
Vol.:(0123456789)1 3

Journal of Big Data Analytics in Transportation (2019) 1:83–94
https://doi.org/10.1007/s42421-019-00006-8

ORIGINAL PAPER

A Cyberinfrastructure for Big Data Transportation Engineering

Md Johirul Islam1 · Anuj Sharma1 · Hridesh Rajan1

Received: 27 July 2018 / Revised: 4 April 2019 / Accepted: 9 April 2019 / Published online: 9 May 2019
© Springer Nature Singapore Pte Ltd. 2019

Abstract
Big data-driven transportation engineering has the potential to improve utilization of road infrastructure, decrease traf-
fic fatalities, improve fuel consumption, and decrease construction worker injuries, among others. Despite these benefits,
research on big data-driven transportation engineering is difficult today due to the computational expertise required to get
started. This work proposes BoaT, a transportation-specific programming language, and its big data infrastructure that is
aimed at decreasing this barrier to entry. Our evaluation, that uses over two dozen research questions from six categories,
shows that research is easier to realize as a BoaT computer program, an order of magnitude faster when this program is run,
and exhibits 12–14× decrease in storage requirements.

Keywords Big data · Domain-specific language · Cyberinfrastructure

Introduction

The potential and challenges of leveraging big data in trans-
portation has long been recognized (Adu-Gyamfi et al. 2017;
Barai 2003; Chakraborty et al. 2017; Chen and Zhang 2014;
Fan et al. 2014; Huang et al. 2016; Jagadish et al. 2014;
Kitchin 2014; Laney 2001; Liu et al. 2016; Lv et al. 2015;
Seedah et al. 2015; Wang et al. 2017; Zhang et al. 2011). For
example, researchers have shown that big data-driven trans-
portation engineering can help reduce congestions, fatalities,
and make building transportation applications easier (Barai
2003; Huang et al. 2016; Zhang et al. 2011). The availability
of open transportation data that are accessible, e.g. on the
web under a permissive license, has the potential to fur-
ther accelerate the impact of big data-driven transportation
engineering.

Despite this incredible potential, harnessing big data in
transportation for research remains difficult. To utilize big
data, expertise is needed along each of the five steps of a
typical data pipeline namely data acquisition; information

extraction and cleaning; data integration, aggregation, and
representation; modeling and analysis; and interpretation
(Jagadish et al. 2014). First three steps are further compli-
cated by the heterogeneity of data from multiple sources
(Seedah et al. 2015), e.g. speed sensors, weather station, and
national highway authority. A scientist must understand the
peculiarities of the data sources to develop a data acquisition
mechanism, clean data coming from multiple sources, and
integrate data from multiple sources. Modeling and analysis
are complicated by the volume of the data. For example, a
dataset of speed measurements from a commercial provider
for Iowa for a single day can be in multiple GBs, exceeding
the limits of a single machine. Analyses that aim to compute
trends over multiple years require storing, and computing
over, tens of TBs of just speed sensor data.

A possible solution could be to use the big data technolo-
gies like Hadoop and Apache Spark running over a distrib-
uted cluster. Using a distributed cluster with an adequate
number of nodes, problems related to the storage and time of
computation can be addressed. But these big data technolo-
gies are not so easy to use. Getting started requires techni-
cal expertise to set up the infrastructure, efficient design of
data schema, data acquisition strategy from multiple sources,
high level of programming skills, adequate knowledge of
distributed computing models, and a lot more efficiency in
writing distributed computer programs which is significantly
different than writing a sequential computer program in Mat-
lab, C, or Java. The analysis of big data in transportation

 * Md Johirul Islam
 mislam@iastate.edu

 Anuj Sharma
 anujs@iastate.edu

 Hridesh Rajan
 hridesh@iastate.edu

1 Iowa State University, Ames, IA, USA

http://orcid.org/0000-0003-0034-9395
http://crossmark.crossref.org/dialog/?doi=10.1007/s42421-019-00006-8&domain=pdf

84 Journal of Big Data Analytics in Transportation (2019) 1:83–94

1 3

is almost an elite job due to these barriers. The research
groups interested in big data-driven transportation engineer-
ing have to hire technically skilled people or train their own
staff members to use these highly sophisticated technologies.
Both approaches incur additional costs.

