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Abstract
In recent years, Intelligent Transportation Systems (ITS) have seen efficient and faster development by implementing deep 
learning techniques in problem domains which were previously addressed using analytical or statistical solutions and also 
in some areas that were untouched. These improvements have facilitated traffic management and traffic planning, increased 
safety and security in transit roads, decreased costs of maintenance, optimized public transportation and ride-sharing com-
pany’s performance, and advanced driver-less vehicle development to a new stage. This papers primary objective was to 
provide a review and comprehensive insight into the applications of deep learning models on intelligent transportation 
systems accompanied by presenting the progress of ITS research due to deep learning. First, different techniques of deep 
learning and their state-of-the-art are discussed, followed by an in-depth analysis and explanation of the current applications 
of these techniques in transportation systems. This enumeration of deep learning on ITS highlights its significance in the 
domain. The applications are furthermore categorized based on the gap they are trying to address. Finally, different embed-
ded systems for deployment of these techniques are investigated and their advantages and weaknesses over each other are 
discussed. Based on this systematic review, credible benefits of deep learning models on ITS are demonstrated and directions 
for future research are discussed.
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Introduction

The emergence of machine learning and its substitution for 
several statistical models have led to better problem-solving, 
which in turn has led various fields of study to turn their 
research paths to take advantage of this new method. Trans-
portation systems have been influenced by the growth of 
machine learning, particularly in intelligent transportation 
systems (ITS).With the proliferation of data and advance-
ments in computational techniques such as graphical pro-
cessing units (GPUs), a specific class of machine learning 
known as deep learning (DL) has gained popularity. The 
capability of DL models to address large amounts of data 
and extract knowledge from complex systems has made 
them a powerful and viable solution in the domain of ITS. 
A variety of networks in DL have helped researchers to for-
mulate their problems in a way that can be solved with one 

of these neural network techniques. Traffic signal control for 
better traffic management, increasing the security of trans-
portation via surveillance sensors, traffic rerouting systems, 
health monitoring of transportation infrastructure, and sev-
eral other problems now have a strong new approach, and for 
several challenging problems in transportation engineering, 
new solutions have been created.

There have been several surveys of the literature on the 
application and enhancement of ITS using DL techniques. 
However, most of these have tended to focus on a specific 
aspect of DL or a specific aspect of ITS. For instance, Zhu 
et al. (2018a) conducted survey of big data analytics in ITS. 
A review of computer vision playing a key role in roadway 
transportation systems was discussed in Loce et al. (2013). 
While (Nguyen et al. 2018) reviews DL models across the 
transportation domain, it is not a comprehensive survey that 
encompasses all current research publications on the ITS 
domain and DL. One dedicated review on enhancing trans-
portation systems via DL was done in Wang et al. (2018a) 
where substantial research was included, but it focused pri-
marily on traffic state prediction and traffic sign recognition 
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tasks. The ITS domain includes other tasks, such as public 
transportation, ride-sharing, vehicle re-identification, and 
traffic incident prediction and inference tasks, which are all 
represented in this paper to make its extent more comprehen-
sive and holistic. The transportation and research commu-
nity has always taken notice of pivotal research directions, 
with the earliest review of neural nets applied to transporta-
tion (Dougherty 1995), where the critical review spanned the 
classes of problems, neural nets applied and the challenges 
in addressing various problems. It is this that motivates of 
the question we address in this paper: How effective and effi-
cient are the current DL research applications for the domain 
of ITS? To the best of the authors’ knowledge, the literature 
in this field has suffered from the lack of a holistic survey 
that takes a broader perspective of ITS as a whole and its 
enhancement using DL models.

The purpose of this paper was, therefore, to present the 
systematic review we have conducted on the existing state 
of the research on ITS and its foray into DL. In “Research 
Approach and Methodology”, we discuss our approach taken 
to identify relevant literature. In “Background on Techniques 
in Deep Learning”, we talk about different methods of DL 
network systems and breakthrough research on those meth-
ods. In “Applications in Transportation”, we talk about dif-
ferent applications of DL methods in transportation engi-
neering, specifically six major application categories in ITS.

In “Discussion and Conclusion”, we investigate different 
available embedded systems, or devices that can facilitate 
the running of neural network experiments. Finally, in “Ref-
erences”, we provide a summary and an outlook for future 
research.

The research methodology which is followed in this 
paper is PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) (Moher et al. 2009). Following 
this method, we first produced a questionnaire and in each 
paper we reviewed, we looked for answers to these ques-
tions. The focus of these questions is about the gap which 
each paper tries to address, their proposed solutions, and 
finally the performance of these solutions for their datasets.

Research Approach and Methodology

This paper performs a detailed analysis of existing studies 
on intelligent transportation systems (ITS) and deep learning 
(DL). Articles were searched in multiple databases using the 
search strategy described below. The collected articles were 
then reviewed and organized. The scope of this review was 
restricted to conference proceedings and journal articles, 
including existing literature reviews.

Relevant articles were primarily obtained by query-
ing the TRID TRB database (Home—transport research 
international documentation 2017), where the search terms 

included “deep learning”, “convolutional”. These search 
terms were sought in the title, abstract and notes. Then the 
references of the papers identified were examined to trace 
other trusted journals and papers. Also, online searches on 
various databases such as Scopus, Science Direct, IEEE, and 
ArXiv were done. All papers obtained were included in this 
review if they met the following criteria:

• Describe solutions to ITS problems using DL, as iden-
tified by methodology sections, that include DL-based 
model development

• Published between January 2015 and October 2019 (dur-
ing which period the majority of research so far using DL 
in ITS has been conducted)

• Not a book, book chapter, dissertation, thesis or technical 
report

• Not a general introduction to ITS
• Not in the domain of autonomous vehicles

Though DL boom was spawned by the ImageNet project 
in 2012 (Russakovsky et al. 2015) and applications of DL 
on ITS first appeared in 2013, substantial growth in ITS 
research by means of DL methodologies did not start until 
2015. This is illustrated in Fig. 1. Since then, there has been 
a steady growth in the prominence of DL-based ITS studies 
across journals and conferences. In the year 2019, up until 
October, 43 papers have been published across various ITS 
applications. In light of the marked increasing importance of 
DL as an ITS research method, in the following section, we 
will discuss and review the various DL structures and then 
their key applications in the ITS domain.

Background on Techniques in Deep Learning

Deep Neural Networks (DNN)

Deep learning (DL) is a specific subcategory of machine 
learning where several layers of stacked parameters are used 

Fig. 1  Year-wise publication growth in ITS domains
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for the learning process (Ketkar 2017). These parameters are 
component representations of different aspects which can 
affect the result of the network. Each layer contains several 
perceptrons (known also as neurons or hidden units) which 
carry weights for the parameter. The input of each layer is 
multiplied by these parameters and, therefore, the output 
is a representation of the impact of each parameter on the 
input. Usually after each layer or several layers of neurons, 
a nonlinearity function such as the tanh, sigmoid, or recti-
fied linear function (ReLU) (Glorot et al. 2011) is used to 
generate the output layer. All these layers combine to form 
a deep neural network (DNN) (Schmidhuber 2015). There 
are two major challenges in building a DNN: first, designing 
the structure of the network, which includes the number of 
layers, number of neurons in each layer, and nonlinearity 
function type,and second, adjusting the weight of the param-
eters to train the network on how it should perceive the input 
data and calculate the output. For the first challenge, what 
is usually most helpful is simply trial and error and overall 
experience. For the second challenge, the back-propagation 
method is the most popular method to train the weight of 
parameters in a supervised manner. More details about this 
method can be found in Schmidhuber (2015). Although all 
the techniques which will be discussed in the rest of this 
paper can be classified as a subcategory of DNN, here in 
this paper, DNN is defined as the simplest structure of a 
network, in other words, fully connected layers. In this fully 
connected model, there is a connection between all the neu-
rons of one layer to all the neurons in another layer, and for 
each connection, there is a weight which should be deter-
mined through back-propagation method.

Convolutional Neural Networks (CNN)

One of the major applications of neural networks was com-
puter-aided detection (CAD) that aimed to increase clas-
sification accuracy and inferencing time. A revolutionary 
method was proposed in LeCun et al. (1989) called convolu-
tional neural networks (CNN). Inspired by the vision system 
of cats which are locally sensitive and orientation-selective, 
as presented in LeCun et al. (1989) and Hubel and Wiesel 

(1962) suggested that instead of using fully connected layers 
of neural networks, it is possible to use a single kernel with 
shared weights to wisp the entire image and extract the local 
features. The proposed method enhanced the detection effec-
tiveness both in terms of accuracy and memory requirement 
when compared with traditional methods, which required 
handcrafted feature extractions (LeCun et al. 1998).

CNN is a detection architecture that automatically learns 
spatial hierarchical features using back-propagation through 
the network. A schematic figure of this architecture is pre-
sented in Fig. 2a. These networks usually contain three types 
of layers: convolution, pooling, and fully connected, where 
the first two are used to extract the features and the last one 
used as a classifier (Bengio et al. 2015).

The convolution layer consists of a combination of a con-
volution kernel, which counts as a linear part of the layer and 
a nonlinear activation function. The main advantage of using 
a kernel that shares weights in operation, is extracting the 
local features and learning the spatial hierarchies of features 
efficiently by reducing the required parameters. Then the 
nonlinear activation function maps the results onto the fea-
ture map. In order to reduce the number of parameters, usu-
ally one pooling layer comes after a few convolutional layers 
in order to downsample the data, by taking the maximum 
unit (max pooling) or the average (average pooling) of a col-
lection of units and substituting it as a representative of these 
collections. After extracting features and downsampling the 
data by the convolution and pooling layers, they are mapped 
onto the final output by fully connected layers. The output of 
these layers usually is the same size as the number of classes 
and each output indicates the probability of it belonging to 
that class. Finally, this string maps onto the final result by an 
activation function. This activation function can be sigmoid 
for binary/multiclass classification, softmax for single/mul-
ticlass classification or to identity continuous values in case 
of regression (Yamashita et al. 2018).

