
Vol.:(0123456789)1 3

Journal of Big Data Analytics in Transportation (2019) 1:147–159
https://doi.org/10.1007/s42421-019-00010-y

ORIGINAL PAPER

GPU‑Enabled Visual Analytics Framework for Big Transportation
Datasets

Yaw Adu‑Gyamfi1 

Received: 1 July 2019 / Revised: 23 September 2019 / Accepted: 10 October 2019 / Published online: 24 October 2019
© Springer Nature Singapore Pte Ltd. 2019

Abstract
Transportation agencies rely on a variety of data sources for condition monitoring of their assets and making critical decisions
such as infrastructure investments and project prioritization. Recent exponential increase in the volumes of these datasets
has been causing significant information overload problems for data analysts; data curation process has increasingly become
time consuming as legacy CPU-based systems are reaching their limits for processing and visualizing relevant trends in these
massive datasets. There is a need for new tools that can consume these new datasets and provide analytics at rates resonant
with the speed of human thought. The current paper proposes a new framework that allows for both multidimensional visu-
alization and analytics to be carried seamlessly on large transportation datasets. The framework stores data in a massively
parallel database and leverages the immense computational power available in graphical processing units (GPUs) to carry out
data analytics and rendering on the fly via a Structured Query Language which interacts with the underlying GPU database.
A front-end is designed for near-instant rendering of queried results on simple charts and maps to enable decision makers
to drill down insights quickly. The framework is used to develop applications for analyzing big transportation datasets with
over 100 million rows. Performance benchmarking experiments conducted showed that the methodology developed is able
to provide real-time visual updates for big data in less than 100 ms. The performance of the developed framework was also
compared with CPU-based visual analytics platforms such as Tableau and D3.

Keywords  Big data analytics · Graphical processing units · Interactive visualiztion

Introduction

Visual analytics involves three main aspects: visualization,
interactivity and analytics. Whereas visualization provides
a meaningful display of data through charts and maps, inter-
activity enables users to explore data, ask different questions
and find trends which may lead to new knowledge. Analytics
on the other hand performs computations, aggregations and
data reductions. Traditional transportation data processing
pipelines treat visualization interactivity and analytics as
two distinct components. The reason for separating analyt-
ics from visualization interactivity is due to the fact that
web browsers, although have considerably improved in
their ability to render objects quickly, have very low com-
puting capacity in the face of big data. Data computations

are therefore carried out with high-performance clusters and
super computers, whereas visual interactions are carried
out on the browser. The separation of both components has,
however, created bottlenecks in the data curation process,
which tend to impede the seamless flow of information for
discovering new insights from data.

Transportation agencies are increasingly utilizing visual
analytics as part of the data curation process to explore
infinite paths of the “whats,” and “whys” behind their data.
Visual analytics enables them to generate different views of
data through a dynamic and iterative process for answer-
ing questions, identifying problems and making unexpected
discoveries (Nancy 2018). For visual analytics to be effec-
tive, the view of the data should update immediately with
each visual query. Heer and Shneiderman (2012) postu-
lated that an interactive, visual analytic system must be
able to respond to queries at rates resonant with the pace of
human thought. This will mean that the response rates for
visual systems should be not more than 0.1 s. A user’s flow
of thought is interrupted and is likely to lose the feeling

 *	 Yaw Adu‑Gyamfi
	 adugyamfiy@missouri.edu

1	 Department of Civil and Environmental Engineering,
University of Missouri, Columbia, USA

http://orcid.org/0000-0002-1924-9792
http://crossmark.crossref.org/dialog/?doi=10.1007/s42421-019-00010-y&domain=pdf

148	 Journal of Big Data Analytics in Transportation (2019) 1:147–159

1 3

of operating directly on data if it takes more than 1 s to
respond. For response delays longer than 10 s, users may
want to perform other tasks while waiting for the system
to respond. Valerie and Denis (2014) referred to this as the
three categories of responsiveness (0.1, 1 and 10 s).

ArcGIS, Tableau and D3 are arguably the predomi-
nant visual analytic platforms used by most transportation
agencies. The NHTSA (National Highway Traffic Safety
Administration), for example, uses Tableau, an analytical
visualization tool to reveal insights into speed related traffic
fatalities across the USA (NHTSA 2016). Other agencies
such as Virginia Department of Transportation (VDOT
2015), Bureau of Transportation Statistics (BTS) (2019)
and Iowa Department of Transportation (Adu-Gyamfi et al.
2016; IOWADOT 2018) use similar platforms for drilling
into the work zone, traffic and freight data, respectively.
The size of data being visualized on these platforms ranges
between several megabytes to a few gigabytes. Significant
latencies can be observed in view of updates when the size
of data being visualized exceeds 250 megabytes.