This work describes a transportation-specific big data
programming language and its infrastructure aimed at solv-
ing these problems. We call this language BoaT (Boa (Dyer
et al. 2015) for Transportation). The BoaT infrastructure
provides built-in transportation data schemas and converters
from existing data sources. A notable advantage of BoaT’s
data schema is a significant reduction in storage require-
ments. A transportation researcher or engineer can express
their queries as simple sequential-looking BoaT programs.
The BoaT infrastructure automatically converts a BoaT pro-
gram to a distributed executable code without sacrificing
correctness in the conversion process. This also often results
in an order of magnitude improvement in performance,
which is the third advantage of our approach. The BoaT
infrastructure provides built-in transportation data schemas
and converters from the existing data sources. The four nota-
ble advantages of BoaT are (a) significant reduction in stor-
age requirement using specially designed data schema, (b) a
transportation researcher or engineer can express their que-
ries as simple sequential-looking BoaT programs, (c) auto-
conversion of sequential programs to parallelly executable
programs without sacrificing correctness in the conversion
process, and (d) the number of lines of code significantly
reduces thus reducing the debugging time for the program.
Owing to these advantages, even users that are not experts in
distributed computing can write these BoaT programs that
lower the aforementioned barrier to entry.

The remainder of this article describes the BoaT approach
and explores its advantages. First, in the next section, we
motivate the approach via a small example. Next, we com-
pare and contrast this work with related ideas. Then, we
describe the salient technical aspects of the technique. Next,
we evaluate the usability, and scalability of the technique,
show some use case examples that we have realized, and
highlight the benefits of our storage strategy. Finally, we
conclude.

Motivation

Transportation agencies collect a lot of data to make critical
data-driven decision for Intelligent Transportation System
(ITS). There has been a lot of initiative to make data avail-
able for researchers to spur innovation (US Department of
Transportation 2017). But the analysis of this ultra-large-
scale data is a difficult task; given the technology needed
to analyze the data is still a luxury (Biuk-Aghai et al.
2016). These data come from multiple sources with a lot of

varieties, velocities, and volumes. Given the availability of
a variety of sources of data, technically skilled people also
often face challenges due to the kinds of input, data access
patterns, type of parallelism, etc. (Kambatla et al. 2014). The
need to write complex programs can be a barrier for domain
researchers to take the advantage of this large-scale data. To
illustrate the challenges, consider a sample question “Which
counties have highest and lowest average temperature in a
day?” A query like this is simple when the data are already
provided by county; but in case we have data for every 5 min
for every square mile of Iowa for last 10 years, the query
becomes hard to solve in Matlab or even R and could poten-
tially run for a long time in Java. Answering this question
in Java would require knowledge of (at a minimum) read-
ing the weather data from the data provider service, finding
the locations and county information of different grids from
some other APIs, additional filtering code, controller logic,
etc. It would need upwards of 100 lines of code and require
knowledge of at least 2 complex libraries and 2 complex data
structures. A heavily elided example of such a program is
shown in Fig. 1, left column.

This program assumes that the user has manually down-
loaded the required weather data, preprocessed the data, and
written to a CSV file. It then processes the data and collects
weather information in different grids at different times of
the day. Next, the county information of each grid is found
from another API. Finally, the data are stored in some data
structures for further computation. The presented program
is sequential and will not scale as the data size grows. One
could write a parallel computation program which would be
even more complex.

We propose a domain-specific programming language
called BoaT to solve these problems. We intend to lower
the barrier to entry and enable the analysis of ultra-large-
scale transportation data for answering more critical data-
intensive research challenges. The main features of BoaT
data analysis originated from Dean and Ghemawat (2008),
Dyer et al. (2015), Pike et al. (2005), and Urso (2012). To
this, we add built-in transportation-specific data types and
functions for analysis of large-scale transportation data,
schema, and infrastructure to preprocess data automatically
and store efficiently. The main components come as an inte-
grated framework that provides a domain-specific language
for transportation data analysis, a data processing unit, and
a storage strategy.

