com-
monly used DL model for visual recognition tasks, again
because detection and tracking are efficient via CNN.
Especially in traffic sign recognition tasks, the GTSRB
dataset has been one of the most frequently used bench-
marks. Existing architecture such as ResNet, AlexNet,
VGG, and YOLO have been used extensively, with the

AlexNet and ResNet architectures being the most popular
to build on. This can be attributed to the fact that visual
recognition tasks are not limited to ITS, so research done
in other domains can be utilized to accomplish ITS-
related visual recognition tasks.

Based on all the studies reviewed in the current paper,
deep learning as an approach for addressing intelligent trans-
portation problems has undeniably achieved better results as
compared to existing techniques. The major growth has been
seen in the past 3 years, constituting more than 70% of all
ITS-related DL research performed so far.

Future Work and Challenges

In recent years, DL methods have been able to achieve state-
of-the-art results in different visual recognition and traffic
state prediction tasks. The majority of the visual recogni-
tion work such as vehicle and pedestrian detection, traffic
sign recognition, etc. have focused on autonomous driving
or in-vehicle cameras. However, there have also been a sig-
nificant number of overhead cameras installed by city traffic
agencies and state Departments of Transportation that are
mostly used for human-evaluated surveillance purposes. To
date, there have been only a few studies that have focused
on using these cameras for determining traffic volumes on
freeways and arterials, traffic speed, and also for surveil-
lance purposes such as automatically detecting anomalies
or traffic incidents (particularly at a large-scale, citywide
level). Currently, the majority of traffic intersections rely on
using loop detectors for vehicle counting and for developing
actuated traffic signals. However, installation of these loop
detectors is intrusive, in that road closures are required for
installing such sensors. Cameras, on the other hand, can be
used as a cheap, nonintrusive detection sensor technology
for counting traffic volume in all directions as well as turn-
ing movements, the presence of pedestrians, etc., thereby
facilitating smart traffic signal control strategies. However,
two main challenges need to be considered for developing
DL techniques able to handle the use of cameras as sensors.
First, such methods need to be able to handle the large vol-
ume of data collected from hundreds or thousands of cam-
eras installed at a citywide or statewide level. Efficiently
providing real-time or near-real-time inferencing from this
large volume of data is currently one of the primary chal-
lenges of using cameras as sensors. Second, the methods
developed need to be able to perform with minimal or no
calibration such that they are feasible to apply and main-
tain at a large-scale level. Also, the ITS community needs
to focus on creating more benchmark datasets for different
research tasks related to DL applications. Although PeMS
has been used as a popular dataset for traffic state prediction
as shown in 1, the absence of any comparable benchmark
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Table 6 Overview of papers using deep learning techniques for visual recognition tasks

Characteristic =~ Model Dataset Experiment Results Baseline Results References Year
AC% Others AC% Others Model
Obstacle Detec- Fast RCNN KITTI PR:88.99 PR:88.01 CaffeNet Kim and Ghosh 2016
tion (2016)
AE CNN CCD Stereo 98.15 96.14 RCNN Nguyenetal. 2016
data (2016)
CNN Caltech Pedes- Missrate:54% Missrate:69 HOG+SVM  Heetal. (2017) 2017
trian
SAAE + KNN Bahnhof data 91 81 DBN Dairi et al. 2018
(2018a)
AE+SVM Malaga, Daim-  93.08 89.53 SVM Dairi et al. 2018
ler data (2018b)
CNN Video data PR:95 PR:90 CNN Liet al. 2018
(2018c)
CNN Video data 96.8 Zhang et al. 2018
(2018e)
CNN GMVRT/UCF- 99.71 92.36 HOG+SVM  Oliveira and 2018
ARG Wehrmeister
(2018)
CNN Railway video mAP:89.53% mAP:88.61% SSD Ye et al. 2018
data (2018a)
CNN Caltech data Missrate:42.27 Missrate:60.95 MS-CNN Zhang et al. 2018
(2018f)
CNN FCTD Camera PR:90.81 PR:70.61 SSD Zhou et al. 2019
(2019)
DNN Video data 98 Rahmanetal. 2019
(2019)
Vehicle detec- DBN Far Infrared RL:93.9 RL:91.4 SVM Wang et al. 2016
tion images (2016b)
DBN Far Infrared RL:92.3 RL:91.8 DBN Cai et al. 2016
images (2016)
CNN Built from Recognition- Yao et al. 2017
videos rate:94.68 (2016)
HRPN + Boost Munich vehicle PR:89.2 PR:86.2 HRPN Tang et al. 2017
Classifiers dataset (2017)
Deep CNN Recorded vehi- Top 5:97.51% Luo et al. 2017
cle data (2017)
DNN LISA 2010 PR:81.10 PR:77.09 Faster RCNN  Zhou et al. 2018
2018)
DBN RNN KITTI 95.36 92.82 Encoded SVM  Wang et al. 2018
(2018¢)
Scale Insensitive ~ KITTI 89.6 89.02 MS-CNN Hu et al. (2018) 2018
CNN
CNN Video data 90.7 90.4 CNN(Resnet)  Nezafat et al. 2019
(2019)
Traffic sign DBN GTSRB 96.68 95.16 HOG Li and Yang 2016
recognition (2016)
HOG +DBM GTSDB 96.68 95.16 HOG Yang et al. 2016
(2015)
CNN+SVM Built from 71.87 Lin et al. 2016
videos (2016)
CNN+SVM Korea daylight PR:99.03 PR:73.49 CNN Lim et al. 2017
(2017)