For relatively large datasets (5 GB or more), it is chal-
lenging, if not impossible, to achieve real-time visual
updates with conventional visual analytic platforms. Recent
developments aimed at handling big transportation data
leverages high-performance computing clusters in the back
end for all the heavy-lifting computations including data
ingestion, aggregation, integration and reduction (Badu-
Marfo et al. 2019; Islam and Sharma 2019). The filtered,
aggregated and lightweight data are subsequently pushed to
the front end for visual exploration. Although this approach
provides a practical means for taming the “burden” of big
data, it limits the power of visual analytics as fine details
are lost through a series of aggregation and filtering pro-
cesses. The goal of this paper is to develop a framework
that enables visualization, interactivity and analytics of big
datasets in the browser. The framework utilizes graphical
processing units (GPUs) to enable heavy-lifting computa-
tions such as data reduction, aggregation and filtering to
be carried out with user interactions from the front end.

The remainder of this paper is organized as follows: first,
we highlight related research and recent data visualiza-
tion trends in transportation. Next, the design framework
including the key components of the visual analytic platform
developed are explained. This section will also discuss the
database architecture and data processing pipeline used to
facilitate visualization of big datasets in the browser. The
following section will highlight the transportation visualiza-
tion example applications developed using our framework. In
later sections, we develop performance benchmarks for the
methodology and compare it to conventional techniques for
visualizing transportation datasets. Conclusions and recom-
mendations for future research are made in the last section.

Visual Analytic Trends in Transportation

The challenges of big data are driving transportation agen-
cies to explore new and effective methods of data visu-
alization that leads to actionable insights for transporta-
tion systems operation and management. Several visual
analytic pipelines have been developed to help overcome
some of the challenges in areas such as traffic operations,
incident management and transit performance monitor-
ing (Brennan et al. 2019; Chen et al. 2015a; Sharma et al.
2017).

Picozzi et al. (2013), for example, used an off-line pro-
cessing engine to store yearly traffic crash information in
a simple JSON format and precomputed spatiotemporal
features including crash frequency by location, average
traffic volumes per road segment, etc. The JSON files were
later integrated into an online processing engine which
provided an interactive visualization of the crash data
by using charts, maps and heatmaps developed using D3
Javascript library. This pipeline provides significantly high
levels of interactivity for the user. Different views of the
crash database can be explored interactively on the fly,
giving users the flexibility to answer different questions
about the data. A key limitation of this approach is its
inability to visualize large datasets. Significant latencies
are observed when the size of the JSON database exceeds
200 megabytes. Utilizing a much scalable database like
MongoDB to store the data could reduce these latencies.

In the area of transit, Abdullah et al. (2017) developed
a Web-based visualization for transit operation and perfor-
mance monitoring. The tool utilized MongoDB, a NoSQL
database to store bus trajectory data, precomputed per-
formance measures and then used an online GIS tool to
visualize output results. A key limitation of the pipeline
adopted by the authors is its inability to capture multi-
dimensional views of the data being visualized: single
charts or images typically provide answers to a handful of
questions. In addition, although users could interact with
the data via filtering and aggregation tools on the front
end, the charts produced had limited interactivity. This
could potentially limit users’ ability to drill down the data
and discovery patterns. Other variants of this visualiza-
tion pipeline have been proposed in Chen et al. (2015b)
and Sobral et al. (2019). Andrienko et al. (2017) explored
the use of the space time cube (STC) to visualize highly
complex, multidimensional data. In their proposed visu-
alization framework, STC is used to represent both spatial
and temporal aspects of vehicle trajectory and associated
events such as delays and crashes, in a single chart. The
interactivity of this visualization method is, however, lim-
ited to only zooming and panning operations. The tool can
generate different views of the visualized data; however, it

149Journal of Big Data Analytics in Transportation (2019) 1:147–159	

1 3

is unable to handle on-the-fly computations. Because STCs
use a single chart to visualize the different dimensions of
the data, they have a tendency to overload the user with
information.

Data Visualization with GPUs

The use of GPUs for scientific computing and visualization
is not new (Mi et al. 2016; Liu et al. 2013; Moritz et al.
2019; Mostak 2016). There are two main features that make
GPUs very attractive for handling big data. First, compared
to CPUs, they have many more cores with much finer levels
of parallelism for carrying out compute-intensive tasks. For
example, a typical graphics card today includes up to sev-
eral thousands of cores. Second, GPUs have a high memory
bandwidth, which enables them to access data at a speed
of about 100 GB per second. This feature is particularly
relevant for low-latency rendering or visualization of big
data. In spite of these features, GPU-based data visualiza-
tion suffers some drawbacks, which have led to low adoption
rates over the years. One of the key drawbacks of GPUs is its
memory. GPU memory is often limited compared to CPU.
Until recently, high-end GPUs could only boast of up to
6 GB RAM compared to 64–128 GB RAM on board CPUs.
Although GPU RAM has improved with the introduction of
P100s and V100s, they come at a steep price compared to
the memory of CPU systems. A second drawback of GPUs is
the low data transfer rate from CPU to GPU and vice versa.
Although this drawback is still persistent, the development
of Peripheral Component Interconnect (PCIs) bus has sig-
nificantly improved the speed to about 12 GB per second.

