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Abstract
Transportation agencies rely on a variety of data sources for condition monitoring of their assets and making critical decisions 
such as infrastructure investments and project prioritization. Recent exponential increase in the volumes of these datasets 
has been causing significant information overload problems for data analysts; data curation process has increasingly become 
time consuming as legacy CPU-based systems are reaching their limits for processing and visualizing relevant trends in these 
massive datasets. There is a need for new tools that can consume these new datasets and provide analytics at rates resonant 
with the speed of human thought. The current paper proposes a new framework that allows for both multidimensional visu-
alization and analytics to be carried seamlessly on large transportation datasets. The framework stores data in a massively 
parallel database and leverages the immense computational power available in graphical processing units (GPUs) to carry out 
data analytics and rendering on the fly via a Structured Query Language which interacts with the underlying GPU database. 
A front-end is designed for near-instant rendering of queried results on simple charts and maps to enable decision makers 
to drill down insights quickly. The framework is used to develop applications for analyzing big transportation datasets with 
over 100 million rows. Performance benchmarking experiments conducted showed that the methodology developed is able 
to provide real-time visual updates for big data in less than 100 ms. The performance of the developed framework was also 
compared with CPU-based visual analytics platforms such as Tableau and D3.
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Introduction

Visual analytics involves three main aspects: visualization, 
interactivity and analytics. Whereas visualization provides 
a meaningful display of data through charts and maps, inter-
activity enables users to explore data, ask different questions 
and find trends which may lead to new knowledge. Analytics 
on the other hand performs computations, aggregations and 
data reductions. Traditional transportation data processing 
pipelines treat visualization interactivity and analytics as 
two distinct components. The reason for separating analyt-
ics from visualization interactivity is due to the fact that 
web browsers, although have considerably improved in 
their ability to render objects quickly, have very low com-
puting capacity in the face of big data. Data computations 

are therefore carried out with high-performance clusters and 
super computers, whereas visual interactions are carried 
out on the browser. The separation of both components has, 
however, created bottlenecks in the data curation process, 
which tend to impede the seamless flow of information for 
discovering new insights from data.

Transportation agencies are increasingly utilizing visual 
analytics as part of the data curation process to explore 
infinite paths of the “whats,” and “whys” behind their data. 
Visual analytics enables them to generate different views of 
data through a dynamic and iterative process for answer-
ing questions, identifying problems and making unexpected 
discoveries (Nancy 2018). For visual analytics to be effec-
tive, the view of the data should update immediately with 
each visual query. Heer and Shneiderman (2012) postu-
lated that an interactive, visual analytic system must be 
able to respond to queries at rates resonant with the pace of 
human thought. This will mean that the response rates for 
visual systems should be not more than 0.1 s. A user’s flow 
of thought is interrupted and is likely to lose the feeling 
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of operating directly on data if it takes more than 1 s to 
respond. For response delays longer than 10 s, users may 
want to perform other tasks while waiting for the system 
to respond. Valerie and Denis (2014) referred to this as the 
three categories of responsiveness (0.1, 1 and 10 s).

ArcGIS, Tableau and D3 are arguably the predomi-
nant visual analytic platforms used by most transportation 
agencies. The NHTSA (National Highway Traffic Safety 
Administration), for example, uses Tableau, an analytical 
visualization tool to reveal insights into speed related traffic 
fatalities across the USA (NHTSA 2016). Other agencies 
such as Virginia Department of Transportation (VDOT 
2015), Bureau of Transportation Statistics (BTS) (2019) 
and Iowa Department of Transportation (Adu-Gyamfi et al. 
2016; IOWADOT 2018) use similar platforms for drilling 
into the work zone, traffic and freight data, respectively. 
The size of data being visualized on these platforms ranges 
between several megabytes to a few gigabytes. Significant 
latencies can be observed in view of updates when the size 
of data being visualized exceeds 250 megabytes.