Related Work

Due to the rapid growth of data-driven Intelligent trans-
portation system (ITS) (El Faouzi et al. 2011; Zheng 2015)
applications and smart cities, the necessity of harnessing the
power of ultra-large-scale data is becoming more important

85Journal of Big Data Analytics in Transportation (2019) 1:83–94

1 3

Fi
g.

 1

Pr
og

ra
m

s f
or

 a
ns

w
er

in
g

“W
hi

ch
 c

ou
nt

rie
s h

av
e

hi
gh

es
t a

nd
 lo

w
es

t a
ve

ra
ge

 te
m

pe
ra

tu
re

 in
 a

 d
ay

?”
 a

nd
 th

e
pe

rfo
rm

an
ce

 w
ith

 th
e

si
ze

 o
f d

at
a

86 Journal of Big Data Analytics in Transportation (2019) 1:83–94

1 3

today than any time before. Though a lot of works are done
on data-driven smart city design and big data analysis, try-
ing to tackle the challenges of transportation big data from
the domain-specific language perspective is few. In other
domains, a lot of advantages are being taken from big data
using domain-specific programming languages. For exam-
ple, Dyer et al. (2015) used the early version of Boa to ana-
lyze ultra-large-scale software repository data (data from
repositories like GitHub). However, Dyer et al.’s work is
limited to software repositories whereas BoaT built on top
of Boa provides the support of transportation data analysis
at ultra-large scale, transportation domain types and an infra-
structure of efficient data storage from a variety of transpor-
tation data sources.

There have been some efforts to support domain types
and computation in transportation in an integrated modeling
tool called UrbanSim (Borning et al. 2008a, b; Waddell et al.
2003). UrbanSim is an integrated modeling environment
that provides a modeling language which provides access
to urban data for finding models to coordinate transporta-
tion and land usage (Waddell et al. 2003). While Urban-
Sim focuses on simulation, BoaT is for analyzing gathered
data. Furthermore, supporting analysis of large-scale data
has not been the focus of UrbanSim, whereas BoaT focuses
on providing scalable support for data analysis. Simmhan
et al. (2013) provide a cloud-based software platform for
data analytics in Smart Grids, whereas BoaT is focused on
transportation data. Du et al. (2016) proposed City Traf-
fic Data-as-a-Service (CTDaaS). They have used service-
oriented architecture to provide access to data, but do not
focus on the scalable analysis of big data.

In general, the current approaches using big data analytics
are either using costly cloud computation or have custom
build design for solving specific problems using open source
solution with on-premise servers. Works such as Yang and

Ma (2015) and Wang and Li (2016) highlight the challenges
of doing big data-driven transportation engineering today.
For example, Yang and Ma (2015) use HDFS, MLlib, and
cluster computing to solve their problems, essentially like
our motivating example. Each of these technologies creates
its own barrier to entry. There is a need for a framework that
would overcome the barrier to use big data analytics, provide
a domain-specific language, reduce the efforts of data pre-
processing, and will be available at a mass scale.

BoaT: Design and Implementation

To address the challenges of easy and efficient analysis of
big transportation data, we propose a transportation-specific
programming language and data infrastructure. The lan-
guage provides simple syntax, domain-specific types, and
massive abstractions. An overview of the infrastructure is
shown in Fig. 2.

The user writes the BoaT program and submits it to
the BoaT infrastructure. The BoaT program is taken by
the infrastructure and converted by a specialized compiler
that we have written to produce an executable that can be
deployed in a distributed Hadoop cluster. This executable
is run automatically on curated data to produce output for
the user.

To illustrate, we consider the question in section “Moti-
vation” “Which counties have the highest and the lowest
average temperatures in a day?” A BoaT program to answer
this question is shown in Fig. 1, right column. Line 1 of the
program says that it takes a County as input. So, if there are
n counties in the dataset, the statements on lines 4–16 of this
program would be automatically run in parallel by the BoaT
infrastructure (once for each county). Lines 2 and 3 of this
program declare output variables. These write only output

Fig. 2 An overview of BoaT,
showing workflow of a BoaT
user and BoaT infrastructure