Different GPU-based architectures have been explored
for large data visualization. Mi et al. (2016) proposed a full-
blown, GPU-centric design for exploring large time series
and multidimensional datasets. In their design, both data
storage and processing are handled in the GPU memory. The
CPU is only used to generate user interactions or queries. By
avoiding data transfers from GPU to CPU, and leveraging
parallel processing for data aggregation and reduction, the
authors were able to process and visualize billions of time
series records at very low latencies. Liu et al. (2013) also
developed “imMens”, a browser-based visual analysis sys-
tem which utilized WebGL for both data processing and ren-
dering in the GPU. They achieved significantly high process-
ing speeds by using data reduction strategies such as binned
aggregation and sampling to process billions of records at a
sustained 50 frames per second brushing and interactivity.
Moritz et al. (2019), designed “Falcon”, a client-GPU-based
visualization platform designed for super-fast rendering of
big data. It achieved state-of-the-art big data processing and
rendering speeds by making principled trade-offs between
latency and resolution. The client is designed to handle up

to a million records with no latencies. For larger datasets,
processing is off-loaded to a GPU database system.

Design Framework

Most GPU-based visualization frameworks are designed
with the assumption that the GPU has enough memory
capacity to consume all the data being processed. As a
result, such designs do not have a systematic way of dealing
with datasets which are bigger than the GPU memory. Their
general performance degrades exponentially when their limit
is reached. Taking this limitation into consideration, our
visual analytics framework leverages a hybrid CPU–GPU
architecture which optimizes the use of GPU memory by
leveraging a cluster of CPUs to efficiently store and process
part of the data when GPU memory capacity is overutilized.
Our visualization framework is supported by OmniSci Core,
a massively parallel database (MapD) system used for in-
memory GPU data storage and processing (Mostak 2014).
MapD first splits row fragments of a data table into con-
stituent columns. Each column is then written to an appro-
priate chunk. Chunks are transferred to GPU when full to
avoid memory overhead. For data processing, all requests
are pushed through a query optimizer which determines the
quickest way to execute the query, finds appropriate com-
piled GPU code and then executes code to process data.
Results are compressed into bitmaps and transferred from
GPU to CPU over PCI for visualization.

Our visualization framework has two main aspects: (1)
hybrid CPU/GPU database for storing data and (2) data pro-
cessing and rendering engine on CPU/GPU. Figure 1 shows
the architecture of the visual analytics platform. The main
benefit of our design over conventional techniques is that by
leveraging the parallel architecture of GPU and CPU clusters
for data storage and processing, we are able to aggregate and
visualize big datasets on demand instead of precomputing.

CPU–GPU Storage Database

Due to the limitations of GPU memory, we adopted a
CPU–GPU architecture for storing data. On the GPU, we
leveraged a column-oriented relational database that stores
data in columns instead of rows. A decision tree matrix
shown in Fig. 2 is used to determine which columns in a
database stay in GPU memory and which ones are moved
into CPU memory. In general, columns that are frequently
accessed by a user are kept in the GPU. Other columns
with geospatial information such as latitude–longitudes and
timestamps are also ranked as high-priority columns for
GPU in-memory storage. On the CPU, a Cassandra (also
a column store) database cluster is used to store columns

150	 Journal of Big Data Analytics in Transportation (2019) 1:147–159

1 3

that are infrequently accessed. CPUs are more efficient at
processing text information; hence, as shown in the decision
matrix, string column types are usually stored on the CPU.

CPU–GPU Data Processing and Rendering

The key data processing routines carried out on this plat-
form include reductions, aggregations and filtering. Data
processing is typically triggered by a user interaction on
the front end. Once a query is submitted, a query opti-
mizer determines the right sequence to execute the query,
finds the location of queried columns (CPU or GPU), and
finally generates and compiles code to run the query. The
compiled codes typically run a map-reduce code on multi-
node Cassandra CPU cluster and a parallelized SQL code
on the GPU. Compiling codes during runtime can drasti-
cally slow down response rates for each query. To over-
come this bottleneck, for each database created, a code

compiler engine generates and pre-compiles both CPU
and GPU codes for all possible queries that could be sub-
mitted by a user. Hence, at runtime, the query optimizer
only needs to find the right codes and where to run them.
This design improves query performance significantly.

Processed data can be rendered and manipulated on the
front-end module. The visualization framework is able to
render millions of data points and produce complex visu-
alizations by leveraging the power of the back-end GPU
database architecture. Rendering all charts on the GPU
server is, however, not practical, because of memory limi-
tations. As a result, our design uses the browser with a
CPU back end to render simple charts such as histograms,
bars, lines and pie charts. By using React (React 2013),
to juxtapose both complex and simple charts in a single
dashboard, and the cross-filter model (Crossfilter 2012), to
filter across different charts, we are able to provide multi-
dimensional insights into large datasets.