For relatively large datasets (5 GB or more), it is chal-
lenging, if not impossible, to achieve real-time visual 
updates with conventional visual analytic platforms. Recent 
developments aimed at handling big transportation data 
leverages high-performance computing clusters in the back 
end for all the heavy-lifting computations including data 
ingestion, aggregation, integration and reduction (Badu-
Marfo et al. 2019; Islam and Sharma 2019). The filtered, 
aggregated and lightweight data are subsequently pushed to 
the front end for visual exploration. Although this approach 
provides a practical means for taming the “burden” of big 
data, it limits the power of visual analytics as fine details 
are lost through a series of aggregation and filtering pro-
cesses. The goal of this paper is to develop a framework 
that enables visualization, interactivity and analytics of big 
datasets in the browser. The framework utilizes graphical 
processing units (GPUs) to enable heavy-lifting computa-
tions such as data reduction, aggregation and filtering to 
be carried out with user interactions from the front end.

The remainder of this paper is organized as follows: first, 
we highlight related research and recent data visualiza-
tion trends in transportation. Next, the design framework 
including the key components of the visual analytic platform 
developed are explained. This section will also discuss the 
database architecture and data processing pipeline used to 
facilitate visualization of big datasets in the browser. The 
following section will highlight the transportation visualiza-
tion example applications developed using our framework. In 
later sections, we develop performance benchmarks for the 
methodology and compare it to conventional techniques for 
visualizing transportation datasets. Conclusions and recom-
mendations for future research are made in the last section.

Visual Analytic Trends in Transportation

The challenges of big data are driving transportation agen-
cies to explore new and effective methods of data visu-
alization that leads to actionable insights for transporta-
tion systems operation and management. Several visual 
analytic pipelines have been developed to help overcome 
some of the challenges in areas such as traffic operations, 
incident management and transit performance monitor-
ing (Brennan et al. 2019; Chen et al. 2015a; Sharma et al. 
2017).

Picozzi et al. (2013), for example, used an off-line pro-
cessing engine to store yearly traffic crash information in 
a simple JSON format and precomputed spatiotemporal 
features including crash frequency by location, average 
traffic volumes per road segment, etc. The JSON files were 
later integrated into an online processing engine which 
provided an interactive visualization of the crash data 
by using charts, maps and heatmaps developed using D3 
Javascript library. This pipeline provides significantly high 
levels of interactivity for the user. Different views of the 
crash database can be explored interactively on the fly, 
giving users the flexibility to answer different questions 
about the data. A key limitation of this approach is its 
inability to visualize large datasets. Significant latencies 
are observed when the size of the JSON database exceeds 
200 megabytes. Utilizing a much scalable database like 
MongoDB to store the data could reduce these latencies.

In the area of transit, Abdullah et al. (2017) developed 
a Web-based visualization for transit operation and perfor-
mance monitoring. The tool utilized MongoDB, a NoSQL 
database to store bus trajectory data, precomputed per-
formance measures and then used an online GIS tool to 
visualize output results. A key limitation of the pipeline 
adopted by the authors is its inability to capture multi-
dimensional views of the data being visualized: single 
charts or images typically provide answers to a handful of 
questions. In addition, although users could interact with 
the data via filtering and aggregation tools on the front 
end, the charts produced had limited interactivity. This 
could potentially limit users’ ability to drill down the data 
and discovery patterns. Other variants of this visualiza-
tion pipeline have been proposed in Chen et al. (2015b) 
and Sobral et al. (2019). Andrienko et al. (2017) explored 
the use of the space time cube (STC) to visualize highly 
complex, multidimensional data. In their proposed visu-
alization framework, STC is used to represent both spatial 
and temporal aspects of vehicle trajectory and associated 
events such as delays and crashes, in a single chart. The 
interactivity of this visualization method is, however, lim-
ited to only zooming and panning operations. The tool can 
generate different views of the visualized data; however, it 
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is unable to handle on-the-fly computations. Because STCs 
use a single chart to visualize the different dimensions of 
the data, they have a tendency to overload the user with 
information.