87Journal of Big Data Analytics in Transportation (2019) 1:83–94

1 3

variables that are shared between all parallel tasks created
by the BoaT infrastructure and the infrastructure manages
the details of effectively interleaving and maximizing perfor-
mance. Line 2 says that this output variable will collect val-
ues written to it and compute the maximum of those values.
This is called aggregation in BoaT and several other kinds
of aggregation algorithms are supported as shown in Fig. 4.
Line 15 shows an example of writing to that output variable.
Lines 4–16 are run sequentially for each county. They look
into each grid of the county (lines 6, 7, 14) to find tem-
perature data of the grid while maintaining a running sum
and frequency to compute average on lines 15–16. While
the details of this program are also important, astute read-
ers would have surely observed that writing this program
needed no knowledge of how the data are accessed, what is
the schema of the data, and how to parallelize the program.
No parallelization and synchronization code is needed. The
BoaT program produces result running in a Hadoop cluster.
So the program scales well saving hours of execution time.

As the program runs on a cluster, it outperforms the
Java program (sequential) as the input data size grows. A
comparison is shown in Fig. 1 on the lower right corner.

The BoaT program provides output almost 20.4 times
faster only on 1-day weather data of Iowa (10 GB). To
achieve these goals, we have solved following problems:

• providing transportation domain types and functions;
• designing the schema for efficient storage strategy and

parallelization; and
• providing an effective solution to data fusion.

Language Design

The language BoaT is the extended version of the work
done by Dyer et al. (2015). They provide the syntax and
tools to analyze the mining software repository data. We
extended their work to provide domain types, functions,
and computational infrastructure for big data-driven
transportation engineering. We create the schema using
the Google protocol buffer. Google protocol buffer is an
efficient (Dyer et al. 2015) data representation format that
provides faster memory efficient computation in BoaT.

Fig. 3 Domain types for trans-
portation data in BoaT

 Type Attributes Details

 countyCode Code of the county

County countyName Name of the county
 Grids List of Grid in the county.

 ID ID of a grid
 Grid Location Spatial location of the grid
 WeatherRoot Link to the Weather data for the grid
 SpeedRoot Link to the speed data for that grid

SpeedRoot speedRecords List of SpeedRecord

WeatherRoot weatherRecords List of WeatherRecord

 detectorcode The code of the detector giving the current record
 type Type of the vehicle

SpeedRecord speed Speed of the vehicle
 reference Reference speed
 time Time of the record
 roadname Name of the road of the record

 tmpc 2 m above the ground level temperature
 wawa Watches, warnings, and advisories issued by the National Weather Service
 ptype Type of Precipitation
 dwpc Dew point temperature
 smps Wind speed

WeatherRecord drct Wind direction
 vsby Horizontal visibility from sensors in Km
 roadtmpc Pavement surface temperature
 srad Solar radiation
 snwd Snow fall depth
 pcpn Precipitation accumulation
 time Time of the reading

Fig. 4 Aggregators in BoaT to
reduce manual coding require-
ments for parallel computations

 Aggregator Description

 MeanAggreagtor Calculates the average
 MaxAggreagtor Finds the maximum value
 QuantileAggregator Calculates the quantile. An argument is passed to tell the quantile of interest
 MinAggregator Finds the minimum value
 TopAggregator Takes an integer argument and returns that number of top elements
 StDevAggregator Calculates the standard deviation

88 Journal of Big Data Analytics in Transportation (2019) 1:83–94

1 3

Domain Types

The transportation-specific types in BoaT are shown in
Fig. 3. As we and others use this infrastructure, these
types will surely evolve, and the BoaT infrastructure is
designed to support such evolution. County is the top-
level type. This type has attributes that relate to the code
of the county, name of the county, and a list of grids in
the county. A grid is related to a location in a county. For
the convenience of computation, the whole Iowa is split
into 213,840 Grids by Iowa DOT. So we used Grid as the
domain type. The Grid has attributes such as ID, location
(spatial location of the Grid), reference to the Weather-
Root which refers to the weather records in that Grid, and
reference to SpeedRoot which refers to the speed records
in that Grid. WeatherRoot contains WeatherRecords (a list
of WeatherRecords). SpeedRoot contains SpeedRecords (a
list of SpeedRecords). So we can easily go to the speed or
weather data of a particular location in a particular Grid
under a particular County without searching through all
the data in the cluster. SpeedRecord contains the attributes
like DetectorCode, type of detector, speed (average speed
for a detector), reference (reference speed for a detector),
roadname, and time.