Fig. 1   Design architecture for visual analytics

151Journal of Big Data Analytics in Transportation (2019) 1:147–159	

1 3

Point and Line Maps

OpenGL is used to render all geospatial datasets. It is able to
consume and render millions of points or lines on the GPU
server side within a fraction of a second. Rendered results
are compressed (to reduce the size of data transferred on the
network) and pushed to the front end as a rasterized PNG
image. On the front end, Mapbox GL is used to create an
interactive model of the PNG image by overlaying it on a
base map and adding functions such as zooming and filter-
ing. Because Mapbox GL uses WebGL for image rendering,
it is fast and introduces very low latencies in the front end.
Figure 3 shows a map rendering of 48 million data points
of real-time bus trajectories in the city of St Louis over a
1 month period.

MapGL enables manipulation of the map visualiza-
tion at the finest scale with different types of filters. This
is extremely relevant especially for large data exploration.
The platform has three main tools for filtering chart views:
circular, polyline and lassor. Figure 3b shows some examples
of the different types of map manipulation tools. MapGL is
also scale independent; hence, different zoom levels can be
used on the fly.

Binned Charts

The current framework is designed to render binned
charts for both categorical and continuous data types. For

categorical (and ordinal) data types, each distinct value is
treated as a bin, whereas for continuous data, data is grouped
into adjacent intervals over a continuous range. Depending
on the complexity of the visualization, binned charts could
be rendered on the GPU or CPU server side. The heatmap
shown in Fig. 4 for example displays traffic speed on an
interstate highway at 1-mile intervals over a 1 year period.
For a 270 mile stretch of road, this generates over a million
points even after binning. Rendering inside the browser will
negatively impact the ability to provide real-time interactiv-
ity. GPU server-side rendering is therefore a perfect fit for
this case. For simple charts requiring minimal data as shown
in Fig. 4, D3 (Bostock et al. 2011), a Javascript library which
uses HTML, SVG and CSS for rendering charts is used.

Temporal and One‑Dimensional Charts

Similar to simple binned charts, temporal and one-dimen-
sional values are rendered in the browser using D3. Example
line charts shown in Fig. 4 are typically used to visualize
temporal datasets. We designed them to have brush handles
which can be used in active views to narrow analysis within
a particular range. Temporal values can also be binned at dif-
ferent levels of granularity: yearly, monthly, daily or hourly.

Finally, we utilize React to build UI components that uses
the cross-filter model to apply filters across all the different
charts in the dashboard. This allows for seamless and intui-
tive analysis of multidimensional datasets. The following

Fig. 2   Decision flow chart for prioritizing which columns are stored on GPU vs CPU

152	 Journal of Big Data Analytics in Transportation (2019) 1:147–159

1 3

section shows examples of interactive visualizations tools
created with different transportation big data applications.

Transportation Visualization Examples

In this section, the visualization framework developed is
used to create applications for traffic mobility–safety opera-
tions and transit performance monitoring. We selected these
two areas of transportation because the volumes of data

generated by transit and traffic operations are so huge that
conventional, off-the-shelf visualization tools are unable to
provide fine-scale analysis of this data. These reasons make
these datasets perfect examples for evaluating the effective-
ness of our developed framework. The attributes of the data
used to create the applications are shown in Table 1. The
traffic data reports traffic speed and travel time information
for each segment of road in the state of Missouri. The data
is collected through a probe technology which acquires traf-
fic-related data from GPS-enabled devices such as vehicles

Fig. 3   Map rendering of bus locations in St Louis, Missouri

Fig. 4   Examples of binned and temporal one-dimensional charts created with D3

153Journal of Big Data Analytics in Transportation (2019) 1:147–159	

1 3

and cell phones. The transit data is obtained through the
General Transit Feed Specification (GTFS). It captures real-
time locations of busses and other attributes such as delays,
stops and routes. Archived crash and weather datasets were
ingested from transportation management system feeds into
a GPU–SQL and Cassandra database. The GPU database
writes data about 25,000 rows per second, while the Cas-
sandra database writes at 15,500 rows per second. Real-time
data ingestion is currently not supported by the framework.

Traffic Mobility–Safety Operations

This impact of road crashes on mobility or vice versa is
very important for estimating the cost of a crash or the
benefits of mobility improvements. To perform such
analysis, the mobility data (probe data) should first be

integrated with the crash data. A spatial conflation model
was developed to carry out this integration process. The
result is a mapping between probe segments and accident
locations. A detailed explanation of the conflation model is
beyond this paper. The integration of both datasets resulted
in a unified data with 246 million rows which was con-
sumed by the framework for visualization. A snapshot of
the interactive dashboard for exploring crash and mobility
data is shown in Fig. 5. The basemap is filtered to show
all crashes that occurred on a particular route (IS70). The
heatmap shows the impact of the crashes on mobility along
the selected route over time. The remaining row charts dis-
play statistics on the type of crashes and the road weather
conditions.