@ Springer



Journal of Big Data Analytics in Transportation (2020) 2:115-145 135
Table 6 (continued)
Characteristic =~ Model Dataset Experiment Results Baseline Results References Year
AC%  Others AC% Others Model
CNN+KELM GTSRB 99.54 99.65 Ensemble Zeng et al. 2017
CNN (2016)
CNN GTSDB 99.4 77.3 HOG Shustanov and 2017
Yakimov
(2017)
Fast BCNN GTSRB 99.01 99.12 BCNN Hu et al. 2017
(2017b)
CNN MASTIF 97.78 98.97 R-LSTM Yuan et al. 2017
(2016)
CNN+STN GTSRB 99.71 99.65 Ensemble Arcos-Garcia 2018
CNN et al. (2018)
CNN GTSRB 99.75 99.67 CNN Natarajan et al. 2018
(2018)
CNN SDTS PR:89.4 Lee and Kim 2018
(2018)
CNN GTSDB PR:90.7 PR:84.20 HOG+SVM  Lietal 2019
(2018b)
CNN HDR PR:94.24 PR:89.33 Guassian You et al. 2019
Mixture (2018)
CNN GTSRB mAP:83.3% mAP:80.8% CNN Lin et al. 2019
(2019)
Traffic light CNN LaRA data PR:96.9 PR:61.22% Image Proc Weber et al. 2016
recognition (2016)
CNN Bosch Traffic 95.1 Behrendtetal. 2017
Lights (2017)
Faster RCNN Bosch Traffic mAP:20.40% Kim et al. 2018
Lights (2018a)
Lane Detection DNN Generated data Top 5:98.55% Gurghianetal. 2016
(2016)
CNN Caltech 99.35 97.21 Image Proc Ye et al. 2018
(2018b)
GBNN NGSIM 97.7 96.6 CNN Dou et al. 2019
(2018)
CNN 98.37 Zhang et al. 2019
(2018g)
Vehicle signal HOG CNN Built from 99 Wang et al. 2016
detection videos (2016¢)
FRCN+RPN+F SYSU data 95.58 94.61 FRCN+RPN  Chenetal. 2017
(2017b)
Road surface RNN+LSTM Built from 94.6 Park et al. 2018
detection videos (2018)
Deep CNN Cambridge 100 82.6 Faster RCNN  Hoang et al. 2019
(2019)
Street scene S-CNN Camvid 53.2 47.4 FCN Wang et al. 2018
labelling (2017b)
Traffic scene AE 78.8 76.4 SegNet Lietal. (2017) 2018
segmentation  CNN +IAL Cityscape ToU:74.8 IoU:71.3 CNN Chen et al. 2019
(2018¢)
CNN +MFI Built from 91.7 81.1 CNN Cai et al. 2019
videos (2018)
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Table 6 (continued)

Characteristic =~ Model Dataset Experiment Results Baseline Results References Year
AC%  Others AC% Others Model
Crack detection CNN 3D pavement  94.29 Wang et al. 2017
data (2017¢)
CNN PaveVison3D PR:90.20 PR:90.13 CrackNet Zhang et al. 2018
data (2018c¢)
RCNN Cifar-10 data Kim et al. 2018
(2018b)
Deep CNN Da Nang, 92.08 81 DFP-Sobel Bang et al. 2018
Vietnam (2019)
Deep CNN Captured Data PR:84.7 PR:51.5 RF Hosseinietal. 2018
(2020)
Deep CNN Railway data 97.8 Daneshgaran 2019
et al. (2019)
Deep CNN Generated data, PR:77.68 PR:25.14 SegNet Hosseini and 2019
Seoul Smadi (2020)
Deep RNN Pavement Data  70.1 44 Resgression Hosseini 2020
(2020)