Based on the fact that in order to train a deep model 
a large amount of data are needed, CNN and other mod-
els’ popularity only began to rise when a large quantity of 
labeled data were provided for the ImageNet challenge (Rus-
sakovsky et al. 2015). Afterward, lots of architectures have 

Fig. 2  Figures depicting CNN and RNN schematic
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been proposed which use these CNN blocks to enhance the 
efficiency of CAD. Some of these methods are AlexNet, 
Inception, VGGNet 16/19, Resnet, etc. However, in order 
to increase the accuracy of detection, other concepts have 
been used in the process. Some of these concepts are transfer 
learning, which uses the knowledge of the network from 
retraining on a large dataset in order to train the network on 
a smaller dataset (Yamashita et al. 2018). The other method 
is training with an equal prior instead of a biased prior in 
those cases where the dataset has a bias towards one of the 
classes (imbalanced dataset). In this case, different sampling 
or resampling rates are applied to the dataset to balance it. 
The effect of these different methods of changing the archi-
tecture, using transfer learning and balancing the dataset for 
various datasets are investigated in Shin et al. (2016).

Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs), another class of super-
vised DL models, are typically used to capture dynamic 
sequences of data. RNNs can successfully store the rep-
resentation of recent inputs and capture the data sequence 
by introducing a feedback connection to interpret the data. 
This ability can play the role of memory to pass informa-
tion selectively across sequence steps to process data at a 
certain time. Thus, each state depends on both the current 
input and the state of the network at a previous time. In other 
words, there is a similarity between a traditional, simple 
RNN and Markov models (Lipton et al. 2015). In 1982, the 
first algorithm for recurrent networks was used by Hopfield 
(1982) in order to do pattern recognition. In 1990, Elman 
(1990) introduced his architecture, which is known as the 
most basic RNN. A schematic figure of this architecture is 
presented in Fig. 2b. In this architecture, associated with 
each hidden unit, there is a context unit which takes the 
exact state of the corresponding unit at the previous time as 
an input and re-feeds it with the learned weight to the same 
unit in the next step.

Although training RNN networks seems to be straight-
forward, vanishing or exploding gradient problems remain 
the two main difficulties. These problems can happen during 
learning from previous states when the chain of dependen-
cies gets prolonged and, in this case, it is difficult to choose 
which information should be learned from past states. In 
order to solve the problem of an exploding gradient in 
recurrent networks, which can result in oscillating weights, 
Williams and Zipser (1989) has suggested Truncated Back-
Propagation Through Time (TBPTT), which sets a certain 
number of time steps as a propagation limit. In this case, 
to prevent exploding the gradient, a small portion of previ-
ously analyzed data is collected to use during the training 
phase. However, this means that in the case of long-range 

dependencies cases, the former information related to these 
dependencies will end up lost.

Long Short Term Memory (LSTM) architecture has 
been suggested by Hochreiter and Schmidhuber (1997) to 
solve both these problems together. The primary idea of 
this method is using a memory cell with only two gates of 
input and output. The input gate decides when to keep the 
information in the cell and the output gate decides when to 
access the memory cell or prevent its effect on other units. 
In recent years, several corrections and improvements have 
been made on LSTM architecture.

As described above, LSTM contains a memory cell that 
holds its state over time, and based on its regulation, controls 
how this cell affects the network. The most common type of 
LSTM cell has been suggested by Graves and Schmidhu-
ber (2005). Several gates and components which are added 
to this cell are different from the basic suggested LSTM 
by Hochreiter and Schmidhuber (1997). A logistic sigmoid 
function is usually used as the gate activation, though due 
to the state-of-the-art design of Graves and Schmidhuber 
(2005), a tanh function is usually used as the block input 
activation and block output activation. The forget gate and 
peephole connections were first suggested by Gers and 
Schmidhuber (2001) that enables the cell to reset by forget-
ting its current state and passing the current state data from 
the internal state to all gates without passing them through 
an activation function.

Finally, it is notable that Cho et al. (2014) has proposed 
a gated recurrent unit (GRU) inspired by the LSTM block, 
where they have eliminated the peephole connections and 
output activation function. They have also coupled the input 
gate and forget gate into one gate called the update gate and 
what passes through their output gate is only recurrent con-
nections to the block input. This architecture is much sim-
pler than LSTM and based on what it eliminates, it avoids a 
significant reduction in performance, which makes it more 
popular to use.

Autoencoders (AE)

One of the most important task in DL is access to a large 
amount of data to train the model. Usually, such a dataset 
is not readily available and producing a rich dataset would 
be expensive. In this situation, unsupervised methods show 
their value. Instead of training models using labeled data, 
unsupervised methods extract the features of unlabeled data 
and use these extracted features to train the model. Autoen-
coders (AEs) are one such method which aims to reconstruct 
the input data and in this manner is similar to principal com-
ponent analysis. AEs are composed of two networks that are 
concatenated to each other. The first network extracts and 
encodes the input data into its main features and the second 
network usess these features to reshape arbitrary random 
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data to reconstruct something similar to the input data. The 
schematic figure of this architecture is presented in Fig. 3a. 
Although the concept of AEs has been used previously as 
a denoiser (Vincent et al. 2008) and data constructor (Tan 
and Eswaran 2008), it found a new application as variational 
AEs (Kingma and Welling 2013). To minimize the differ-
ence from input and output, Kingma and Welling (2013) 
have used the variational inference method. They introduced 
a lower bound on the marginal likelihood and tried to max-
imize it to minimize the error between input and output. 
Doersch (2016) and Le (2015) have explained exactly how 
a variational AE can be built.

Usually, an AE’s hidden layer is smaller than its input 
layer, although the opposite situation can happen as well. 
Also, the horizontal orientation of AEs is defined as combin-
ing two or more AEs horizontally, and this can have differ-
ent motivations such as different learning algorithms (e.g., 
RBM, neural network, or Boolean) or different initialization 
and learning rates. In addition to details about these situa-
tions, linear and nonlinear AEs have been studied by Baldi 
(2012). It has been shown that a Boolean AE as a nonlinear 
type has the ability to cluster data and an AE layer on top 
can be used as a pretrainer for a supervised regression or 
classification task.

Deep Reinforcement Learning (DRL)

Reinforcement learning (RL) attempts to train a machine 
to act as an agent who can interact with the environment 
and learn to optimize these interactions by learning from 
responses (Arulkumaran et  al. 2017). In RL, the agent 
observes the environment and gets a state signal and chooses 
an action that impacts the environment to produce a new 
state. In the next step, a reward from the environment and 
the new state is fed to the agent to help it decide more intel-
ligently in the next step. The goal of an agent in this setup 
is gaining the maximum reward over the long term by fol-
lowing an optimal policy. The algorithm of RL is usually 
based on the Markov Decision Process (MDP) (Silver 2015). 
The problems that can be solved by RL algorithms can be 
divided into episodic and non-episodic MDP. In episodic 
MDP, the state will reset at the end of the episode and the 

return (accumulation of rewards for the episode) is calcu-
lated. In non-episodic MDP, there is no end of the episode 
and using a discount factor is vital to prevent an explosion 
of return values (Arulkumaran et al. 2017).

There are two functions usually used in RL: the state-
value function, also known as the value function, is the 
expected return if the agent starts at a given state (no action 
limitation), whereas the action-value function, also known 
as the quality function (Q-function) is the expected return 
of starting at a given state and taking a particular action. 
Usually, one of two methods is implemented to solve an RL 
problem. In the first approach, the Q-function is predicted 
using different methods of temporal difference controls 
such as state–action–reward–state–action (SARSA), which 
improves the estimation of Q. The second approach is Q 
learning, which directly approximates the optimal Q. Both 
of these methods use bootstrapping and learn from incom-
plete episodes.

Deep reinforcement learning (DRL) is an approach to 
solving the RL problem using a DNN. Although the history 
of DRL began in the 1990s when Tesauro (1995) developed 
a neural network that reached an expert level in backgam-
mon, its rebirth can be considered as Mnih et al. (2015) 
who introduced Deep Q-Networks (DQN) as DNNs that can 
approximate Q instead of reading its value from a Q table 
that indicates for each state what the Q value would be for 
taking each action. In this new method, complex and high 
dimensional problems have potential to be addressed easily 
(Mnih et al. 2015). The model used by Mnih et al. (2015) 
extracted images from the Atari games and used a combi-
nation of a CNN model and a fully connected layer on the 
data extracted from the images to obtain an estimate of the 
Q value.

However, because of the complexity of DRL, it can be 
unstable. Therefore, much research has been focused on 
solutions able to defeat this instability. Experience replay 
(Lin 1992) and target networks (Mnih et al. 2015) are the 
two most used techniques to make RL stable. Other tech-
niques include Double-Q learning (Hasselt 2010) and 
dueling DQN (Wang et al. 2015), which have also been pro-
posed to make DRL more robust and stable. In Double-Q 
learning, the second estimator is used for estimating an extra 

Fig. 3  Figures depicting AE and GAN schematic
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assumptive Q′ to approximate the Q value more precisely. 
On the other hand, dueling DQN (Wang et al. 2015) uses 
a baseline instead of an accurate calculation of Q value to 
learn relatives.

Generative Adversarial Networks (GAN)

Generative adversarial networks (GANs) are a specific class 
of deep learning networks that learn how to extract the sta-
tistical distribution of training data to synthesize new data 
similar to real-world data. These synthetic data can be used 
for several applications such as producing high-resolution 
images (Ledig et al. 2017), denoising low-quality images, 
and image-to-image translation (Isola et al. 2017). Most of 
the generative models use the maximum likelihood concept 
to create a model that can estimate the probability distribu-
tion of the training data and synthesize a dataset that maxi-
mizes the likelihood of the training data (Dougherty 1995). 
Although calculating maximum likelihood can directly result 
in the best action of the model, sometimes these calculations 
are so difficult that it is more beneficial to implicitly estimate 
this amount. In the case of explicit density calculation, three 
main types of models are popular:

• Fully visible belief networks
• Variational AEs
• Markov chain approximations

All of these models, however, suffer from the problems 
of low speed, low quality, and early stoppage (Goodfel-
low 2016). To overcome these problems, Goodfellow et al. 
(2014a) has suggested a method that does not require explicit 
definition of the density function. This model can generate 
samples in parallel, no Markov chain is needed to train the 
model and no variational bound is needed to make it asymp-
totically consistent.

This method has two models: the generative model which 
is responsible to pass random noise through a multilayer net-
work to synthesize samples, and the discriminative model, 
which is responsible to pass real data and artificial data 
through a multilayer network to detect whether the input 
is fake or real. A schematic figure of this architecture is 
presented in Fig. 3b. Both models use back-propagation and 
dropout algorithms: the generative model to create more 
realistic data and the discriminative model to achieve better 
distinction between real and fake data.