Table 1   . Traffic data Transit data Crash data Weather data

Duration 4 years 3 months 4 years 4 years
Data resolution 60 s 30 s Daily Daily
Data coverage Missouri state St. Louis Missouri state Missouri state
Data size 140 GB 65 GB 18 GB 200 MB
of columns 16 18 38 12
of rows 186 million 38 million 1.7 million 15,000

Fig. 5   Visual analytic dashboard for traffic mobility and safety

154	 Journal of Big Data Analytics in Transportation (2019) 1:147–159

1 3

Transit Performance Assessment

The transit visual analytics dashboard shown in Fig. 6 is
designed for assessing the performance of transit systems
such as bus lines, or evaluating accessibility issues related
to transit. The transit application also required integration
of both transit and mobility data. This enables the system

to compute reliability of bus routes based on traffic condi-
tions. The duration of data collected for this application is
3 months. The integrated data had approximately 98 million
rows. The map shows the trajectory of each bus line, colored
by the reliability of the route which is a function of actual
bus delays and the variance of route travel time. A circular
and lasso filter is used to select regions of interest from the

Fig. 6   Visual analytic dashboard for traffic performance assessment

155Journal of Big Data Analytics in Transportation (2019) 1:147–159	

1 3

map chart. The time chart is zoomed in to capture daily tran-
sit patterns for the filtered regions of interest.

A discussion on the speed at which the developed frame-
work enables interactivity, data size requirements and hard-
ware architectural designs follows in the next section.

Performance Evaluation

A series of experiments were conducted to develop bench-
marks and evaluate the performance of the visual analyt-
ics platform, and also develop benchmarks for comparative
analysis with other legacy visualization frameworks. In each
case study, the observed latency (measured as the time taken
to compute and render a display) is used as the key perfor-
mance measure. The datasets used in all experiments are a
subset of the data shown Table 1.

Computing Environment

Our experiments were run on a three-node cluster, each
equipped with Intel core i7 processor, 500 GB of SSD stor-
age and NVIDIA GeoForce GTX 1080Ti graphics cards
with 11 GB memory. For comparative analysis, a single
node, bare metal machine with eight cores, 64 GB of mem-
ory, 1 TB of SSD storage and an NVIDIA GTX 1080Ti
graphics card was used.

Data Size Effect

Our first experiment evaluates the influence of a number
of rows in a table on the analytic speed of the framework.
Figure 7a shows the latencies observed as we varied the
number of rows in the traffic data (see Table 1) from 5 to
100 million rows. In this experiment, we limited the number
of charts to only two: a map chart of road segment locations
and a row chart of road type. For each filter applied on the
row chart, we recorded the time taken to compute and render

the map display. From the figure, it can be observed that the
framework takes less than 0.1 s to respond to queries on a
table consisting of at most 100 million rows. The relation-
ship between compute and render speed as the size of data
increases is worth noting: for medium- to large-sized tables,
a significant proportion of the latencies are due to compute,
whereas for small-sized tables, the time taken to render a
display takes almost double the time to compute. Compared
to compute time, data rendering time tends to be more stable
even with increasing data size.

Chart complexity

Although we achieved very quick response rates in the pre-
ceding experiment, the benchmarks were obtained using
only two charts. The number and complexity of the charts
used in a dashboard could influence these rates signifi-
cantly. In this experiment, we create a dashboard with six of
the most complex charts: one map, one heatmap, two line
charts, one scatter plot and one histogram plot. We program-
matically brush the line charts and compute the time taken
to update the remaining four charts. Figure 7b shows the
average compute and render times for different data sizes.
Although the response rates are still appreciable, it can be
observed that the use of complex charts can increase the
response time by as much as 100 × on the same size of data.
Heatmaps tend to have the highest latencies; lagging behind
geographic maps by about 3 s. Increasing the bin sizes for
heatmaps could improve the response rates.

Query Complexity

The influence of the complexity of a query is another fac-
tor that was evaluated. We divide queries into three lev-
els of complexity: level 1 query is when a single filter is
applied to a single chart, level 2 applies two or more filters
to simple charts (row charts, histograms, table), and level
3 applies two or more queries to a mixture of simple and

Fig. 7   Influence of data size and chart complexity on query response rates

156	 Journal of Big Data Analytics in Transportation (2019) 1:147–159

1 3

complex charts. Figure 8 shows an example of a level 3
query. Filters are applied to the map, line, row and pie
charts one at a time. Figure 9 shows average response rates
for levels 2 and 3 type queries on the traffic, transit and
crash datasets shown in Table 1.