The data design has led to two innovations:

• First to balance query speed, flexibility, and storage
capacity.

• Second to allow future extension via data fusion (Fig. 4).

While designing the schema, we came to a successful
data reduction strategy after multiple trials. Initially, we
were using all the data at the top level. That means when we
access a row we accessed all the relevant data for that row
like weather and speed. Following this strategy, the storage
size increased than the raw data. Then, we split the data
keeping county data at the top level and the relevant weather
and speed records at the second level in the same list. We
were not getting enough mappers to make a lot of paral-
lelization in the program as the splitting was not possible.
And at the same time, storage size was almost near the raw
data size. Then, we made multiple levels of hierarchy in
our type system. The top level is the county. The county
contains a list of grids (spatial locations), each grid contains
two optional fields to point to speed data and weather data.
This strategy of data representation gives us benefit in stor-
age as well as in faster computation as only relevant data
are accessed. We can store incremental data without regen-
erating the whole dataset from the beginning. Without this
hierarchical schema strategy, all the data need to be merged
together creating a merged schema hampering the sustain-
ability, scalability, and storage benefit of the system. And the
addition of new data would be impossible.

Fusion of multiple data sources in existing big data
frameworks is difficult due to size, the necessity of join and
parallel queries in the data sources. In BoaT, we addressed
this problem in data infrastructure. Any new dataset can be
added to the infrastructure easily. For example, we started
with speed dataset initially and we were able to answer ques-
tions on speed data. The access link to speed data is optional.
That means we do not load the data unless it is necessary.
Then, we added another optional link to weather dataset.
We came up with a successful fusion of data and were able
to answer queries that cover both speed and weather dataset
without losing any performance. The queries of category E
in Fig. 5 are examples of using the fusion of weather and
speed dataset. And the performance is not affected by this.
This makes our infrastructure sustainable to any new data-
sets of interest to be added to the infrastructure. To do that,
we have to just add an optional link to that new dataset after
providing the schema for new dataset. The infrastructure will
take care of all other complexities related to data generation
and type generation.

Evaluation and Results

This section evaluates applicability, scalability, and storage
efficiency of BoaT and its infrastructure. By applicability
we mean whether a variety of transportation analytics use
cases can be programmed using BoaT. By scalability, we
mean whether the resulting BoaT programs scale when
more resources are provided. By storage efficiency, we mean
whether storage requirements for data are comparable to the
raw data, or whether BoaT requires less storage, and if so
how much.

Applicability

To support our claim of applicability, we use BoaT to answer
queries on weather and speed data to provide answers to
multiple queries from different categories and classes. A
small BoaT program can answer queries that would need
a lot of efforts with other general purpose languages, dis-
tributed system, and data processing. We provide a range of
queries in six different categories and four different classes
in the table shown in Fig. 5.

As an example scenario, we consider that a researcher
wants to know the maximum and minimum temperature
in different counties of a state in the USA in a date in
May 2017. To achieve the result in the above scenario, we
have to write a small program in Fig. 6. All the complex
technical details of big data analytics are abstracted from
the user. In Line 1, we are taking the data as input. In
our BoaT infrastructure, we currently use county as the
top-level entry point. In lines 2 and 3, we are declaring

89Journal of Big Data Analytics in Transportation (2019) 1:83–94

1 3

Fi
g.

 5

Ex
am

pl
es

 o
f B

oa
T

pr
og

ra
m

s t
o

co
m

pu
te

 d
iff

er
en

t t
as

ks
 o

n
tra

ns
po

rta
tio

n
da

ta

90 Journal of Big Data Analytics in Transportation (2019) 1:83–94

1 3

two output variables. The declaration tells clearly that one
variable is going to store the maximum of some floating
point numbers having a String, i.e. the county name as key
and the other variable is going to store the minimum of
some floating point numbers. The floating point numbers
here are temperature found from the data. In the next line,
there is a loop to iterate over all the grids of the county
and for each county, we assign the temperature at that grid
as weight. The program keeps track of the temperature
values for each county and at the end returns maximum
and minimum temperature at different counties in a day.