Fig.4 Hardware (left to right): NVIDIA Jetson Xavier (Jetson AGX
Xavier Developer Kit 2020), NVIDIA Jetson TX2 (Jetson TX2 -
Elinux.Org 2020), NVIDIA Jetson Nano (Jetson Nano Developer Kit

dataset for traffic incident inference and ride-sharing stud-
ies has resulted in most of these studies using an original
dataset. This has created difficulties in comparing different
algorithms to determine the state-of-the-art model. Indeed,
one of the reasons these research areas have still not been
significantly explored using DL models is likely attribut-
able to their lack of a recognized benchmark dataset. While
this study has shown that DL models have been successfully
applied to traffic state prediction, vehicle ID and visual rec-
ognition tasks, significant improvements need to be made
in the use of DL models for other research topics such as
traffic incident inference, traffic signal timing, ride sharing,
and other public transportation concerns. These topics have
still not been fully explored using DL models and hence
there remains significant scope for improving detection and
prediction accuracy in these areas.

While DL models are becoming increasingly popu-
lar among researchers as the most effective classification
method in visual recognition tasks in the ITS domain, pri-
vacy and security are extremely important. Therefore, the
potential for adversarial attacks and thus the need for robus-
tifying DL models have been receiving greater attention.
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2020), Raspberry (2020), Intel NCS 2 (Intel® Neural Compute Stick
2 Product Specifications 2020)

(Adversarial attacks in this domain are, in most of the cases,
small changes in the input which are imperceptible to the
human eye but make the classifier classify incorrectly.) For
example, self-driving cars use DL algorithms to recognize
traffic signs (Ciresan et al. 2012), other vehicles, and related
objects for navigation purposes. However, if DL models fail
to detect a stop sign due to slight modification in a couple
pixels, this can create serious impedance to the adoption
of self-driving cars. Adversarial attacks, are, therefore, an
increasing area of focus in different DL application research
topics such as natural language processing, computer vision,
speech recognition, and malware detection (Najafabadi et al.
2015; Collobert and Weston 2008; LeCun et al. 2010; Deng
et al. 2013; Hardy et al. 2016; Tan et al. 2020).

Biggio et al. (2013) has called into question the advisabil-
ity of using neural networks and SVMs in security-sensitive
applications, demonstrating the legitimacy of their concern
by attacking some arbitrary PDF files and the MNIST data-
set using the gradient descent evasion attack algorithm that
they proposed. Their suggested solution is employing regu-
larization terms in classifiers. In the same vein Szegedy et al.
(2013) has shown that accuracy for perturbed input due to



Journal of Big Data Analytics in Transportation (2020) 2:115-145 137
Table 7 Detailed specifications of the popular edge-computing devices used for DL
Jetson Xavier Jetson TX2 Jetson Nano Raspberry Pi 3 B + Intel NCS 2
GPU 512-core Volta GPU @  NVIDIA Pascal, 256 128-core Maxwell Broadcom VideoCore Inte]lR©MovidiusTM
with 64 Tensor Cores CUDAcores v MyriadTMX VPU
CPU Octal-core NVIDIA HMP Dual Denver Quad-core ARM A57 4* ARMCortex- N.A
Carmel ARMvS.2 CPU  2/2 MB L2+ Quad @1.43 GHz A53,1.2 GHz
@ 2.26 GHz ARMR®©AS57/2 MB L2
Memory 16 GB 256 bit 8 GB 128 bit LPDDR4 4 GB 64-bit LPDDR4 1 GB LPDDR2 N.A
LPDDR4137GB/s 59.7 GB/s 25.6 GB/s (900 MHz)
Display 3xeDP 1.4,DP 1.2, 2xDSI, 2xDP 1.2, HDMI 2.0, eDP 1.4 HDMI, DSI N.A
HDMI 2.0 HDMI2.0, eDP 1.4
Data Storage 32 GB eMMC 5.1 32 GB eMMC, SDIO, microSD microSD N.A
SATA
USB USB C USB 3, USB 2 USB 3, USB 2 USB 2 N.A
Connectivity 1 Gigabit Ethernet 1 Gigabit Ethernet, Gigabit Ethernet 100 Base Ethernet, USB 3
802.11acWLAN, 2.4GHz802.11n wire-
Bluetooth less
Mechanical 105 mmXx 105 mm 50 mm X 87 mm 100 mm x 80 mm 56.5 mm X 85.60 mm 72.5 mmX27 mm
Power 10W, 15 W, 30 W 7T5W 5-10 W SW 1w
Price 1299 USD 599 USD 99 USD 35 USD 99 USD
(a) S (b) RNN (c) B
9 . -
RNN+DNN CNN RNN+DNN_— _CNN RNN+DNN CNN
8 6 20
RNN+AE 4 DNN RNN+AE 3 DNN RNN+AE 10 - DNN
0 o 0 |
CNN+AE AE CNN4AE AE CNN+AE AE
e RL CNN+RNN RL CNN+RNN—___RL
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Fig.5 ITS vs DL models—a traffic character, b traffic incident, ¢ vehicle ID, d traffic signal, e public transport, f visual recognition