Comparative Analysis

In this final section, we compare the visual analytics
framework developed with two legacy CPU-based systems

Fig. 8   Query complexities: example of a level 3 query type

Fig. 9   Effect of query complex-
ity of response rate

0
100
200
300
400
500
600
700
800
900

1000000 5000000 10000000 25000000 50000000 10000000

La
te

nc
y

in
 M

ill
is

ec
on

ds

Number of Rows

Query Complexity Effect

level 1 level 2 level 3

157Journal of Big Data Analytics in Transportation (2019) 1:147–159	

1 3

used by transportation agencies: Tableau and D3 with
cross-filter. We re-created the visualization in Fig. 5 on
both frameworks and applied a mixture of level 1 and 2
queries to evaluate the response rates. It should be noted
that the data size for this experiment was reduced to 5
million rows due to the limitations of CPU memory. Also,
the proposed framework is implemented on a single GPU
server instead of a cluster. For D3, we had to support it
with MongoDB back end to process more than 1 million
rows of data. Table 2 shows query details and the resulting
display latencies. Note, since there was no programmatic
way to calculate the latencies for Tableau, we report only
instances where the response rates were more than 1 s.
From the table, it is evident that leveraging a CPU–GPU
architecture significantly improves the level of interactiv-
ity for large datasets. Tableau is slightly faster than D3
especially for complex queries.

The framework developed is also compared with a GPU-
based visual query platform called imMens, developed by
Liu et al. (2013). It is arguably one of the first frameworks
developed to enable real-time visual querying on large data-
sets. Because their implementation leverages the GPU only
for data rendering and reductions, it overcomes the laten-
cies due to data transfers between CPU and GPU. It ability
to integrate multivariate data tiles and parallel processing
significantly improves interactivity speed over large datasets.
To compare the two frameworks, we measure the latency in
chart rendering by the number of frames rendered per second
(frame rate), instead of the response time as used in preced-
ing experiments. This is because, in general, the differences
in response time for GPU queries tend to be very small, and
using the frame rate enables us to quantify the small differ-
ences in performance between the two frameworks.

We varied the size of data from 1 to 100 million rows.
Other elements such as chart types, number of charts and
query levels (1–3) were also varied. The results of our com-
parison are shown in Fig. 10. From the figure, when the
number of rows is less than 5 million, imMens tends to be
superior irrespective of the complexity of the query, the
number of charts or the chart type used. In fact, at 5 million
or less rows of data, imMens can render data at 10 fps faster

than the proposed framework. The response rate for the pro-
posed framework, however, exceeds 25 fps when the number
of rows of data is less than 10 million. Therefore, the gains
by imMens do not present any significant visual differences
during querying. Beyond 25 million rows of data, as the
complexity of queries and number of charts used increases,
the performance of imMens drops significantly compared
to the proposed framework. This trend might be due to the
fact that GPU memory for imMens is used up, while the

Table 2   Comparative analysis
of developed framework with
tableau and D3

Query complexity Chart types used Number of rows D3 + Cross-
filter + Mon-
goDB

Tableau CPU–GPU
framework

Level 1 Map, row and line charts < 50,000 – – –
100,000 – – –
500,000 1.2 s. 1.3 s. –

Level 2 Map, row, line, heatmap,
and scatter plot

< 500,000 5.6 s. 5 s. –
1000,000 12.15 s. 10 s. –
5,000,000 15.34 s. 13 s. 1.06 s.

Fig. 10   Comparison of the proposed visual analytic framework with
imMens

158	 Journal of Big Data Analytics in Transportation (2019) 1:147–159

1 3

proposed framework takes advantage of the CPU Cassandra
cluster to support the GPU. It is also important to note that
the number of charts used in the visualization has marginal
influence on the imMens compared to the proposed frame-
work. For level 1 type queries on data with 100 million rows,
imMens is able to respond to complex queries at 0.1 fps
compared to 2 fps by the proposed framework.

Concluding Remarks

The current paper outlines the development of large data
visual analytics framework for transportation systems. It lev-
eraged the parallel processing power of GPUs and the high
memory bandwidth of commodity CPU clusters to visual-
ize, interact and analyze big transportation datasets in the
browser at rates 100× faster than legacy CPU platforms.
The framework developed first ingests large tables as col-
umn chunks into a hybrid CPU–GPU database architecture.
A decision matrix is used to prioritize which columns are
stored in GPU or CPU memory. Highly parallelized codes
are used to process data simultaneously on CPU and GPU
after queries are initialized. The processing results are com-
pressed into image files and transferred to the front end for
visualization. The browser and back-end CPUs are used to
handle rendering of simple charts such as histogram, line
and row charts, whereas the GPU memory is dedicated to
rendering complex charts such as maps, heatmaps and scat-
ter plots.