Data Visualization with GPUs

The use of GPUs for scientific computing and visualization 
is not new (Mi et al. 2016; Liu et al. 2013; Moritz et al. 
2019; Mostak 2016). There are two main features that make 
GPUs very attractive for handling big data. First, compared 
to CPUs, they have many more cores with much finer levels 
of parallelism for carrying out compute-intensive tasks. For 
example, a typical graphics card today includes up to sev-
eral thousands of cores. Second, GPUs have a high memory 
bandwidth, which enables them to access data at a speed 
of about 100 GB per second. This feature is particularly 
relevant for low-latency rendering or visualization of big 
data. In spite of these features, GPU-based data visualiza-
tion suffers some drawbacks, which have led to low adoption 
rates over the years. One of the key drawbacks of GPUs is its 
memory. GPU memory is often limited compared to CPU. 
Until recently, high-end GPUs could only boast of up to 
6 GB RAM compared to 64–128 GB RAM on board CPUs. 
Although GPU RAM has improved with the introduction of 
P100s and V100s, they come at a steep price compared to 
the memory of CPU systems. A second drawback of GPUs is 
the low data transfer rate from CPU to GPU and vice versa. 
Although this drawback is still persistent, the development 
of Peripheral Component Interconnect (PCIs) bus has sig-
nificantly improved the speed to about 12 GB per second.

Different GPU-based architectures have been explored 
for large data visualization. Mi et al. (2016) proposed a full-
blown, GPU-centric design for exploring large time series 
and multidimensional datasets. In their design, both data 
storage and processing are handled in the GPU memory. The 
CPU is only used to generate user interactions or queries. By 
avoiding data transfers from GPU to CPU, and leveraging 
parallel processing for data aggregation and reduction, the 
authors were able to process and visualize billions of time 
series records at very low latencies. Liu et al. (2013) also 
developed “imMens”, a browser-based visual analysis sys-
tem which utilized WebGL for both data processing and ren-
dering in the GPU. They achieved significantly high process-
ing speeds by using data reduction strategies such as binned 
aggregation and sampling to process billions of records at a 
sustained 50 frames per second brushing and interactivity. 
Moritz et al. (2019), designed “Falcon”, a client-GPU-based 
visualization platform designed for super-fast rendering of 
big data. It achieved state-of-the-art big data processing and 
rendering speeds by making principled trade-offs between 
latency and resolution. The client is designed to handle up 

to a million records with no latencies. For larger datasets, 
processing is off-loaded to a GPU database system.

Design Framework

Most GPU-based visualization frameworks are designed 
with the assumption that the GPU has enough memory 
capacity to consume all the data being processed. As a 
result, such designs do not have a systematic way of dealing 
with datasets which are bigger than the GPU memory. Their 
general performance degrades exponentially when their limit 
is reached. Taking this limitation into consideration, our 
visual analytics framework leverages a hybrid CPU–GPU 
architecture which optimizes the use of GPU memory by 
leveraging a cluster of CPUs to efficiently store and process 
part of the data when GPU memory capacity is overutilized. 
Our visualization framework is supported by OmniSci Core, 
a massively parallel database (MapD) system used for in-
memory GPU data storage and processing (Mostak 2014). 
MapD first splits row fragments of a data table into con-
stituent columns. Each column is then written to an appro-
priate chunk. Chunks are transferred to GPU when full to 
avoid memory overhead. For data processing, all requests 
are pushed through a query optimizer which determines the 
quickest way to execute the query, finds appropriate com-
piled GPU code and then executes code to process data. 
Results are compressed into bitmaps and transferred from 
GPU to CPU over PCI for visualization.

Our visualization framework has two main aspects: (1) 
hybrid CPU/GPU database for storing data and (2) data pro-
cessing and rendering engine on CPU/GPU. Figure 1 shows 
the architecture of the visual analytics platform. The main 
benefit of our design over conventional techniques is that by 
leveraging the parallel architecture of GPU and CPU clusters 
for data storage and processing, we are able to aggregate and 
visualize big datasets on demand instead of precomputing.

CPU–GPU Storage Database

Due to the limitations of GPU memory, we adopted a 
CPU–GPU architecture for storing data. On the GPU, we 
leveraged a column-oriented relational database that stores 
data in columns instead of rows. A decision tree matrix 
shown in Fig. 2 is used to determine which columns in a 
database stay in GPU memory and which ones are moved 
into CPU memory. In general, columns that are frequently 
accessed by a user are kept in the GPU. Other columns 
with geospatial information such as latitude–longitudes and 
timestamps are also ranked as high-priority columns for 
GPU in-memory storage. On the CPU, a Cassandra (also 
a column store) database cluster is used to store columns 
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that are infrequently accessed. CPUs are more efficient at 
processing text information; hence, as shown in the decision 
matrix, string column types are usually stored on the CPU.