When GANs were first proposed in both their generative 
and discriminative models, fully connected networks were 
used. However, later in 2015, Radford et al. (2015) suggested 
a new architecture named deep convolution GAN (DCGAN), 
which uses batch normalization in all layers of both models, 
except the last layer of the generator and first layer of the 
discriminator. Also, no pooling or unpooling layer is used in 

this architecture. A DCGAN allows the model to understand 
operations in latent space meaningfully and respond to these 
operations by acting on the semantic attributes of the input 
(Goodfellow 2016).

The other improvisation on the GAN architecture has 
been conditional GAN (Mirza and Osindero 2014), where 
both networks are class conditional, which means the gen-
erator tries to generate image samples for a specific class 
and the discriminator network is trained to distinguish real 
data from fake data, conditional on the particular class. The 
advantage of this architecture is better performance in mul-
timodal data generation (Creswell et al. 2018).

In the next section, we discuss and review the applica-
tions of deep learning models to transportation.

Applications in Transportation

Performance Evaluation

Before reviewing papers that have already used DL meth-
ods to investigate ITS applications, it is necessary to make 
clear the model evaluation criteria used. The classification 
metrics are accuracy (AC), precision (PR), recall (RL), top 
1 accuracy, and top 5 accuracy, while the regression met-
rics are mean average precision (mAP), mean absolute error 
(MAE), mean absolute percentage error (MAPE), and root 
mean squared error (RMSE):

where TP = true positive, TN = true negative, FP = false posi-
tive, FN = false negative.

Top 1 accuracy means the model’s top answer must match 
the expected answer.

Top 5 is when at least one of the model’s five highest 
probability answers must match the expected answer.

mAP is the mean of the average precision (AP) scores for 
every query, where AP is the area under the PR vs RL curve

IoU is the ratio between area of overlap and area of union, 
between the predicted and the ground truth bounding boxes:

(1)AC =
TP + TN

TP + FP + TN + FN

(2)PR =
TP

TP + FP

(3)RL =
TP

TP + FN

(4)MAE =
1

n

n∑

i=1

|yi−
−
yi |



121Journal of Big Data Analytics in Transportation (2020) 2:115–145 

1 3

where yi is the actual value of observed travel time, yi is 
the predicted value of travel time, and n is the number of 
observations.

We now discuss different applications of deep learn-
ing in ITS. The included topics have been selected based 
on the functional areas in ITS as mentioned in Sussman 
(2008) and have been studied substantially over the period 
of 2012–2019.

Traffic Characteristics Prediction

One of the most considered applications of DL in transpor-
tation is related to traffic characteristics prediction. Traffic 
characteristics information can help drivers to choose their 
routes more wisely and traffic management agencies to man-
age traffic more efficiently. The main characteristics of inter-
est are traffic flow, traffic speed, and travel time. Since these 
characteristics are not mutually exclusive, methods that are 
used to predict one of them also can be used to predict the 
value for the remaining features. Due to this, methods used 
to make these predictions are discussed together as follows:

Based on the duration of prediction for each traffic char-
acteristic, a forecast value is usually classified as short-term 
(S) for predictions within less than 30 min, medium-term 
(M) for a prediction window between 30 and 60 min, and 
long-term (L) within more than 60 min (Yu et al. 2017a). 
Since driving behavior and traffic characteristics can vary 
across locations, results from one dataset are difficult to 
apply to other datasets (Wang et al. 2018a). Previously, traf-
fic feature prediction has predominantly used parametric and 
statistical methods, such as autoregressive integrated mov-
ing average (ARIMA) modeling, but most of the time these 
methods have been incapable of predicting irregular traffic 
flows (Wang et al. 2018a). However, through the emergence 
of machine learning and furthermore DL methods, nonpara-
metric methods are now being used in traffic characteristics 
prediction to achieve higher accuracy.

One of the first attempts to predict traffic characteristics 
has used deep belief networks (DBN) as an unsupervised 
feature learner. Chen et al. (2017a), Huang et al. (2014) 

(5)MAPE =
1

n

n∑

i=1

||||||

yi−
−
yi

yi

||||||

(6)RMSE =

√√√√1

n

n∑

i=1

(yi−
−
yi)

2

(7)MSRE =
1

n

n∑

i=1

(
yi−

−
yi

yi

)2

and Khajeh Hosseini and Talebpour (2019) have imple-
mented DBNs for traffic flow prediction. Siripanpornchana 
et al. (2016) and Hou and Edara (2018) have used the same 
concept for predicting travel time and traffic speed. Along 
with traffic data, weather data have been fed into DBNs 
using data fusion techniques to predict traffic flow more 
accurately (Koesdwiady et al. 2016).

However, due to the nature of the above mentioned traf-
fic features and their dependency on past traffic conditions, 
several studies have been done to discover correlations 
using RNN to predict traffic characteristics. For instance, 
Zhang and Kabuka (2018) have used a gated RNN unit to 
predict traffic flow with respect to the weather conditions, 
where Jia et al. (2016) have used LSTM to overcome the 
same challenge. Liu et al. (2017) and Tian and Pan (2015) 
have used LSTM to predict travel time as well as traffic 
flow, while also taking into account weather conditions. 
Finally, Ma et al. (2015) have implemented a combination 
of deep RBM and RNN to predict congestion in transpor-
tation network links.

Polson and Sokolov (2017) have tried to increase the AC 
of traffic flow prediction especially for nonrecurrent traffic 
congestion, such as a special event or harsh weather, by pay-
ing more attention to the spatiotemporal feature of traffic. 
This feature is grounded in the assumption that to predict 
any traffic characteristic, we need both the historical data on 
that particular location and current traffic in the neighboring 
areas. To accomplish this, Wang et al. (2016a) have tried 
to combine an RNN with a CNN to pay attention to both 
the temporal and spatial aspects of traffic. Fouladgar et al. 
(2017), Du et al. (2017) and Goudarzi et al. (2018) have 
combined the power of LSTM + CNN to understand both 
temporal and local dependencies to predict different traffic 
characteristics. Yao et al. (2018a) have considered two chal-
lenges, the first being the dynamic dependency of traffic on 
temporal features, that is, in different hours of the day, this 
dependency may differ from one direction of traffic flow to 
another direction. The second challenge has been the proba-
bility of shifting time periods in relation to traffic density. In 
other words, a periodic temporal dependency may shift from 
one time to another (e.g., on different days of the week). As 
a result Yao et al. (2018a) designed a network consisting of 
a flow-gated local CNN network to capture the dynamic of 
the spatial dependencies and an LSTM network as a periodi-
cally shifted attention mechanism for handling the periodic 
dependencies. One other approach to accounting for both 
types of dependencies was taken by Ma et al. (2017). They 
converted data into images representing the two dimensions 
of time and space. By converting their data matrices into 
images, they were able to use a CNN model to extract image 
features and predict the network-wide traffic speed. Yu et al. 
(2019) improved this approach later by adding a temporal 
gated convolution layer to extract temporal features.
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To extract both spatial and temporal features, Cui et al. 
(2018a) have used a deep model called the stacked bidirec-
tional and unidirectional LSTM (SBU-LSTM) model where 
the bidirectional LSTM considers both the backward and 
forward dependencies in time-series data. Since traffic con-
ditions have periodicity, by analyzing both backward and 
forward features, the AC can be increased.

One of the other models able to consider the spatiotem-
poral property of traffic has been AE, which was proposed 
first by Lv et al. (2014) and improved by Duan et al. (2016) 
using denoising Stacked AE (dSAE) and Yu et al. (2017a) 
by combining LSTM and AE to predict traffic conditions at 
peak hours and in post-accident situations. To predict post-
accident situations, they extracted a latent representation 7 
of the static features that are common in all accidents from 
stacks of AE and combined this with a temporal correlation 
to traffic flow that came from stacks of LSTM, using a linear 
regression (LR) layer.

Table 1 summarizes all these papers, with the columns 
from left to right describing for each study the traffic charac-
teristics investigated and its DL model, dataset, experiment 
results (best results achieved), baseline model, and the base-
line model’s best results, prediction window length, hyper-
link to the given paper and its year of publication.

To the best of the authors’ knowledge, all studies match-
ing the meta-analysis criteria described in “Research 
Approach and Methodology” of the current paper related to 
travel time, traffic speed, traffic flow, traffic conditions, and 
traffic density have been tabulated here. For traffic condi-
tions, the goal was to predict if the road is congested or not. 
Results performed on multiple datasets are also represented 
in Table 1. To have uniformity, the best results are those 
achieved when the window length is ‘S’ (short-term). This 
table structure is followed across all tables in this paper.

Traffic Incident Inference

The goals of predicting traffic incident risk for a given loca-
tion as well as incident detection based on traffic features are 
to help traffic management agencies to reduce incident risk 
in a hazardous area and traffic jams in incident locations. 
Although there are parameters such as drivers’ behavior, that 
are not very predictable, there are several key features that 
can help predict traffic incidents.

Human mobility (Chen et al. 2016), traffic flow, geo-
graphical position, weather, time period, and day of the 
week [97] are some of these features that can be investi-
gated as indicators of a traffic incident. However, a single 
model cannot generally be used in different places because 
accident factors in metropolitan areas, where the population 
and vehicles are generally dense, are completely different 
from accident factors in a small town with a scattered popu-
lation (Yuan et al. 2017). The prediction and detection of an 

incident is more challenging than the prediction of incident 
risk since data for the former are usually heterogeneous (i.e., 
traffic incidents happen rarely, compared to the amount of 
data for the cases where there is no incident). To overcome 
this issue, Yuan et al. (2017) in each step changed only one 
feature of the data (hour, day, or location) and then checked 
if the resulting data point was negative or not. In negative 
cases, it was added to the pool of data to be considered.

To measure the traffic incident risk based on surveil-
lance camera data, different approaches have been used. For 
example, Chen et al. (2016) have used a stack denoising AE 
(SDAE) to learn the hierarchical features of human mobil-
ity and their correlation with a traffic incident. In contrast, 
Ren et al. (2017) and (Bao et al. 2019) have implemented an 
LSTM model to evaluate risk, but Ren et al. (2017) achieved 
better performance due to learning from more features.

To predict traffic incidents in a macroscopic manner, 
Yuan et al. (2017) and Pan et al. (2017) have tried imple-
menting DNN models, Yuan et al. (2017) by considering 
the curvature of the road as well as the number of inter-
sections and density of the area in order to overcome the 
spatial heterogeneity problem. For the same concern, Dong 
et al. (2018) have used AE by considering both continuous 
and categorical variables, and Yuan et al. (2018) have used 
a Conv-LSTM that breaks regions into smaller regions in 
order to overcome spatial heterogeneity.