A series of experiments were conducted to evaluate
the effect of data size, chart and query complexity on the
response rate or latency of the developed framework. For
tables with at most 100 million rows of data, we are able to
achieve query response rates less than 100 ms. As chart and
query complexities increase, GPU memory is overtasked,
leading to significant latencies in computations and ren-
dering on the front end. In some cases, observed latencies
increased to about 6000 ms for dashboards with multiple
heatmaps, geospatial maps and at most 100 million rows
of data. Our final experiments compared the methodology
with two conventional CPU platforms: D3 and Tableau. On
relatively smaller-sized datasets, the query response rates
for the developed framework was about 10× faster than both
CPU platforms.

A key limitation of the current framework is its inability
to handle non-structured data. It assumes that the data exists
in a tabular form and does not contain data types such as
video and images. Future studies will incorporate pipelines
for handling non-structured data. Also, the current visual
analytic framework is designed for analyzing batch-histori-
cal data. An extension for ingesting real-time ingestion and
visualization of data simultaneously will be investigated.

References

Abdullah K, Fabio M, Kaan O, Claudio TS (2017) Data visualization
tool for monitoring transit operation and performance. In: 5th
IEEE international conference on models and technologies for
intelligent transportation systems (MT-ITS)

Adu-Gyamfi YO, Sharma A, Knickerbocker S, Hawkins NR, Jackson
M (2016) A comprehensive data driven evaluation of wide area
probe data: opportunities and challenges. In: Civil, construction
and environmental engineering conference presentations and pro-
ceedings. 38. https​://lib.dr.iasta​te.edu/ccee_conf/38

Andrienko G, Andrienko N, Chen W, Maciejewski R, Zhao Y (2017)
Visual analytics for transportation: state of the art and further
research directions. IEEE Trans Intell Transp Syst. 18(8)

Badu-Marfo G, Farooq B, Patterson Z (2019) A perspective on the
challenges and opportunities for privacy-aware big transportation
data. J Big Data Anal Transp 1(1):1–23

Bostock M, Ogievetsky V, Heer J (2011) D3 data-driven documents.
IEEE Trans Visual Comput Graph 17(12):2301–2309

Brennan TM, Gurriell RA, Bechtel AJ, Venigalla MM (2019) Visual-
izing and evaluating interdependent regional traffic congestion and
system resiliency, a case study using big data from probe vehicles.
J Big Data Anal Transp 1(1):25–36

Bureau of Transportation Statistics (BTS) (2019) Overview of
US—North American Freight by Port, State and Mode. https​
://explo​re.dot.gov/t/BTS/views​/Dashb​oard_State​byPor​t/Overv​
iew?%3Aiid​=3&%3AisG​uestR​edire​ctFro​mVizp​ortal​=y&%3Aemb​
ed=y&%3Ausi​ngOld​HashU​rl=true. Accessed July 2019

Chen W, Guo F, Wang F (2015a) A survey of traffic data visualization.
IEEE Trans Intell Transp Syst. 16(6)

Chen L, Chowdhury A, Loulakis C, Ownes M, Thorisson H, Connelly
E, Tucker C, Lambert J (2015b) Visualization of large data sets
for project planning and prioritization on transportation corridors.
IEEE Systems and Information Engineering Design Symposium,
Charlottesville

Crossfilter (2012) Fast multidimensional filtering for coordinated
views. https​://dc-js.githu​b.io/dc.js/

Heer J, Shneiderman B (2012) Interactive dynamics for visual analysis.
Queue 10(2):30

IowaDOT (2018) Realtime analytics of transportation data. https​://react​
or.ctre.iasta​te.edu/iwz-crash​/. Accessed July 2019

Islam J, Sharma A (2019) A cyber infrastructure for big data transpor-
tation engineering. J Big Data Anal Transp 1(1):83–94

Liu Z, Jiang B, Heer J (2013) imMens: real-time visual querying of
big data. Comput Graph Forum. https​://doi.org/10.1111/cgf.12129​

Mi P, Sun M, Masiane M, Cao Y, North C (2016) AVIST: a GPU-
centric design for visual exploration of large multidimensional
datasets. Informatics. https​://doi.org/10.3390/infor​matic​s3040​018

Moritz D, Howe B, Heer J (2019) Falcon: balancing interactive latency
and resolution sensitivity for scalable linked visualizations. In:
Proceedings of the 2019 CHI conference on human factors in
computing systems, paper no. 694. ACM, NY, USA

Mostak T (2014) An overview of MapD (Massively Parallel Database).
http://www.small​ake.kr/wp-conte​nt/uploa​ds/2014/09/mapd_overv​
iew.pdf. Accessed July 2019

Mostak T (2016) Using GPUs to accelerate data discovery and visual
analytics. In: Future technologies conference, San Francisco, US,
December 2016

Nancy M (2018) Why visual analytics, Tableau White Paper. https​
://cdn2.hubsp​ot.net/hubfs​/23833​78/Table​au%20Whi​tepap​er%20
-%20Why​%20Vis​ual%20Ana​lytic​s.pdf?t=15209​04633​993.
Accessed July 2019