The output of the program is shown in Fig. 7. It also
contains average temperature which is computed from the
Task A.1.

To go through another example consider the Task D.1.
Here, we calculate the mean and standard deviation of speed
at different locations. The program is given in Fig. 8.

The program shown in Fig. 6 first declares the output
types. The output variable for mean uses the MeanAggrega-
tor in BoaT and the output variable for standard deviation
uses the StDevAggregator. The program iterates through
each county one by one and all the grids in that county.
While visiting a grid of the county, the program gets the
speed data at that grid using a domain-specific function
getspeed(). The function getspeed() has multiple versions
and the version that we are using in this program takes the
grid and a date as input and returns the speed data of that
grid on that day. Then for each record of the speed data, we

Fig. 6 Task A.4: find the highest and lowest temperature in different
counties

Fig. 7 Error bar graph of temperature showing minimum, maximum, and average temperature of different counties in a day. The result is pro-
duced from the code in Fig. 6 and average is found from Task A.1

Fig. 8 Task D.1: compute the mean and standard deviation of speed
at different locations

91Journal of Big Data Analytics in Transportation (2019) 1:83–94

1 3

aggregate the values in the output. These visits run in dif-
ferent mapper nodes and the aggregation is done in different
reducer nodes. Finally, the result is returned to the user.

We use two metrics to evaluate BoaT’s applicability.

• LOC: Line of Code. The total lines needed to write the
program.

• RTime: Runtime of the program.

We show the comparison of these metrics for different
programs in Fig. 5. The Java column shows the metric for
Java program and the BoaT columns shows the values of
the metrics for equivalent BoaT programs. The diff col-
umn shows how many times the BoaT program is efficient
compared to Java in terms of Line of code. These Java

programs are only for sequential operation. The Hadoop
version of these programs can also be written, but that
would require additional expertise and significantly larger
lines of code.

BoaT can be adapted to any new transportation data-
set. We presented the use of Speed and Weather data,
which contains totally different schema. If we want to add
new dataset, then we need to add the schema of the new
dataset in our compiler using Google protocol buffer and
the compiler automatically converts the schema to usable
types in the language. Then, the user can write wrappers
to convert raw dataset to BoaT dataset. In the overview
shown in Fig. 2, the BoaT Language infrastructure and
Data Reader components need to be updated to support
new dataset. Then the user can write BoaT query on the

Fig. 9 Lines of code and run
time comparison between Java
and BoaT codes

LO
C

●
150 ●

100

50
●

0
Java BoaT

R
un

tim
e

(s
ec

)

4000

3000

2000

1000

● 0
Java BoaT

 Box plot of Lines of Code of Java and Boa Box plot of RTime of Java and Boa(a) (b)

Fig. 10 Scalability of BoaT programs. The trends show that BoaT program is capable to effectively leverage the underlying infrastructure

92 Journal of Big Data Analytics in Transportation (2019) 1:83–94

1 3

new dataset and use the domain-specific types automati-
cally created by the compiler.

Scalability

Now, we evaluate the scalability of BoaT programs. The
compiled BoaT program runs in a Hadoop cluster. BoaT
provides all the advantages of parallel and distributed
computation to the users that a Hadoop user would get
(Fig. 9).

To evaluate scalability, we set up a Hadoop cluster
with 23 nodes and with a capability of running 220 map

tasks. We select one BoaT program from each category
in Fig. 5. Then, we run the programs gradually increasing
number of map tasks. The result of running the programs
is shown in Fig. 10. The vertical axis represents the time
in seconds. We see as the number of maps increases, the
run time of the program decreases.

Example Dashboard Visualization

BoaT query results can be used to create interactive visuali-
zations and dashboards. To support this claim, we present a
few examples of simple visualizations.

Fig. 11 Visualization of Tasks F.1 and D.2

93Journal of Big Data Analytics in Transportation (2019) 1:83–94

1 3

We present the query result from Task F.1 in a simple
dashboard created using JavaScript and Google Map in
Fig. 11a. The markers show different speeding incident
locations. Once a marker is clicked, then the chart on the
right side shows the number of vehicles recorded above 70
mph at that location. For example, at location (41.97399057,
− 93.5702799) more than 150 vehicles were running at
71 mph on that day.