If, following Yuan et al. (2018), we consider the macro-
scopic prediction of traffic incidents as not focused on any 
single vehicle, but instead as predicting the probability of an 
accident between any pair of vehicles in the wider region, 
microscopic incident prediction studies can also be intro-
duced that—by getting data about the location, speed, and 
direction of each vehicle in the surrounding area—predict 
the probability of an incident in the near future between any 
certain pair of vehicles. In this regard, Chen et al. (2018b) 
and Theofilatos et al. (2019) have trained a DNN to predict 
likely collisions. Theofilatos et al. (2019) have used a simple 
NN with four layers, which, though it does not compare well 
with the baseline results of machine learning (ML) tech-
niques, is still preferred, as the ML techniques have poor 
sensitivities.

Suzuki et al. (2018) have annotated their large dataset 
of near-miss traffic accidents to train a quasi-RNN model. 
The innovation of their work was introducing an adaptive 
loss function for early anticipation (AdaLEA), which gives 
their model the ability to predict a collision 3.65 s before it 
happens.

Another challenge in traffic incident inferencing is detect-
ing an accident by processing only raw data. To address this, 
Hatri and Boumhidi (2018) and Singh and Mohan (2018) 
have used a stacked AE (SAE) to extract the features of 
traffic patterns in the context of an accident. Also, Hatri 
and Boumhidi (2018) have used a fuzzy DNN to control 
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the learning of traffic-incident-related parameters. Zhang 
et al. (2018a) have trained their DBN model on a dataset 
that includes tweets related to traffic accidents, showing that 
non-traffic features can be used along with traffic feature data 
to validate traffic incident detection.

Incident severity prediction based on recorded incident 
features have been studied in Wang et al. (2016a), Sameen 
and Pradhan (2017) and Alkheder et al. (2017). The artificial 
neural network (ANN) trained in Alkheder et al. (2017) has 
shown an improvement in baseline performance as com-
pared to the LSTM model with fully connected layers in 
Sameen and Pradhan (2017).

Table 2 summarizes all these papers, shows their model, 
the dataset which their model was trained on, evaluation of 
their model for their testing dataset as well as comparison 
of their model’s performance to that of their baseline model. 
In the first section of this table, different studies regarding 
parameters effective in predicting increased incident risk and 
the manner in which incident risk is affected are listed. In the 
next section, macroscopic studies on incident prediction are 
categorized as “traffic incident prediction,” whereas micro-
scopic studies are categorized as “collision prediction.” 
In the incident detection 9 section, all studies focused on 
detecting incidents by analyzing raw traffic data have been 
gathered and, finally, in the last section, investigations pre-
dicting the severity of the incident are listed.

Vehicle Identification

Applications of re-identification (Re-ID) vary from calculat-
ing travel time to automatic ticketing. Since license plates 
are unique to each vehicle, the first task in Re-ID is recog-
nizing them.

Zang et al. (2015) and Abedin et al. (2017) have imple-
mented DL models to recognize license plates by using a 
visual attention model that first generates a feature map 
using a combination of the most commonly used colors in 
license plates, extracts data from plates using a CNN model, 
and ultimately runs an SVM on the extracted data. How-
ever, bad lighting, blurriness due to vehicle movement, low 
camera quality, and even traffic occlusion where the plate 
is covered behind other cars can make reading license plate 
characters impossible. To overcome this, Liu et al. (2016) 
have proposed a CNN layer to extract conspicuous features 
such as the color and model of the vehicle and have used a 
Siamese neural network to distinguish similar plates. (This 
network has been used before in signature verification tasks). 
Note that for some feature extractions, such as vehicle color 
recognition, solutions like what Hu et al. (2015) did using a 
combination of CNN for feature extraction and SVM for cat-
egorizing are also available. Tang et al. (2018) have similarly 
used a histogram-based adaptive appearance model like what 
Zheng et al. (2017) did for target re-identification, detecting 

and saving other features of each car besides the scheme of 
the license plate to do Re-ID. Also, Yu et al. (2017b) have 
used faster RCNN to detect vehicles in images. In addition, a 
modified version of the Single Shot Detection (SSD) method 
to localize and classify the different types of construction 
equipment by employing MobileNet as the feature extrac-
tion network has been done by Arabi et al. (2020). Wu et al. 
(2018b) has worked on the same idea but trained their model 
based more on spatiotemporal data, pruning their results 
with the fact that (1) a vehicle cannot be in two places at 
one time and (2) a vehicle that has already passed a section 
is unlikely to pass it again. However, their model could not 
compete with the model defined in Tang et al. (2018) that 
proposed a Markov chain random fields to prepare several 
queries based on a visual spatiotemporal path and then used 
a combined Siamese-CNN and path-LSTM model.

Table 3 summarizes all these papers, shows their mod-
els, the dataset which model is trained on, and their per-
formances on those dataset and comparison to the baseline 
model.

Traffic Signal Timing

One of the main tasks of ITS management based on multiple 
types of data is controlling traffic via traffic signal lights. 
For several years, research on optimizing signal light timing 
to have the best performance has been one of the greatest 
challenges in the transportation field. The results of studies 
in this area have endowed traffic agencies with analytical 
models that use mathematical methods to address this opti-
mization problem. However, through emerging DL studies, 
modeling the dynamics of traffic to achieve the best perfor-
mance has taken a new path. This is because the nature of 
RL has facilitated its application in different studies to find 
the best traffic signal timing.

Li et al. (2016) has used DRL to tackle traffic light tim-
ing. In DRL, a DL model is usually used to implement the 
Q-function in a complex system to capture the dynamics 
of traffic flow. A dSAE network is used to take the state 
as input and give the Q-function for any possible action 
as the output of the network. Li et al. (2016) has shown 
a 14% reduction in cumulative delay in the case of using 
an SAE to predict the Q-function instead of conventional 
prediction.

Gao et al. 2017) has suggested an alternative novel idea 
for choosing RL states. They argue that instead of taking 
raw data as the state, it could be more effective if the CNN 
extracts important features from the raw data—e.g., the posi-
tion of the cars and their speeds—and feeds it to a DRL net-
work with a fully connected network to predict the Q-value 
for each of four states of green, yellow, red, and protected 
left turn light, considering cumulative staying time as the 
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reward. They have also used the experience replay and target 
network techniques to stabilize the algorithm and converge 
it to the optimal policy as suggested in Tan and Eswaran 
(2008).

Liang et al. (2018) have also used CNN to map states. They 
use several state-of-the-art techniques such as the target network, 
experience replay, double Q-learning network, and dueling net-
work methods to increase the performance of the network and 
make it stable. Their results have shown a great reduction in 
waiting time (more than 30%) for a fixed-time scenario.

Genders and Razavi (2018) have investigated the impor-
tance of choosing delay time states. The main goal of this 
study was investigating whether the data from conventional 
sensors, such as occupancy and average speed, are satisfac-
tory or more precise data are needed, such as vehicle density 
and queue length, or even data with the highest resolution, 
such as discretizing each incoming lane into cells and con-
sidering the presence of a vehicle in each cell separately. 

The results of this study showed that using high-resolution 
data is not substantially effective and conventional data are 
good enough for their model. However, one of the reasons 
that may have contributed to this conclusion is that they used 
a simple fully connected model that could not extract deep 
features from more precise states very well.

Finally, Wei et al. (2018) have tested their model on real-
world traffic data to see how effective its results could be. They 
suggest that instead of only studying the reward, we need to 
consider different policies that may result in the same reward 
and then take the most feasible one. The final results of this 
study have shown great performance in reducing queue length, 
delay time, and duration compared with other methods.

Table 4 summarizes all these papers, shows their model, 
the dataset which their model was trained on, and the per-
formance of their model for the testing dataset as well as 
comparison of their model’s performance to that of the base-
line model.

Table 2  Overview of papers using deep learning techniques for traffic incident inference

Characteristic Model Dataset Experiment results Baseline results References Year

RMSE Others RMSE Others Model

Incident risk SdAE 7 month Heteroge-
neous data

1 1.41 Logistic Regr Chen et al. (2016) 2016

LSTM Accident records 
(Beijing)

0.63 0.75 SdAE Ren et al. (2017) 2017

LSTM NYPD 9.44 10.46 CNN Bao et al. (2019) 2019
DNN Accident records 

(VTTI)
AC:85% AC:69% Decision Tree(DT) Ali et al. (2019) 2019

DBN Civil Aviation Data MSE:0.2 MSE:0.05 SVR Ni et al. (2019) 2019
Traffic incident 

prediction
DNN Accident records 

(IOWA)
AC:95.12% AC:89.58% RF Yuan et al. (2017) 1207

DBN Highways dataset 1.48 1.6 Bayesian ANN Pan et al. (2017) 2017
AE TRIMS and PMS MAE:0.150 MAE:0.660 SVM Dong et al. (2018) 2018
LSTM Accident records 

(IOWA)
0.078 0.121 7 year Avg Yuan et al. (2018) 2018

Collision predic-
tion

DNN Internet of vehicles Chen et al. (2018b) 2018
DBN Collision Data, 

Ontario
15.24 16.51 Bayesian NN Pan et al. (2018) 2018

LSTM Annotated data mAP:62.1% mAP:57.8% RNN Suzuki et al. 
(2018)

2018

DNN Attica Tollway AC:68.95% AC:72.15% DT Theofilatos et al. 
(2019)

2019

Incident detection SAE SUMO MSE:0.13 MSE:0.18 DNN Hatri and Boum-
hidi (2018)

2018

DBN NYC + NOVA 
accidents

AC:85% AC:79% SVM Zhang et al. 
(2018a)

2018

Incident severity 
prediction

LSTM Accident records 
(Malaysia)

AC:71.77% AC:70.30% Bayesian LR Sameen and Prad-
han (2017)

2017

DNN Accident records 
(AbuDhabi)

AC:74.6% AC:59.5% Ordered Probit Alkheder et al. 
(2017)

2017

CNN Accident records 
(Louisiana)