CPU–GPU Data Processing and Rendering

The key data processing routines carried out on this plat-
form include reductions, aggregations and filtering. Data 
processing is typically triggered by a user interaction on 
the front end. Once a query is submitted, a query opti-
mizer determines the right sequence to execute the query, 
finds the location of queried columns (CPU or GPU), and 
finally generates and compiles code to run the query. The 
compiled codes typically run a map-reduce code on multi-
node Cassandra CPU cluster and a parallelized SQL code 
on the GPU. Compiling codes during runtime can drasti-
cally slow down response rates for each query. To over-
come this bottleneck, for each database created, a code 

compiler engine generates and pre-compiles both CPU 
and GPU codes for all possible queries that could be sub-
mitted by a user. Hence, at runtime, the query optimizer 
only needs to find the right codes and where to run them. 
This design improves query performance significantly.

Processed data can be rendered and manipulated on the 
front-end module. The visualization framework is able to 
render millions of data points and produce complex visu-
alizations by leveraging the power of the back-end GPU 
database architecture. Rendering all charts on the GPU 
server is, however, not practical, because of memory limi-
tations. As a result, our design uses the browser with a 
CPU back end to render simple charts such as histograms, 
bars, lines and pie charts. By using React (React 2013), 
to juxtapose both complex and simple charts in a single 
dashboard, and the cross-filter model (Crossfilter 2012), to 
filter across different charts, we are able to provide multi-
dimensional insights into large datasets.

Fig. 1   Design architecture for visual analytics
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Point and Line Maps

OpenGL is used to render all geospatial datasets. It is able to 
consume and render millions of points or lines on the GPU 
server side within a fraction of a second. Rendered results 
are compressed (to reduce the size of data transferred on the 
network) and pushed to the front end as a rasterized PNG 
image. On the front end, Mapbox GL is used to create an 
interactive model of the PNG image by overlaying it on a 
base map and adding functions such as zooming and filter-
ing. Because Mapbox GL uses WebGL for image rendering, 
it is fast and introduces very low latencies in the front end. 
Figure 3 shows a map rendering of 48 million data points 
of real-time bus trajectories in the city of St Louis over a 
1 month period.

MapGL enables manipulation of the map visualiza-
tion at the finest scale with different types of filters. This 
is extremely relevant especially for large data exploration. 
The platform has three main tools for filtering chart views: 
circular, polyline and lassor. Figure 3b shows some examples 
of the different types of map manipulation tools. MapGL is 
also scale independent; hence, different zoom levels can be 
used on the fly.

Binned Charts

The current framework is designed to render binned 
charts for both categorical and continuous data types. For 

categorical (and ordinal) data types, each distinct value is 
treated as a bin, whereas for continuous data, data is grouped 
into adjacent intervals over a continuous range. Depending 
on the complexity of the visualization, binned charts could 
be rendered on the GPU or CPU server side. The heatmap 
shown in Fig. 4 for example displays traffic speed on an 
interstate highway at 1-mile intervals over a 1 year period. 
For a 270 mile stretch of road, this generates over a million 
points even after binning. Rendering inside the browser will 
negatively impact the ability to provide real-time interactiv-
ity. GPU server-side rendering is therefore a perfect fit for 
this case. For simple charts requiring minimal data as shown 
in Fig. 4, D3 (Bostock et al. 2011), a Javascript library which 
uses HTML, SVG and CSS for rendering charts is used.

Temporal and One‑Dimensional Charts

Similar to simple binned charts, temporal and one-dimen-
sional values are rendered in the browser using D3. Example 
line charts shown in Fig. 4 are typically used to visualize 
temporal datasets. We designed them to have brush handles 
which can be used in active views to narrow analysis within 
a particular range. Temporal values can also be binned at dif-
ferent levels of granularity: yearly, monthly, daily or hourly.