We provide another visualization of Task D.2 in Fig. 11b.
In this task, we find out the top ten counties where the aver-
age speed was higher than other counties on that day. BoaT
output can be easily imported into Tableau or other visu-
alization software. To show an example of this, we visual-
ize the result of Task A.5 in tableau in Fig. 12. DOTs and

researchers who use visualization tools like tableau can
directly benefit from the BoaT results.

Storage Efficiency

For evaluating the benefit, we compare raw data along with
the data storage in BoaT. If we compress the raw data to
reduce the size, we would lose the performance of the query;
therefore, a compressed format is not desirable. But in BoaT,
we can achieve the desired performance even after a huge
reduction in the data size. The language reads the objects
according to the domain type and emits the result from the
Hadoop nodes to produce the final result. For comparison,
we used the weather and speed data of 1 week for the state of
Iowa. The weather data contains different weather informa-
tion-related grids at different locations at 5-min interval. The
speed data contains the readings from Inrix sensors at 20-s
intervals. The preprocessed raw weather data size is 75.5 GB
and the preprocessed raw speed data size 12.07 GB. We took
these datasets to generate a model BoaT dataset. On top of
the raw weather and speed data, we add a lot more other
data like county names of grids, county code, county names
where the speed detector is located, and road names of speed
detectors. We collect some of this additional information
from other metadata sources and some others using Google
API. Even after adding a lot more additional data, our gen-
erated BoaT dataset size is much smaller than the original
raw data. The original 75.5 GB speed dataset is reduced to

Fig. 12 This Tableau dashboard shows the road temperatures in
degree Celsius at different times of the day at different locations. We
can select the time from the time selector panel on the right. And

once hovering the marker, we will be able to see the road temperature
at that location at that time

Fig. 13 Reduction in data storage size in BoaT data infrastructure
compared to the raw data

94 Journal of Big Data Analytics in Transportation (2019) 1:83–94

1 3

5.38 GB in BoaT and the original 12.07 GB speed dataset is
reduced to 942 MB in BoaT as shown in Fig. 13.

Conclusion and Future Work

Big data-driven transportation engineering is ripe with
potential to make a significant impact. However, it is hard
to get started today. In this work, we have proposed BoaT, a
transportation-specific big data programming language that
is designed from the ground up to simplify expressing data
analysis task by abstracting away the tricky details of data
storage strategies, parallelization, data aggregation, etc. We
showed the utility of our new approach, as well as its scal-
ability advantages. Our future work will try out more appli-
cation as well as create a web-based infrastructure so that
others can also take advantage of BoaT’s facilities.

Acknowledgements This material is based upon work supported by
the National Science Foundation under Grants CCF-15-18897 and
CNS-15-13263. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

References

Adu-Gyamfi YO, Sharma A, Knickerbocker S, Hawkins NR, Jackson
M (2017) Framework for evaluating the reliability of wide-area
probe data. Transp Res Rec 2643(1):93–104

Barai SK (2003) Data mining applications in transportation engi-
neering. Transport 18(5):216–223

Biuk-Aghai RP, Kou WT, Fong S (2016) Big data analytics for
transportation: problems and prospects for its application in
china. In: IEEE Region 10 symposium (TENSYMP). IEEE, pp
173–178

Borning A, Ševcíková H, Waddell P (2008a) A domain-specific lan-
guage for urban simulation variables. In: Proceedings of the
2008 international conference on digital government research.
Digital Government Society of North America, pp 207–215

Borning A, Waddell P, Förster R (2008b) Urbansim: using simula-
tion to inform public deliberation and decision-making. Digital
government, pp 439–464

Chakraborty P, Hess JR, Sharma A, Knickerbocker S (2017) Outlier
mining based traffic incident detection using big data analytics.
Technical Report

Chen CP, Zhang CY (2014) Data-intensive applications, chal-
lenges, techniques and technologies: a survey on big data. Inf
Sci 275:314–347

Dean J, Ghemawat S (2008) MapReduce: simplified data processing
on large clusters. Commun ACM 51(1):107–113