0.231 Das et al. (2018) 2018



127Journal of Big Data Analytics in Transportation (2020) 2:115–145 

1 3

Table 3  Overview of papers using deep learning techniques for vehicle id tasks

Charac-
teristic

Model Dataset Experiment results Baseline rResults Refer-
ences

Year

AC% Others AC% Others Model

License 
plate 
recog-
nition

SIFT + SVM Chinese 
license 
plate

PR:98.6 PR:98.4 CNN + SVM Zang 
et al. 
(2015)

2015

CNN On road data 99 Bulan 
et al. 
(2017)

2017

CNN Bangla 
license 
plate

92 Abedin 
et al. 
(2017)

2018

Kernel-CNN Chinese 
license data

96.38 93.35 SVM-RBF 
Kernel 

Yang 
et al. 
(2017)

2018

CNN Thailand 
license 
plate

96.94 Puarun-
groj and 
Boon-
siri-
sumpun 
(2018)

2018

CNN AOLP PR:99.5 PR:90.7 Single shot 
detector 

Xie et al. 
(2018)

2018

Vehicle 
type 
classi-
fication

CNN Generated 
dataset

99.07 Huang 
et al. 
(2015)

2015

CNN BIT-vehicle 
dataset

96.1 93.7 SVM Dong 
et al. 
(2015)

2015

Faster RCNN Vehicle 
dataset

89 Yu et al. 
(2017b)

2017

CNN VEDAI/
Munich 
dataset

54.6/73.7 32/53.9 Fast RCNN Zhong 
et al. 
(2017)

2017

CNN ILSVRC2012 98.29 83.78 Ensemble 
classifiers 

Fang et al. 
(2016)

2017

CNN Iowa CCTV 
data

PR:95 Adu-
Gyamfi 
et al. 
(2017)

2017

Deep CNN CarFlag/
CompCars

98.67/99.3 90.34/93.58 Hu et al. 
(2017a)

2017

Deep CNN XMUPlus 99.1 99.07 Pre-trained 
CNN 

Soon 
et al. 
(2018a)

2018

Deep CNN MIT-CBCL/
Caltech

94.12/95.04 93.71/94.27 RCNN Li et al. 
(2018a)

2018

CNN COSMO-
SkyMed

97.66 95.48 CNN Wang 
et al. 
(2018b)

2018

CNN CompCars 54.56 42 Pre-trained 
CNN 

Wang 
et al. 
(2017a)

2018
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Ride Sharing and Public Transportation

Public transportation systems (including bus or metro 
systems, taxis, etc.) are one of the main means of moving 
passengers within cities. To increase city planning perfor-
mance and also passenger satisfaction, the nature of DNN 

has endowed companies with increasingly optimal routing 
maps that take into account data such as passenger demand 
for a given mode of 11 travel at particular places and times. 
DL has been adopted to make predictions even more accu-
rate compared to existing ML techniques.

Table 3  (continued)

Charac-
teristic

Model Dataset Experiment results Baseline rResults Refer-
ences

Year

AC% Others AC% Others Model

Faster RCNN + RPN ILS-
VRC-2012

mAP:89.93% mAP:89.12% Faster RCNN Xiang 
et al. 
(2018)

2018

LSTM Fleetmatics 
data, US

85 Simoncini 
et al. 
(2018)

2018

D-CNN CompCars Top 5:0.922 Top 5:0.917 CNN Yan et al. 
(2017)

2018

Fast RCNN + RPN MIT/
CALTECH 
dataset

84.4 84 Fast RCNN Suhao 
et al. 
(2018)

2018

Deep CNN + AE Chengdu 
express-
ways

97.62 95.18 CNN Chang 
et al. 
(2018)

2018

CNN LabelMe/BIT 
datasets

98.95/95.12 Hussain 
et al. 
(2018)

2019

PCA-CNN PLUS Malay-
sia NSE

99.51 98.65 Ensemble 
Classifier 

Soon 
et al. 
(2018b)

2019

RE ID CNN + SNN VeRi-776 mAP:27.77% mAP:18.49% CNN Liu et al. 
(2016)

2016

MRF + SNN + LSTM VeRi-776 mAP:58.27% mAP:46.25% LSTM + CNN Shen et al. 
(2017)

2017

CNN VOT2016 54 54 CNN Tapu et al. 
(2017)

2017

CNN AI City Chal-
lenge

PR:99.25 Tang et al. 
(2018)

2018

CNN + AFL VeRi AI City 
Challenge

mAP:57.43% mAP:58.27% CNN Wu et al. 
(2018b)

2018

CNN AI City Chal-
lenge

PR:99.25 Maŕın-
Reyes 
et al. 
(2018)

2018

RNN Brisbane 
vehicle data

PR:37.5 Choi et al. 
(2018)

2018

Faster RCNN Korea High-
ways

MAPE:3.4% MAPE:4.9% SSD Kim et al. 
(2019a)

2019

Vehicle 
color 
recog-
nition

CNN SVM Vehicle Color 
Dataset

93.78 91.89 SVM Hu et al. 
(2015)

2015
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Saadi et al. (2017) have investigated the performance of 
several ML techniques and a fully connected DL model with 
only two hidden layers and have shown that their very simple 
DL model outperforms almost all other techniques except a 
boosted decision tree. Besides the simple DNN models in 
Dominguez-Sanchez et al. (2017), Jung and Sohn (2017), 
Wan et al. (2018) and Zhu et al. (2018b), a hybrid model 
containing a stacked AE and a DNN has been implemented 
by Liu and Chen (2017) to predict hourly passenger flow.

To capture all related features such as the spatial, tempo-
ral, and exogenous features impacting passenger demand, 
a fusion convolutional LSTM network (FCL-Net (Ke et al. 
2017) has been proposed. This network includes stacked 
Conv-LSTM layers to analyze spatiotemporal variables, such 
as historical demand intensity and travel time, and LSTM 
layers to evaluate nonspatial time-series variables, such as 
weather, day of the week, and time of the day. With the 
same idea, Zhang et al. (2017) has proposed a spatiotem-
poral Resnet (ST-Resnet) which includes several convolu-
tional layers. Liao et al. (2018) has implemented both of 
these techniques on a New York City taxi record dataset and 
their comparison has shown that better performance with a 
faster training time can be achieved using ST-Resnet. The 
authors suggest two reasons for this. First, LSTM captures 
fine temporal dependencies which are not as fundamental as 
the coarse-grained dependencies from the convolutional lay-
ers. Their second explanation is that spatial features may be 
more important than temporal ones and since the ST-Resnet 
focuses more on spatial features, it outperforms the FCL-
Net. Zheng et al. (2017) and Lin et al. (2018b) work directly 
on graphs structures to leverage structural information by 
considering the nodes as stations and the edges as depend-
encies among stations. Finally, Yao et al. (2018b) and Ma 
et al. (2018) have proposed a deep multiview spatiotemporal 
network to capture all dependencies separately.

Another research area related to public transportation 
deals with travel mode selection. Nam et al. (2017) has 
implemented a simple fully connected DNN on Swiss Metro 
data to reveal demand based on mode. Another issue for 
transportation network companies is route scheduling for 
their drivers to pick up passengers in order to minimize pas-
senger waiting time as well as cost for the driver and com-
pany. Shi et al. (2018) has suggested a DRL model aiming 
to give drivers the best route. This paper considers different 
factors such as the current location of vehicles, time of day, 
and competition between drivers, resulting in a significantly 
shorter search time and more long-term revenue for drivers.

Table 5 summarizes all these papers, shows their model, 
the dataset which their model was trained on, and evaluation 
of their model for their testing dataset as well as comparison 
of their model’s performance to that of their baseline model. 
(In this table, “travel mode” refers to studies which tried to 
predict the mode of transportation that passengers would 

choose at each time point. Also, “passenger flow” is defined 
as the number of passengers flowing in or out of a given 
location at a certain time point).

Visual Recognition Tasks

One of the most significant applications of DL is the use 
of nonintrusive recognition and detection systems, such as 
camera-image-based systems. These applications can vary 
from providing a suitable roadway infrastructure for driving 
vehicles to endowing the autonomous vehicles with a safe 
and reliable driving strategy.

One of the first visual recognition challenges tackled has 
been obstacle detection via exploiting vehicle sensors. To 
do this, a variety of networks with unique architectures have 
been implemented. Kim and Ghosh (2016) have merged data 
from an RGB camera and LIDAR sensors to increase obsta-
cle detection performance in different illumination condi-
tions. Dairi et al. (2018a, b), on the other hand, have con-
fronted obstacle detection as an anomaly detection problem. 
They have used a hybrid encoder model to extract features of 
Deep Boltzmann Machine (DBM) and then an autoencoder 
to reduce the dimensionality and obtain vertical disparity 
(V-disparity) map coordinate system data from images. The 
key feature of V-disparity data is that these data are mostly 
stable with small variations from noise and they change 
drastically only if an obstacle appears in an image.

Wang et al. (2016b) and Cai et al. (2016) have used data 
from far-infrared sensors to improve vehicle detection at 
night. While the former used only far infrared data, the lat-
ter, in order to decrease the false positive percentage used 
both camera and far-infrared data. Wang et al. (2016c) have 
tried to address requirements in regard to vehicle following, 
which include detecting brake lights. They used the Histo-
gram of Oriented Gradient (HOG) approach implemented 
with LIDAR and camera data. To decrease the false positive 
rate and speed up the process, they also used the vanishing 
point technique. Next, they used AlexNet to detect if the rear 
middle brake light was on or off.

Another important task in navigating safely is traffic 
sign detection. These signs obligate, prohibit or alert driv-
ers. One of the most common DL models to detect traffic 
signs are CNNs. Qian et al. (2015), Yang et al. (2015), Lin 
et al. (2016, 2019), Lim et al. (2017), Zeng et al. (2016), 
Hu et al. (2017b), Yuan et al. (2016), Arcos-Garcia et al. 
(2018), Natarajan et al. (2018), Lee and Kim (2018), Li et al. 
(2018b) and You et al. (2018) have all used CNN as their 
main feature extractor, each trying to tune their model to get 
the best results. Qian et al. (2015) have used RCNN to derive 
regions of interest from RGB images. Lim et al. (2017) have 
focused on low-illumination images. They used a classifier 
to detect regions of interest and an SVM to verify if any traf-
fic signs were present inside the region or not. Then, a CNN 
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model using the Byte-MCT technique classified the traffic 
sign. Experiments have shown that this method is robust in 
deficient lighting, outperforming other methods in cases of 
low illumination.