Finally, we utilize React to build UI components that uses 
the cross-filter model to apply filters across all the different 
charts in the dashboard. This allows for seamless and intui-
tive analysis of multidimensional datasets. The following 

Fig. 2   Decision flow chart for prioritizing which columns are stored on GPU vs CPU
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section shows examples of interactive visualizations tools 
created with different transportation big data applications.

Transportation Visualization Examples

In this section, the visualization framework developed is 
used to create applications for traffic mobility–safety opera-
tions and transit performance monitoring. We selected these 
two areas of transportation because the volumes of data 

generated by transit and traffic operations are so huge that 
conventional, off-the-shelf visualization tools are unable to 
provide fine-scale analysis of this data. These reasons make 
these datasets perfect examples for evaluating the effective-
ness of our developed framework. The attributes of the data 
used to create the applications are shown in Table 1. The 
traffic data reports traffic speed and travel time information 
for each segment of road in the state of Missouri. The data 
is collected through a probe technology which acquires traf-
fic-related data from GPS-enabled devices such as vehicles 

Fig. 3   Map rendering of bus locations in St Louis, Missouri

Fig. 4   Examples of binned and temporal one-dimensional charts created with D3
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and cell phones. The transit data is obtained through the 
General Transit Feed Specification (GTFS). It captures real-
time locations of busses and other attributes such as delays, 
stops and routes. Archived crash and weather datasets were 
ingested from transportation management system feeds into 
a GPU–SQL and Cassandra database. The GPU database 
writes data about 25,000 rows per second, while the Cas-
sandra database writes at 15,500 rows per second. Real-time 
data ingestion is currently not supported by the framework.

Traffic Mobility–Safety Operations

This impact of road crashes on mobility or vice versa is 
very important for estimating the cost of a crash or the 
benefits of mobility improvements. To perform such 
analysis, the mobility data (probe data) should first be 

integrated with the crash data. A spatial conflation model 
was developed to carry out this integration process. The 
result is a mapping between probe segments and accident 
locations. A detailed explanation of the conflation model is 
beyond this paper. The integration of both datasets resulted 
in a unified data with 246 million rows which was con-
sumed by the framework for visualization. A snapshot of 
the interactive dashboard for exploring crash and mobility 
data is shown in Fig. 5. The basemap is filtered to show 
all crashes that occurred on a particular route (IS70). The 
heatmap shows the impact of the crashes on mobility along 
the selected route over time. The remaining row charts dis-
play statistics on the type of crashes and the road weather 
conditions.

Table 1   . Traffic data Transit data Crash data Weather data

Duration 4 years 3 months 4 years 4 years
Data resolution 60 s 30 s Daily Daily
Data coverage Missouri state St. Louis Missouri state Missouri state
Data size 140 GB 65 GB 18 GB 200 MB
# of columns 16 18 38 12
# of rows 186 million 38 million 1.7 million 15,000

Fig. 5   Visual analytic dashboard for traffic mobility and safety
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Transit Performance Assessment

The transit visual analytics dashboard shown in Fig. 6 is 
designed for assessing the performance of transit systems 
such as bus lines, or evaluating accessibility issues related 
to transit. The transit application also required integration 
of both transit and mobility data. This enables the system 

to compute reliability of bus routes based on traffic condi-
tions. The duration of data collected for this application is 
3 months. The integrated data had approximately 98 million 
rows. The map shows the trajectory of each bus line, colored 
by the reliability of the route which is a function of actual 
bus delays and the variance of route travel time. A circular 
and lasso filter is used to select regions of interest from the 

Fig. 6   Visual analytic dashboard for traffic performance assessment
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map chart. The time chart is zoomed in to capture daily tran-
sit patterns for the filtered regions of interest.

A discussion on the speed at which the developed frame-
work enables interactivity, data size requirements and hard-
ware architectural designs follows in the next section.

Performance Evaluation

A series of experiments were conducted to develop bench-
marks and evaluate the performance of the visual analyt-
ics platform, and also develop benchmarks for comparative 
analysis with other legacy visualization frameworks. In each 
case study, the observed latency (measured as the time taken 
to compute and render a display) is used as the key perfor-
mance measure. The datasets used in all experiments are a 
subset of the data shown Table 1.