Du B, Huang R, Chen X, Xie Z, Liang Y, Lv W, Ma J (2016) Active
CTDaaS: a data service framework based on transparent IoD in
city traffic. IEEE Trans Comput 65(12):3524–3536

Dyer R, Nguyen HA, Rajan H, Nguyen TN (2015) Boa: ultra-large-
scale software repository and source-code mining. ACM Trans
Softw Eng Methodol 25(1):7:1–7:34

El Faouzi NE, Leung H, Kurian A (2011) Data fusion in intelligent
transportation systems: progress and challenges—a survey. Inf
Fusion 12(1):4–10

Fan J, Han F, Liu H (2014) Challenges of big data analysis. Natl Sci
Rev 1(2):293–314

Huang T, Wang S, Sharma A (2016) Leveraging high-resolution
traffic data to understand the impacts of congestion on safety.
In: 17th International conference road safety on five continents
(RS5C 2016), Rio de Janeiro, 17–19 May 2016. Statens väg-och
transportforskningsinstitut

Jagadish H, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel JM,
Ramakrishnan R, Shahabi C (2014) Big data and its technical
challenges. Commun ACM 57(7):86–94

Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in big data
analytics. J Parallel Distrib Comput 74(7):2561–2573

Kitchin R (2014) The real-time city? Big data and smart urbanism.
GeoJournal 79(1):1–14

Laney D (2001) 3d data management: controlling data volume, velocity
and variety. META Group Res Note 6:70

Liu C, Huang B, Zhao M, Sarkar S, Vaidya U, Sharma A (2016) Data
driven exploration of traffic network system dynamics using high
resolution probe data. In: IEEE 55th conference on decision and
control (CDC). IEEE, pp 7629–7634

Lv Y, Duan Y, Kang W, Li Z, Wang FY (2015) Traffic flow prediction
with big data: a deep learning approach. IEEE Trans Intell Transp
Syst 16(2):865–873

Pike R, Dorward S, Griesemer R, Quinlan S (2005) Interpreting the
data: parallel analysis with Sawzall. Sci Program 13(4):277–298

Seedah DP, Sankaran B, O’Brien WJ (2015) Approach to classifying
freight data elements across multiple data sources. Transp Res
Rec 2529:56–65

Simmhan Y, Aman S, Kumbhare A, Liu R, Stevens S, Zhou Q,
Prasanna V (2013) Cloud-based software platform for big data
analytics in smart grids. Comput Sci Eng 15(4):38–47

Urso A (2012) Sizzle: a compiler and runtime for Sawzall, optimized
for Hadoop

US Department of Transportation: Data Inventory (2017). https ://www.
trans porta tion.gov/data

Waddell P, Borning A, Noth M, Freier N, Becke M, Ulfarsson G
(2003) Microsimulation of urban development and location
choices: design and implementation of urbansim. Netw Spat Econ
3(1):43–67

Wang X, Li Z (2016) Traffic and transportation smart with cloud com-
puting on big data. IJCSA 13(1):1–16

Wang S, Knickerbocker S, Sharma A (2017) Big-data-driven traffic
surveillance system for work zone monitoring and decision sup-
porting. Technical Report

Yang J, Ma J (2015) A big-data processing framework for uncertainties
in transportation data. In: IEEE international conference on fuzzy
systems (FUZZ-IEEE). IEEE, pp 1–6

Zhang J, Wang FY, Wang K, Lin WH, Xu X, Chen C (2011) Data-
driven intelligent transportation systems: a survey. IEEE Trans
Intell Transp Syst 12(4):1624–1639

Zheng Y (2015) Methodologies for cross-domain data fusion: an over-
view. IEEE Trans Big Data 1(1):16–34

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.transportation.gov/data
https://www.transportation.gov/data

	A Cyberinfrastructure for Big Data Transportation Engineering
	Abstract
	Introduction
	Motivation
	Related Work
	BoaT: Design and Implementation
	Language Design
	Domain Types

	Evaluation and Results
	Applicability
	Scalability
	Example Dashboard Visualization
	Storage Efficiency

	Conclusion and Future Work
	Acknowledgements
	References