Zeng et al. (2016) have suggested that the RGB space 
cannot provide as much useful data as the perceptual lab 
color space. Therefore, after space changing, they extracted 
the deep perceptual features using a CNN and fed these fea-
tures to a kernel-based ELM classifier to identify the traffic 
sign. This classifier used the radial basis function to map the 
features in a higher dimension space in order to disconnect 
features to get the best outcome.

Arcos-Garcia et al. (2018) have tried different optimi-
zation methods on a CNN model containing several con-
volutional layers and spatial transformer networks (STN) 
that make the CNN spatially independent, resulting in no 
need for supervised training, data augmentation or even nor-
malization. In contrast, Li and Yang (2016), instead of using 
a CNN, have used a DBM that is boosted with canonical 
correlation analysis for feature extraction and then an SVM 
for classification. Also, they have used certain conventional 

image-processing techniques such as image drizzling and 
gray-scale normalization to reduce noise.

Weber et al. (2016), Behrendt et al. (2017) and Kim 
et al. (2018a) have focused more on traffic light detection 
and classification. This has a very significant role in man-
aging traffic, and correct detection has a high correlation 
to reduced risk. Weber et al. (2016) have proposed their 
deep traffic light recognition (DeepTLR) model that first 
classifies each fine-grained pixel of the input data, calcu-
lating the probability for each class. Then, for the regions 
with higher probability toward the presence of a traffic 
light, a CNN was used to classify the status of the traf-
fic light. (In this model, temporal data were not used and 
each frame was analyzed separately). However, Behrendt 
et al. (2017) have used traffic speed information as well 
as stereovision data to track detected traffic lights. Lin 
et al. (2016) have used a combination of region-of-interest 
(ROI) performance, CNN feature extraction and an SVM 
as a classifier to detect arrow signs on the roadway and 
classify their direction. Gurghian et al. (2016) have used 
a CNN to detect lane position in the road.

Table 4  Overview of papers using deep learning techniques for traffic signal timing

References Year Model Dataset State Reward Actions 

Li et al. (2016) 2016 SAE + DRL PARAMICS Queue length —Queue length difference— 2 
Pol and Oliehoek (2016) 2016 DQN SUMO Position, speed Number of stop switch and 

delay
2 

Gao et al. (2017) 2017 CNN + DRL SUMO F (position, speed) (Cumulative staying time) 4 
Liang et al. (2018) 2017 CNN + DRL SUMO Position, speed (Cumulative waiting time) 8 
Mousavi et al. (2017) 2017 DQN SUMO Snapshot of the current state 

of a graphical view of the 
intersection

Difference between the total 
cumulative delays oftwo 
consecutive actions

2 

Genders and Razavi (2018) 2018 DRL SUMO Occupancy and speed/vehicle 
density and queue length/pres-
ence of vehicles in each lane

Change in cumulative delay 4 

Wei et al. (2018) 2018 DRL SUMO Queue length, number of vehi-
cles, updated waiting time, 
current phase, next phase and 
an image of the intersection 
analyzed by CNN

F(queue length, delay, updated 
waiting time, light switches 
indicator, number of vehicles 
pass the intersection, travel 
time)

2 

Wan and Hwang (2018) 2018 DQN VISSIM Current phase, green and red 
duration, remaining carsand 
left turn bay occupation

System delay 8 

Muresan et al. (2019) 2018 DRL VISSIM Queue length, signal state, and 
time of day

Discharged vehicle 2 

Liang et al. (2019) 2019 3DQN SUMO The position and speed of 
vehicles

Change of the cumulative 
waiting time between two 
neighboring cycles

8 

Gong et al. (2019) 2019 3DQN Simulatedtraffic Current traffic state and current 
signal phase

Difference between the current 
and previous waiting times of 
all vehicles

4 

Huang et al. (2019) 2019 DQN SUMO Number of input and output 
vehicles of adjucents intersec-
tions

Summation of que length in 
multiple intersections

4
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Finally, the monitoring of civil infrastructure has always 
been a focus for engineers and researchers. Various moni-
toring techniques have been used for infrastructure perfor-
mance evaluation, ranging from conventional short-term 
(Arabi et al. 2018) and long-term (Arabi et al. 2019, 2017; 
Constantinescu et al. 2018) sensor-based monitoring to non-
destructive and noncontact techniques (Moll et al. 2018). 
Among the applications of nondestructive damage detec-
tion, pavement crack detection, in particular, has received 
attention, due to its importance in civil infrastructure man-
agement. For instance, Hosseini et al. (2020) and Hosseini 
and Smadi (2020) developed pavement prediction models 
that can help agencies to come up with more accurate main-
tenance and rehabilitation activities. Zhang et al. (2018c) 
have proposed a unified pavement crack detection approach 
that can distinguish between cracks, sealed cracks, and back-
ground regions. Through their approach, they have been 
able to effectively separate different cracks having similar 
intensity and width. Moreover, Bang et al. (2019) have pro-
posed pixel-level pavement crack detection in black-box 
images using an encoder-decoder network and found that 
ResNet-152 with transfer learning outperformed other net-
works. Additionally, CrackNet, which performs pixel-level 
pavement crack detection on laser-based 3D asphalt images, 
was introduced by Zhang et  al. (2018d). In a separate 
study, Zhang et al. (2018d) extended their previous study 
to CrackNet-R, which utilizes RNN with a gated recurrent 
multilayer perceptron (GRMLP) to update the memory of 
the network, showing their model outperforms other models 
based on LSTM and GRU. Also, Nhat-Duc et al. (2018) have 
investigated pavement crack detection performance using 
metaheuristic-optimized Canny and Sobel edge detection 
algorithms, comparing these algorithms with their proposed 
CNN and confirming the superior performance of DL over 
conventional edge detection models.

Table 6 summarizes all these papers, shows their model, 
the dataset which their model was trained on, and evaluation 
of their model for their testing dataset as well as comparison 
of their model’s performance to that of the baseline model.

Discussion and Conclusion

Hardware

Generally, there are two types of intelligent decision-mak-
ing, namely cloud-computing-based and edge-computing-
based. While computing services are delivered over the 
internet via the cloud computing approach, they are per-
formed at the edge of the network via the edge-computing 
approach. The edge-computing approach has introduced 

several advantages, such as efficient and fast intelligent deci-
sion-making as well as decreased data transfer cost. Emerg-
ing technologies such as DL have significantly increased the 
importance of edge computing devices. Though discussing 
edge computing devices in detail goes beyond the scope of 
this paper, we briefly overview and compare the edge com-
puting devices popularly used for DL. Figure 4 illustrates the 
various edge computing platforms discussed in this section. 
Also, Table 7 summarizes the technical specifications of the 
covered hardware.

The Jetson Xavier is the high-end system-on-a-chip (SoC) 
computing unit in the Jetson family, which exploits the Volta 
GPU. An integrated GPU with Tensor Cores and dual Deep 
Learning Accelerators (DLAs) make this module ideal to 
deploy computationally extensive DL based solutions. 
NVIDIA Jetson Xavier is capable of providing 32 TeraOPS 
of computing performance with a configurable power con-
sumption of 10, 15 or 30 W.

Another widely used embedded SoC is NVIDIA Jet-
son TX2 which takes advantage of NVIDIA Pascal GPU. 
Although it delivers less computing performance than 
NVIDIA Xavier, it can be a reliable edge computing 
device for certain applications. The module can provide 
more than 1TFLOPS of FP16 computing performance 
using less than 7.5 W of power consumption. The Jetson 
Nano, which utilizes the Maxwell GPU, is newest product 
from the Jetson family introduced by NVIDIA. It is suit-
able for deploying computer vision and other DL models 
and can deliver 472 GFLOPS of FP16 computing perfor-
mance with 5–10 W of power consumption.

Another family of edge computing devices is the Rasp-
berry Pi family, which introduces affordable SoCs capable 
of high performance in basic computer tasks. The Rasp-
berry Pi3 Model B + is the latest version of the Raspberry 
Pi which uses a 1.4-GHz 64-bit quad-core processor and 
can be used alongside deep learning accelerators to achieve 
high performance in computationally expensive tasks.

Finally, the Intel Neural Computing Stick 2 (NCS 2) is a 
USB-sized fanless unit, which utilizes the Myriad X Vision 
Processing Unit (VPU) that is capable of accelerating com-
putationally intensive inference on the edge. Very low power 
consumption along with supporting popular DL frameworks 
such as Tensorflow and Caffe have made the NCS 2 ideal to 
use with resource-restricted platforms such as Raspberry Pi3 
B + . There have been limited studies investigating the infer-
ence speed of these hardware, though Arabi et al. (2020) has 
compared the inference speed of an SSD-MobileNet model 
of the abovementioned embedded devices on a construction 
vehicle dataset. Utilizing the Jetson TX2, they achieved 47 
FPS, and utilizing a Raspberry Pi and NCS combination, 
they achieved 8 FPS.
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Table 5  Overview of papers using deep learning techniques for ride sharing and public transportation

Charac-
teristic

Model Dataset Experiment Results Baseline Results References Year

RMSE Others RMSE Others Model

Travel 
mode

DNN Swiss Metro 
dataset

AC:66.1% AC:65.57% ANN Nam et al. 
(2017)

2017

CNN GPS—GeoLife 
project

AC:84.8% AC:78.1% RF Dabiri and 
Heaslip 
(2018)

2018

Route 
sched-
uling

DRL Didi Chuxing Shi et al. 
(2018)

2019

Passenger 
flow

SAE + DNN Xiamen bus 
station

50.4 51.4 SVM Liu and 
Chen 
(2017)

2017

CNN Passenger data AC:96% Dominguez-
Sanchez 
et al. 
(2017)

2017

CNN AFC, Seoul AC:60.10% AC:54.83% Statistics Jung and 
Sohn 
(2017)

2017

DNN Unity-3D envi-
ronment 

Wan et al. 
(2018)

2018

DNN Shanghai rail 
transit

MSRE:0.00000125 MSRE:0.00178 Lin. Regr Zhu et al. 
(2018b)

2018

CNN California HTS AC:93.59% AC:69.76% RF Cui et al. 
(2018c)

2018

LSTM Nanjing Metro 
System

8.19 11.54 ARIMA Liu et al. 
(2019)

2019

AE + LSTM Singapores 
Metro System

20.37 24.82 LSTM Hao et al. 
(2019)

2019

Passenger 
demand 
predic-
tion

ConveLSTM Didi Chuxing 0.016 0.0175 CNN Ke et al. 
(2017)

2017

CNN Beijing taxi/NY 
bike

16.69/6.33 18.18/7.43 DNN Zhang et al. 
(2017)