NHTSA (2016) Traffic fatalities in crashes involving speed. https​://
icsw.nhtsa​.gov/nhtsa​/fars/speed​ing_data_visua​lizat​ion/. Accessed
July 2019

https://lib.dr.iastate.edu/ccee_conf/38
https://explore.dot.gov/t/BTS/views/Dashboard_StatebyPort/Overview%3f%253Aiid%3d3%26%253AisGuestRedirectFromVizportal%3dy%26%253Aembed%3dy%26%253AusingOldHashUrl%3dtrue
https://explore.dot.gov/t/BTS/views/Dashboard_StatebyPort/Overview%3f%253Aiid%3d3%26%253AisGuestRedirectFromVizportal%3dy%26%253Aembed%3dy%26%253AusingOldHashUrl%3dtrue
https://explore.dot.gov/t/BTS/views/Dashboard_StatebyPort/Overview%3f%253Aiid%3d3%26%253AisGuestRedirectFromVizportal%3dy%26%253Aembed%3dy%26%253AusingOldHashUrl%3dtrue
https://explore.dot.gov/t/BTS/views/Dashboard_StatebyPort/Overview%3f%253Aiid%3d3%26%253AisGuestRedirectFromVizportal%3dy%26%253Aembed%3dy%26%253AusingOldHashUrl%3dtrue
https://dc-js.github.io/dc.js/
https://reactor.ctre.iastate.edu/iwz-crash/
https://reactor.ctre.iastate.edu/iwz-crash/
https://doi.org/10.1111/cgf.12129
https://doi.org/10.3390/informatics3040018
http://www.smallake.kr/wp-content/uploads/2014/09/mapd_overview.pdf
http://www.smallake.kr/wp-content/uploads/2014/09/mapd_overview.pdf
https://cdn2.hubspot.net/hubfs/2383378/Tableau%20Whitepaper%20-%20Why%20Visual%20Analytics.pdf%3ft%3d1520904633993
https://cdn2.hubspot.net/hubfs/2383378/Tableau%20Whitepaper%20-%20Why%20Visual%20Analytics.pdf%3ft%3d1520904633993
https://cdn2.hubspot.net/hubfs/2383378/Tableau%20Whitepaper%20-%20Why%20Visual%20Analytics.pdf%3ft%3d1520904633993
https://icsw.nhtsa.gov/nhtsa/fars/speeding_data_visualization/
https://icsw.nhtsa.gov/nhtsa/fars/speeding_data_visualization/

159Journal of Big Data Analytics in Transportation (2019) 1:147–159	

1 3

Picozzi M, Verdezoto N, Pouke M, Vatjus-Anttila J, Quigley A (2013)
Traffic visualization applying information visualization tech-
niques to enhance traffic planning. In: international conference
on computer graphics theory and applications and international
conference on information visualization theory and applications.
Barcelona, Spain. pp 554–557

React (2013) A javascript library for building user interfaces. https​://
react​js.org/. Accessed July 2019

Sharma A, Ahsani V, Rawat S (2017) Evaluation of opportunities and
challenges of using INRIX data for real-time performance moni-
toring and historical trend assessment. Reports and White Papers.
24. https​://lib.dr.iasta​te.edu/ccee_repor​ts/24 Transportation Sys-
tems, Journal of Sensors, 19(332)

Sobral T, Galvão T, Borges J (2019) Visualization of urban mobility
data from intelligent sensitivity for scalable linked visualizations.
In: CHI conference on human factors in computing systems pro-
ceedings, Glasgow, Scotland, UK. Source available at: https​://
squar​e.githu​b.io/cross​filte​r/. Accessed July 2019

Valerie L, Denis G (2014) Visual analytics for cyber security and intel-
ligence. J Def Model Simul 11(2):175–199

VDOT (2015) Crash analysis tools. https​://publi​c.table​au.com/profi​
le/tien.simmo​ns#!/vizho​me/Crash​tools​8_2/Main. Accessed July
2019

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://reactjs.org/
https://reactjs.org/
https://lib.dr.iastate.edu/ccee_reports/24
https://square.github.io/crossfilter/
https://square.github.io/crossfilter/
https://public.tableau.com/profile/tien.simmons#!/vizhome/Crashtools8_2/Main
https://public.tableau.com/profile/tien.simmons#!/vizhome/Crashtools8_2/Main

	GPU-Enabled Visual Analytics Framework for Big Transportation Datasets
	Abstract
	Introduction
	Visual Analytic Trends in Transportation
	Data Visualization with GPUs

	Design Framework
	CPU–GPU Storage Database
	CPU–GPU Data Processing and Rendering
	Point and Line Maps
	Binned Charts
	Temporal and One-Dimensional Charts

	Transportation Visualization Examples
	Traffic Mobility–Safety Operations
	Transit Performance Assessment
	Performance Evaluation
	Computing Environment
	Data Size Effect
	Chart complexity
	Query Complexity

	Comparative Analysis
	Concluding Remarks
	References