adversarial attacks is much less than that in the case of high
magnitude noise. Another downside of DL classification
methods is that adversarial attacks can be independent of
the classification model, meaning that one can generate an
adversarial attack that can fool a machine learning system
without any access to the model. These are called black-box
attacks, a concept first introduced by Papernot et al. (2016),

whereas white-box attacks are when the attacker is aware
of all relevant information such as the training dataset, the
model, etc. For example, Madry et al. (2017) has used a
projected gradient descent (PGD) form of attack, which is
different from related work that has mostly used a form of
attack involving the Fast Gradient Sign Method (FGSM).
Also, Moosavi-Dezfooli et al. (2017) has come up with a

@ Springer



138

Journal of Big Data Analytics in Transportation (2020) 2:115-145

systematic way to compute universal attacks that are small
image-agnostic perturbations that have a high probability
of breaking most classifiers. Concurrent to research regard-
ing designing attacks and understanding the vulnerability
of neural networks to them, researchers have studied dif-
ferent ways to defend against adversarial attacks to make
DNNS robust to them. One of the most popular approaches
to defense against adversarial attacks is to add the adver-
sarial set generated by any algorithm to the training set and
then training the neural network with the new augmented
dataset (Fawcett 2003). Goodfellow et al. (2014b) has shown
that although this method works for specific perturbations,
networks being trained by this method are not robust to all
adversaries. For example, while working to mitigate the
effect of adversaries using denoising autoencoders (DAEs),
Gu and Rigazio (2014) discovered that the resulting DNN
became even more 17 sensitive to perturbed input data.
Around the same time, Bastani et al. (2016) designed a
metric to measure the robustness of networks and approxi-
mate this using the encoding of their robustness as a lin-
ear program to improve the robustness of the overall DNN.
Defense against adversarial attacks can be looked at as a
robust optimization problem, as Shaham et al. (2018) has
shown that adversarial training using their proposed algo-
rithm results in a more robust network achieved by robust
optimization theory which results in increasing the accuracy
and robustness of the DNN. Also, authors in Esfandiari et al.
(2019) achieved an algorithm which can provide comparable
accuracies with State-Of-the-Art algorithms, and save a lot
of computational overhead accompanied with computing
worst case adversarial attacks. They achieved that by looking
at the robust learning problem from a robust optimization
lens as well. Another recent method to harden DNN’s against
adversarial attacks is defensive distillation which has shown
outstanding preliminary results in being able to reduce the
adversarial attack success rate from 95 to 0.5% (Papernot
et al. 2016), but Carlini and Wagner (2017) defeated this
method by designing a powerful attack able to break this
defense mechanism. Thus, defense and design against adver-
sarial attacks remain an open problem in DL applications.
As mentioned above, most studies regarding the applica-
tion of DL models in transportation have paid no attention to
robustness. However, in light of emerging malware attacks,
the importance of defending models from such attacks
has become increasingly important. These attacks usually
destroy the input data by adding noise to them. These attacks
can thus disturb the control unit by causing it to infer wrong
information from the data, resulting in serious accidents.
Also, another source of noise can be the weather conditions
such as rainy or snowy conditions. Increasing the robustness
of detection models will enable ITS models to operate better
in severe conditions and thus improve their performance.

@ Springer

In summary, though much research is happening in vari-
ous domains of ITS using a variety of DL models, the focus
of future research in DL for ITS should encompass the fol-
lowing: how to develop DL models able to efficiently use
the heterogeneous ITS data generated, how to build robust
detection models, and how to ensure security and privacy in
the use of these models.
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