2017

DNN Didi Chuxing 20.09 16.41 DT Saadi et al. 
(2017)

2017

CNN + LSTM Didi Chuxing 9.642 10.012 XGBoost Yao et al. 
(2018b)

2018

GCNN-DDGF Citi Bike data, 
NY

2.12 2.43 XGBoost Lin et al. 
(2018b)

2018

LSTM TAZ 
Nanjing,China

MAPE:46.49% MAPE:65.128% XGBoost Xu et al. 
(2018)

2018

CNN + RNN Porto Taxi Tra-
jectory

AC:78.80% AC:75.62% CNN Zhang et al. 
(2018b)

2018

DQN London travel 
data

Waiting time:158.2 Wen et al. 
(2017)

2018

CNN Citi Bike Sys-
tem, NY

18.995 19.784 NN Yang et al. 
(2018b)

2018

DNN NYC taxi data 11.13 16.05 LSBoost Liao et al. 
(2018)

2018

CNN + LSTM Beijing metro 7.5 8.89 LSTM Ma et al. 
(2018)

2019

GCN Seouls Bike data 2.26 2.45 LSTM Kim et al. 
(2019b)

2019
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Summary

Below, we provide a summary of the studies cited in the cur-
rent paper. We have classified these studies according to our 
six ITS application categories in relation to the DL models 
they use (see Fig. 5). The following are our observations:

• Traffic characteristics: CNN, RNN, and CNN-RNN 
hybrid models are most frequently used. The main rea-
son is undoubtedly related to the nature of traffic that has 
two main dependencies: spatial and temporal. Because 
various datasets and performance evaluation metrics 
have been used, it is hard to compare different studies 
related to traffic characteristics, but in traffic flow stud-
ies, the PeMS dataset has been widely used. The major-
ity of research has used hybrid CNN and RNN models, 
which can identify both long temporal dependencies and 
local trend features. Although most papers have defined 
their own CNN model rather than using an existing archi-
tecture, CNN has generally shown better performance 
across papers when compared to RNN, which shows 
lower computation/training time.

• Traffic incidents: the most widely used model is RNN, 
since the result of an incident shows itself at a specific 
time that requires a powerful network model to identify. 
Autoencoders are also popular models, since they can 
learn traffic patterns and then detect and isolate acci-
dent conditions from regular conditions.

• Vehicle ID: CNN is the most widely used model, given 
its power in inferencing from images, as detection and 
tracking is the main task in license plate and vehicle 
type/color identification. Existing CNN architectures 
that have been popularly utilized are AlexNet and VGG 
models that have been pretrained on ImageNet.

• Traffic signal timing: RL has been the most commonly 
used model, given the control strategy nature of the traf-
fic signal timing task. Hybrids of CNN and SAE have 
been used to approximate or learn Q-values to improve 
DRL performance.

• Ride-sharing and public transportation: CNN, RNN, 
and DNN have been the most frequently used models in 
the domain. Most researchers have built their own DL 
architecture to accomplish tasks in this category. Public 
transportation demand and traffic flow prediction tasks 
have generally been done by either CNN or hybrid CNN 
models.

• Visual recognition tasks: CNN has been the most com-
monly used DL model for visual recognition tasks, again 
because detection and tracking are efficient via CNN. 
Especially in traffic sign recognition tasks, the GTSRB 
dataset has been one of the most frequently used bench-
marks. Existing architecture such as ResNet, AlexNet, 
VGG, and YOLO have been used extensively, with the 

AlexNet and ResNet architectures being the most popular 
to build on. This can be attributed to the fact that visual 
recognition tasks are not limited to ITS, so research done 
in other domains can be utilized to accomplish ITS-
related visual recognition tasks.

Based on all the studies reviewed in the current paper, 
deep learning as an approach for addressing intelligent trans-
portation problems has undeniably achieved better results as 
compared to existing techniques. The major growth has been 
seen in the past 3 years, constituting more than 70% of all 
ITS-related DL research performed so far.

Future Work and Challenges

In recent years, DL methods have been able to achieve state-
of-the-art results in different visual recognition and traffic 
state prediction tasks. The majority of the visual recogni-
tion work such as vehicle and pedestrian detection, traffic 
sign recognition, etc. have focused on autonomous driving 
or in-vehicle cameras. However, there have also been a sig-
nificant number of overhead cameras installed by city traffic 
agencies and state Departments of Transportation that are 
mostly used for human-evaluated surveillance purposes. To 
date, there have been only a few studies that have focused 
on using these cameras for determining traffic volumes on 
freeways and arterials, traffic speed, and also for surveil-
lance purposes such as automatically detecting anomalies 
or traffic incidents (particularly at a large-scale, citywide 
level). Currently, the majority of traffic intersections rely on 
using loop detectors for vehicle counting and for developing 
actuated traffic signals. However, installation of these loop 
detectors is intrusive, in that road closures are required for 
installing such sensors. Cameras, on the other hand, can be 
used as a cheap, nonintrusive detection sensor technology 
for counting traffic volume in all directions as well as turn-
ing movements, the presence of pedestrians, etc., thereby 
facilitating smart traffic signal control strategies. However, 
two main challenges need to be considered for developing 
DL techniques able to handle the use of cameras as sensors. 
First, such methods need to be able to handle the large vol-
ume of data collected from hundreds or thousands of cam-
eras installed at a citywide or statewide level. Efficiently 
providing real-time or near-real-time inferencing from this 
large volume of data is currently one of the primary chal-
lenges of using cameras as sensors. Second, the methods 
developed need to be able to perform with minimal or no 
calibration such that they are feasible to apply and main-
tain at a large-scale level. Also, the ITS community needs 
to focus on creating more benchmark datasets for different 
research tasks related to DL applications. Although PeMS 
has been used as a popular dataset for traffic state prediction 
as shown in 1, the absence of any comparable benchmark 
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Table 6  Overview of papers using deep learning techniques for visual recognition tasks

Characteristic Model Dataset Experiment Results Baseline Results References Year

AC% Others AC% Others Model

Obstacle Detec-
tion

Fast RCNN KITTI PR:88.99 PR:88.01 CaffeNet Kim and Ghosh 
(2016)

2016

AE CNN CCD Stereo 
data

98.15 96.14 RCNN Nguyen et al. 
(2016)

2016

CNN Caltech Pedes-
trian

Missrate:54% Missrate:69 HOG + SVM He et al. (2017) 2017

SdAE + KNN Bahnhof data 91 81 DBN Dairi et al. 
(2018a)

2018

AE + SVM Malaga, Daim-
ler data

93.08 89.53 SVM Dairi et al. 
(2018b)

2018

CNN Video data PR:95 PR:90 CNN Li et al. 
(2018c)

2018

CNN Video data 96.8 Zhang et al. 
(2018e)

2018

CNN GMVRT/UCF-
ARG 

99.71 92.36 HOG + SVM Oliveira and 
Wehrmeister 
(2018)

2018

CNN Railway video 
data

mAP:89.53% mAP:88.61% SSD Ye et al. 
(2018a)

2018

CNN Caltech data Missrate:42.27 Missrate:60.95 MS-CNN Zhang et al. 
(2018f)

2018

CNN FCTD Camera PR:90.81 PR:70.61 SSD Zhou et al. 
(2019)

2019

DNN Video data 98 Rahman et al. 
(2019)

2019

Vehicle detec-
tion

DBN Far Infrared 
images

RL:93.9 RL:91.4 SVM Wang et al. 
(2016b)

2016

DBN Far Infrared 
images

RL:92.3 RL:91.8 DBN Cai et al. 
(2016)

2016

CNN Built from 
videos

Recognition-
rate:94.68 

Yao et al. 
(2016)

2017

HRPN + Boost 
Classifiers

Munich vehicle 
dataset

PR:89.2 PR:86.2 HRPN Tang et al. 
(2017)

2017

Deep CNN Recorded vehi-
cle data

Top 5:97.51% Luo et al. 
(2017)

2017

DNN LISA 2010 PR:81.10 PR:77.09 Faster RCNN Zhou et al. 
2018)

2018

DBN RNN KITTI 95.36 92.82 Encoded SVM Wang et al. 
(2018c)

2018

Scale Insensitive 
CNN

KITTI 89.6 89.02 MS-CNN Hu et al. (2018) 2018

CNN Video data 90.7 90.4 CNN(Resnet) Nezafat et al. 
(2019)

2019

Traffic sign 
recognition

DBN GTSRB 96.68 95.16 HOG Li and Yang 
(2016)

2016

HOG + DBM GTSDB 96.68 95.16 HOG Yang et al. 
(2015)

2016

CNN + SVM Built from 
videos

71.87 Lin et al. 
(2016)

2016

CNN + SVM Korea daylight PR:99.03 PR:73.49 CNN Lim et al. 
(2017)

2017
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Table 6  (continued)

Characteristic Model Dataset Experiment Results Baseline Results References Year

AC% Others AC% Others Model

CNN + KELM GTSRB 99.54 99.65 Ensemble 
CNN 

Zeng et al. 
(2016)

2017

CNN GTSDB 99.4 77.3 HOG Shustanov and 
Yakimov 
(2017)

2017

Fast BCNN GTSRB 99.01 99.12 BCNN Hu et al. 
(2017b)

2017

CNN MASTIF 97.78 98.97 R-LSTM Yuan et al. 
(2016)

2017

CNN + STN GTSRB 99.71 99.65 Ensemble 
CNN 

Arcos-Garcia 
et al. (2018)

2018

CNN GTSRB 99.75 99.67 CNN Natarajan et al. 
(2018)

2018

CNN SDTS PR:89.4 Lee and Kim 
(2018)

2018

CNN GTSDB PR:90.7 PR:84.20 HOG + SVM Li et al. 
(2018b)

2019

CNN HDR PR:94.24 PR:89.33 Guassian 
Mixture 

You et al. 
(2018)

2019

CNN GTSRB mAP:83.3% mAP:80.8% CNN Lin et al. 
(2019)

2019

Traffic light 
recognition

CNN LaRA data PR:96.9 PR:61.22% Image Proc Weber et al. 
(2016)

2016

CNN Bosch Traffic 
Lights

95.1 Behrendt et al. 
(2017)

2017

Faster RCNN Bosch Traffic 
Lights

mAP:20.40% Kim et al. 
(2018a)

2018

Lane Detection DNN Generated data Top 5:98.55% Gurghian et al. 
(2016)

2016

CNN Caltech 99.35 97.21 Image Proc Ye et al. 
(2018b)

2018

GBNN NGSIM 97.7 96.6 CNN Dou et al. 
(2018)

2019

CNN 98.37 Zhang et al. 
(2018g)

2019

Vehicle signal 
detection

HOG CNN Built from 
videos

99 Wang et al. 
(2016c)

2016

FRCN + RPN + F SYSU data 95.58 94.61 FRCN + RPN Chen et al. 
(2017b)

2017

Road surface 
detection

RNN + LSTM Built from 
videos

94.6 Park et al. 
(2018)

2018

Deep CNN Cambridge 100 82.6 Faster RCNN Hoang et al. 
(2019)

2019

Street scene 
labelling

S-CNN Camvid 53.2 47.4 FCN Wang et al. 
(2017b)

2018

Traffic scene 
segmentation

AE 78.8 76.4 SegNet Li et al. (2017) 2018
CNN + IAL Cityscape IoU:74.8 IoU:71.3 CNN Chen et al. 