Computing Environment

Our experiments were run on a three-node cluster, each 
equipped with Intel core i7 processor, 500 GB of SSD stor-
age and NVIDIA GeoForce GTX 1080Ti graphics cards 
with 11 GB memory. For comparative analysis, a single 
node, bare metal machine with eight cores, 64 GB of mem-
ory, 1 TB of SSD storage and an NVIDIA GTX 1080Ti 
graphics card was used.

Data Size Effect

Our first experiment evaluates the influence of a number 
of rows in a table on the analytic speed of the framework. 
Figure 7a shows the latencies observed as we varied the 
number of rows in the traffic data (see Table 1) from 5 to 
100 million rows. In this experiment, we limited the number 
of charts to only two: a map chart of road segment locations 
and a row chart of road type. For each filter applied on the 
row chart, we recorded the time taken to compute and render 

the map display. From the figure, it can be observed that the 
framework takes less than 0.1 s to respond to queries on a 
table consisting of at most 100 million rows. The relation-
ship between compute and render speed as the size of data 
increases is worth noting: for medium- to large-sized tables, 
a significant proportion of the latencies are due to compute, 
whereas for small-sized tables, the time taken to render a 
display takes almost double the time to compute. Compared 
to compute time, data rendering time tends to be more stable 
even with increasing data size.

Chart complexity

Although we achieved very quick response rates in the pre-
ceding experiment, the benchmarks were obtained using 
only two charts. The number and complexity of the charts 
used in a dashboard could influence these rates signifi-
cantly. In this experiment, we create a dashboard with six of 
the most complex charts: one map, one heatmap, two line 
charts, one scatter plot and one histogram plot. We program-
matically brush the line charts and compute the time taken 
to update the remaining four charts. Figure 7b shows the 
average compute and render times for different data sizes. 
Although the response rates are still appreciable, it can be 
observed that the use of complex charts can increase the 
response time by as much as 100 × on the same size of data. 
Heatmaps tend to have the highest latencies; lagging behind 
geographic maps by about 3 s. Increasing the bin sizes for 
heatmaps could improve the response rates.

Query Complexity

The influence of the complexity of a query is another fac-
tor that was evaluated. We divide queries into three lev-
els of complexity: level 1 query is when a single filter is 
applied to a single chart, level 2 applies two or more filters 
to simple charts (row charts, histograms, table), and level 
3 applies two or more queries to a mixture of simple and 

Fig. 7   Influence of data size and chart complexity on query response rates
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complex charts. Figure 8 shows an example of a level 3 
query. Filters are applied to the map, line, row and pie 
charts one at a time. Figure 9 shows average response rates 
for levels 2 and 3 type queries on the traffic, transit and 
crash datasets shown in Table 1.

Comparative Analysis

In this final section, we compare the visual analytics 
framework developed with two legacy CPU-based systems 

Fig. 8   Query complexities: example of a level 3 query type

Fig. 9   Effect of query complex-
ity of response rate
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used by transportation agencies: Tableau and D3 with 
cross-filter. We re-created the visualization in Fig. 5 on 
both frameworks and applied a mixture of level 1 and 2 
queries to evaluate the response rates. It should be noted 
that the data size for this experiment was reduced to 5 
million rows due to the limitations of CPU memory. Also, 
the proposed framework is implemented on a single GPU 
server instead of a cluster. For D3, we had to support it 
with MongoDB back end to process more than 1 million 
rows of data. Table 2 shows query details and the resulting 
display latencies. Note, since there was no programmatic 
way to calculate the latencies for Tableau, we report only 
instances where the response rates were more than 1 s. 
From the table, it is evident that leveraging a CPU–GPU 
architecture significantly improves the level of interactiv-
ity for large datasets. Tableau is slightly faster than D3 
especially for complex queries.

The framework developed is also compared with a GPU-
based visual query platform called imMens, developed by 
Liu et al. (2013). It is arguably one of the first frameworks 
developed to enable real-time visual querying on large data-
sets. Because their implementation leverages the GPU only 
for data rendering and reductions, it overcomes the laten-
cies due to data transfers between CPU and GPU. It ability 
to integrate multivariate data tiles and parallel processing 
significantly improves interactivity speed over large datasets. 
To compare the two frameworks, we measure the latency in 
chart rendering by the number of frames rendered per second 
(frame rate), instead of the response time as used in preced-
ing experiments. This is because, in general, the differences 
in response time for GPU queries tend to be very small, and 
using the frame rate enables us to quantify the small differ-
ences in performance between the two frameworks.

We varied the size of data from 1 to 100 million rows. 
Other elements such as chart types, number of charts and 
query levels (1–3) were also varied. The results of our com-
parison are shown in Fig. 10. From the figure, when the 
number of rows is less than 5 million, imMens tends to be 
superior irrespective of the complexity of the query, the 
number of charts or the chart type used. In fact, at 5 million 
or less rows of data, imMens can render data at 10 fps faster 

than the proposed framework. The response rate for the pro-
posed framework, however, exceeds 25 fps when the number 
of rows of data is less than 10 million. Therefore, the gains 
by imMens do not present any significant visual differences 
during querying. Beyond 25 million rows of data, as the 
complexity of queries and number of charts used increases, 
the performance of imMens drops significantly compared 
to the proposed framework. This trend might be due to the 
fact that GPU memory for imMens is used up, while the 

Table 2   Comparative analysis 
of developed framework with 
tableau and D3

Query complexity Chart types used Number of rows D3 + Cross-
filter + Mon-
goDB

Tableau CPU–GPU 
framework

Level 1 Map, row and line charts < 50,000 – – –
100,000 – – –
500,000 1.2 s. 1.3 s. –

Level 2 Map, row, line, heatmap, 
and scatter plot

< 500,000 5.6 s. 5 s. –
1000,000 12.15 s. 10 s. –
5,000,000 15.34 s. 13 s. 1.06 s.

Fig. 10   Comparison of the proposed visual analytic framework with 
imMens
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proposed framework takes advantage of the CPU Cassandra 
cluster to support the GPU. It is also important to note that 
the number of charts used in the visualization has marginal 
influence on the imMens compared to the proposed frame-
work. For level 1 type queries on data with 100 million rows, 
imMens is able to respond to complex queries at 0.1 fps 
compared to 2 fps by the proposed framework.

Concluding Remarks

The current paper outlines the development of large data 
visual analytics framework for transportation systems. It lev-
eraged the parallel processing power of GPUs and the high 
memory bandwidth of commodity CPU clusters to visual-
ize, interact and analyze big transportation datasets in the 
browser at rates 100× faster than legacy CPU platforms. 
The framework developed first ingests large tables as col-
umn chunks into a hybrid CPU–GPU database architecture. 
A decision matrix is used to prioritize which columns are 
stored in GPU or CPU memory. Highly parallelized codes 
are used to process data simultaneously on CPU and GPU 
after queries are initialized. The processing results are com-
pressed into image files and transferred to the front end for 
visualization. The browser and back-end CPUs are used to 
handle rendering of simple charts such as histogram, line 
and row charts, whereas the GPU memory is dedicated to 
rendering complex charts such as maps, heatmaps and scat-
ter plots.

A series of experiments were conducted to evaluate 
the effect of data size, chart and query complexity on the 
response rate or latency of the developed framework. For 
tables with at most 100 million rows of data, we are able to 
achieve query response rates less than 100 ms. As chart and 
query complexities increase, GPU memory is overtasked, 
leading to significant latencies in computations and ren-
dering on the front end. In some cases, observed latencies 
increased to about 6000 ms for dashboards with multiple 
heatmaps, geospatial maps and at most 100 million rows 
of data. Our final experiments compared the methodology 
with two conventional CPU platforms: D3 and Tableau. On 
relatively smaller-sized datasets, the query response rates 
for the developed framework was about 10× faster than both 
CPU platforms.

A key limitation of the current framework is its inability 
to handle non-structured data. It assumes that the data exists 
in a tabular form and does not contain data types such as 
video and images. Future studies will incorporate pipelines 
for handling non-structured data. Also, the current visual 
analytic framework is designed for analyzing batch-histori-
cal data. An extension for ingesting real-time ingestion and 
visualization of data simultaneously will be investigated.
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