(2018c)
2019

CNN + MFI Built from 
videos

91.7 81.1 CNN Cai et al. 
(2018)

2019
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dataset for traffic incident inference and ride-sharing stud-
ies has resulted in most of these studies using an original 
dataset. This has created difficulties in comparing different 
algorithms to determine the state-of-the-art model. Indeed, 
one of the reasons these research areas have still not been 
significantly explored using DL models is likely attribut-
able to their lack of a recognized benchmark dataset. While 
this study has shown that DL models have been successfully 
applied to traffic state prediction, vehicle ID and visual rec-
ognition tasks, significant improvements need to be made 
in the use of DL models for other research topics such as 
traffic incident inference, traffic signal timing, ride sharing, 
and other public transportation concerns. These topics have 
still not been fully explored using DL models and hence 
there remains significant scope for improving detection and 
prediction accuracy in these areas.

While DL models are becoming increasingly popu-
lar among researchers as the most effective classification 
method in visual recognition tasks in the ITS domain, pri-
vacy and security are extremely important. Therefore, the 
potential for adversarial attacks and thus the need for robus-
tifying DL models have been receiving greater attention. 

(Adversarial attacks in this domain are, in most of the cases, 
small changes in the input which are imperceptible to the 
human eye but make the classifier classify incorrectly.) For 
example, self-driving cars use DL algorithms to recognize 
traffic signs (Cireşan et al. 2012), other vehicles, and related 
objects for navigation purposes. However, if DL models fail 
to detect a stop sign due to slight modification in a couple 
pixels, this can create serious impedance to the adoption 
of self-driving cars. Adversarial attacks, are, therefore, an 
increasing area of focus in different DL application research 
topics such as natural language processing, computer vision, 
speech recognition, and malware detection (Najafabadi et al. 
2015; Collobert and Weston 2008; LeCun et al. 2010; Deng 
et al. 2013; Hardy et al. 2016; Tan et al. 2020).

Biggio et al. (2013) has called into question the advisabil-
ity of using neural networks and SVMs in security-sensitive 
applications, demonstrating the legitimacy of their concern 
by attacking some arbitrary PDF files and the MNIST data-
set using the gradient descent evasion attack algorithm that 
they proposed. Their suggested solution is employing regu-
larization terms in classifiers. In the same vein Szegedy et al. 
(2013) has shown that accuracy for perturbed input due to 

Table 6  (continued)

Characteristic Model Dataset Experiment Results Baseline Results References Year

AC% Others AC% Others Model

Crack detection CNN 3D pavement 
data

94.29 Wang et al. 
(2017c)

2017

CNN PaveVison3D 
data

PR:90.20 PR:90.13 CrackNet Zhang et al. 
(2018c)

2018

RCNN Cifar-10 data Kim et al. 
(2018b)

2018

Deep CNN Da Nang, 
Vietnam

92.08 81 DFP-Sobel Bang et al. 
(2019)

2018

Deep CNN Captured Data PR:84.7 PR:51.5 RF Hosseini et al. 
(2020)

2018

Deep CNN Railway data 97.8 Daneshgaran 
et al. (2019)

2019

Deep CNN Generated data, 
Seoul

PR:77.68 PR:25.14 SegNet Hosseini and 
Smadi (2020)

2019

Deep RNN Pavement Data 70.1 44 Resgression Hosseini 
(2020)

2020

Fig. 4  Hardware (left to right): NVIDIA Jetson Xavier (Jetson AGX 
Xavier Developer Kit 2020), NVIDIA Jetson TX2 (Jetson TX2 - 
Elinux.Org 2020), NVIDIA Jetson Nano (Jetson Nano Developer Kit 

2020), Raspberry (2020), Intel NCS 2 (Intel® Neural Compute Stick 
2 Product Specifications 2020)
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adversarial attacks is much less than that in the case of high 
magnitude noise. Another downside of DL classification 
methods is that adversarial attacks can be independent of 
the classification model, meaning that one can generate an 
adversarial attack that can fool a machine learning system 
without any access to the model. These are called black-box 
attacks, a concept first introduced by Papernot et al. (2016), 

whereas white-box attacks are when the attacker is aware 
of all relevant information such as the training dataset, the 
model, etc. For example, Madry et al. (2017) has used a 
projected gradient descent (PGD) form of attack, which is 
different from related work that has mostly used a form of 
attack involving the Fast Gradient Sign Method (FGSM). 
Also, Moosavi-Dezfooli et al. (2017) has come up with a 

Table 7  Detailed specifications of the popular edge-computing devices used for DL

Jetson Xavier Jetson TX2 Jetson Nano Raspberry Pi 3 B + Intel NCS 2

GPU 512-core Volta GPU @ 
with 64 Tensor Cores

NVIDIA Pascal, 256 
CUDAcores

128-core Maxwell Broadcom VideoCore 
IV

IntelR©MovidiusTM 
MyriadTMX VPU

CPU Octal-core NVIDIA 
Carmel ARMv8.2 CPU 
@ 2.26 GHz

HMP Dual Denver 
2/2 MB L2 + Quad 
ARMR©A57/2 MB L2

Quad-core ARM A57 
@1.43 GHz

4*ARMCortex-
A53,1.2 GHz

N.A

Memory 16 GB 256 bit 
LPDDR4137GB/s

8 GB 128 bit LPDDR4 
59.7 GB/s

4 GB 64-bit LPDDR4 
25.6 GB/s

1 GB LPDDR2 
(900 MHz)

N.A

Display 3 × eDP 1.4, DP 1.2, 
HDMI 2.0

2 × DSI, 2 × DP 1.2, 
HDMI2.0, eDP 1.4

HDMI 2.0, eDP 1.4 HDMI, DSI N.A

Data Storage 32 GB eMMC 5.1 32 GB eMMC, SDIO, 
SATA 

microSD microSD N.A

USB USB C USB 3, USB 2 USB 3, USB 2 USB 2 N.A
Connectivity 1 Gigabit Ethernet 1 Gigabit Ethernet, 

802.11acWLAN, 
Bluetooth

Gigabit Ethernet 100 Base Ethernet, 
2.4GHz802.11n wire-
less

USB 3

Mechanical 105 mm × 105 mm 50 mm × 87 mm 100 mm × 80 mm 56.5 mm × 85.60 mm 72.5 mm × 27 mm
Power 10 W, 15 W, 30 W 7.5 W 5–10 W 5 W 1 W
Price 1299 USD 599 USD 99 USD 35 USD 99 USD

Fig. 5  ITS vs DL models—a traffic character, b traffic incident, c vehicle ID, d traffic signal, e public transport, f visual recognition
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systematic way to compute universal attacks that are small 
image-agnostic perturbations that have a high probability 
of breaking most classifiers. Concurrent to research regard-
ing designing attacks and understanding the vulnerability 
of neural networks to them, researchers have studied dif-
ferent ways to defend against adversarial attacks to make 
DNNs robust to them. One of the most popular approaches 
to defense against adversarial attacks is to add the adver-
sarial set generated by any algorithm to the training set and 
then training the neural network with the new augmented 
dataset (Fawcett 2003). Goodfellow et al. (2014b) has shown 
that although this method works for specific perturbations, 
networks being trained by this method are not robust to all 
adversaries. For example, while working to mitigate the 
effect of adversaries using denoising autoencoders (DAEs), 
Gu and Rigazio (2014) discovered that the resulting DNN 
became even more 17 sensitive to perturbed input data.

Around the same time, Bastani et al. (2016) designed a 
metric to measure the robustness of networks and approxi-
mate this using the encoding of their robustness as a lin-
ear program to improve the robustness of the overall DNN. 
Defense against adversarial attacks can be looked at as a 
robust optimization problem, as Shaham et al. (2018) has 
shown that adversarial training using their proposed algo-
rithm results in a more robust network achieved by robust 
optimization theory which results in increasing the accuracy 
and robustness of the DNN. Also, authors in Esfandiari et al. 
(2019) achieved an algorithm which can provide comparable 
accuracies with State-Of-the-Art algorithms, and save a lot 
of computational overhead accompanied with computing 
worst case adversarial attacks. They achieved that by looking 
at the robust learning problem from a robust optimization 
lens as well. Another recent method to harden DNNs against 
adversarial attacks is defensive distillation which has shown 
outstanding preliminary results in being able to reduce the 
adversarial attack success rate from 95 to 0.5% (Papernot 
et al. 2016), but Carlini and Wagner (2017) defeated this 
method by designing a powerful attack able to break this 
defense mechanism. Thus, defense and design against adver-
sarial attacks remain an open problem in DL applications.

As mentioned above, most studies regarding the applica-
tion of DL models in transportation have paid no attention to 
robustness. However, in light of emerging malware attacks, 
the importance of defending models from such attacks 
has become increasingly important. These attacks usually 
destroy the input data by adding noise to them. These attacks 
can thus disturb the control unit by causing it to infer wrong 
information from the data, resulting in serious accidents. 
Also, another source of noise can be the weather conditions 
such as rainy or snowy conditions. Increasing the robustness 
of detection models will enable ITS models to operate better 
in severe conditions and thus improve their performance.

In summary, though much research is happening in vari-
ous domains of ITS using a variety of DL models, the focus 
of future research in DL for ITS should encompass the fol-
lowing: how to develop DL models able to efficiently use 
the heterogeneous ITS data generated, how to build robust 
detection models, and how to ensure security and privacy in 
the use of these models.
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