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Abstract
Big data-driven transportation engineering has the potential to improve utilization of road infrastructure, decrease traf-
fic fatalities, improve fuel consumption, and decrease construction worker injuries, among others. Despite these benefits, 
research on big data-driven transportation engineering is difficult today due to the computational expertise required to get 
started. This work proposes BoaT, a transportation-specific programming language, and its big data infrastructure that is 
aimed at decreasing this barrier to entry. Our evaluation, that uses over two dozen research questions from six categories, 
shows that research is easier to realize as a BoaT computer program, an order of magnitude faster when this program is run, 
and exhibits 12–14× decrease in storage requirements.

Keywords  Big data · Domain-specific language · Cyberinfrastructure

Introduction

The potential and challenges of leveraging big data in trans-
portation has long been recognized (Adu-Gyamfi et al. 2017; 
Barai 2003; Chakraborty et al. 2017; Chen and Zhang 2014; 
Fan et al. 2014; Huang et al. 2016; Jagadish et al. 2014; 
Kitchin 2014; Laney 2001; Liu et al. 2016; Lv et al. 2015; 
Seedah et al. 2015; Wang et al. 2017; Zhang et al. 2011). For 
example, researchers have shown that big data-driven trans-
portation engineering can help reduce congestions, fatalities, 
and make building transportation applications easier (Barai 
2003; Huang et al. 2016; Zhang et al. 2011). The availability 
of open transportation data that are accessible, e.g. on the 
web under a permissive license, has the potential to fur-
ther accelerate the impact of big data-driven transportation 
engineering.

Despite this incredible potential, harnessing big data in 
transportation for research remains difficult. To utilize big 
data, expertise is needed along each of the five steps of a 
typical data pipeline namely data acquisition; information 

extraction and cleaning; data integration, aggregation, and 
representation; modeling and analysis; and interpretation 
(Jagadish et al. 2014). First three steps are further compli-
cated by the heterogeneity of data from multiple sources 
(Seedah et al. 2015), e.g. speed sensors, weather station, and 
national highway authority. A scientist must understand the 
peculiarities of the data sources to develop a data acquisition 
mechanism, clean data coming from multiple sources, and 
integrate data from multiple sources. Modeling and analysis 
are complicated by the volume of the data. For example, a 
dataset of speed measurements from a commercial provider 
for Iowa for a single day can be in multiple GBs, exceeding 
the limits of a single machine. Analyses that aim to compute 
trends over multiple years require storing, and computing 
over, tens of TBs of just speed sensor data.

A possible solution could be to use the big data technolo-
gies like Hadoop and Apache Spark running over a distrib-
uted cluster. Using a distributed cluster with an adequate 
number of nodes, problems related to the storage and time of 
computation can be addressed. But these big data technolo-
gies are not so easy to use. Getting started requires techni-
cal expertise to set up the infrastructure, efficient design of 
data schema, data acquisition strategy from multiple sources, 
high level of programming skills, adequate knowledge of 
distributed computing models, and a lot more efficiency in 
writing distributed computer programs which is significantly 
different than writing a sequential computer program in Mat-
lab, C, or Java. The analysis of big data in transportation 
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is almost an elite job due to these barriers. The research 
groups interested in big data-driven transportation engineer-
ing have to hire technically skilled people or train their own 
staff members to use these highly sophisticated technologies. 
Both approaches incur additional costs.

This work describes a transportation-specific big data 
programming language and its infrastructure aimed at solv-
ing these problems. We call this language BoaT (Boa (Dyer 
et al. 2015) for Transportation). The BoaT infrastructure 
provides built-in transportation data schemas and converters 
from existing data sources. A notable advantage of BoaT’s 
data schema is a significant reduction in storage require-
ments. A transportation researcher or engineer can express 
their queries as simple sequential-looking BoaT programs. 
The BoaT infrastructure automatically converts a BoaT pro-
gram to a distributed executable code without sacrificing 
correctness in the conversion process. This also often results 
in an order of magnitude improvement in performance, 
which is the third advantage of our approach. The BoaT 
infrastructure provides built-in transportation data schemas 
and converters from the existing data sources. The four nota-
ble advantages of BoaT are (a) significant reduction in stor-
age requirement using specially designed data schema, (b) a 
transportation researcher or engineer can express their que-
ries as simple sequential-looking BoaT programs, (c) auto-
conversion of sequential programs to parallelly executable 
programs without sacrificing correctness in the conversion 
process, and (d) the number of lines of code significantly 
reduces thus reducing the debugging time for the program. 
Owing to these advantages, even users that are not experts in 
distributed computing can write these BoaT programs that 
lower the aforementioned barrier to entry.

The remainder of this article describes the BoaT approach 
and explores its advantages. First, in the next section, we 
motivate the approach via a small example. Next, we com-
pare and contrast this work with related ideas. Then, we 
describe the salient technical aspects of the technique. Next, 
we evaluate the usability, and scalability of the technique, 
show some use case examples that we have realized, and 
highlight the benefits of our storage strategy. Finally, we 
conclude.

Motivation

Transportation agencies collect a lot of data to make critical 
data-driven decision for Intelligent Transportation System 
(ITS). There has been a lot of initiative to make data avail-
able for researchers to spur innovation (US Department of 
Transportation 2017). But the analysis of this ultra-large-
scale data is a difficult task; given the technology needed 
to analyze the data is still a luxury (Biuk-Aghai et  al. 
2016). These data come from multiple sources with a lot of 

varieties, velocities, and volumes. Given the availability of 
a variety of sources of data, technically skilled people also 
often face challenges due to the kinds of input, data access 
patterns, type of parallelism, etc. (Kambatla et al. 2014). The 
need to write complex programs can be a barrier for domain 
researchers to take the advantage of this large-scale data. To 
illustrate the challenges, consider a sample question “Which 
counties have highest and lowest average temperature in a 
day?” A query like this is simple when the data are already 
provided by county; but in case we have data for every 5 min 
for every square mile of Iowa for last 10 years, the query 
becomes hard to solve in Matlab or even R and could poten-
tially run for a long time in Java. Answering this question 
in Java would require knowledge of (at a minimum) read-
ing the weather data from the data provider service, finding 
the locations and county information of different grids from 
some other APIs, additional filtering code, controller logic, 
etc. It would need upwards of 100 lines of code and require 
knowledge of at least 2 complex libraries and 2 complex data 
structures. A heavily elided example of such a program is 
shown in Fig. 1, left column.

This program assumes that the user has manually down-
loaded the required weather data, preprocessed the data, and 
written to a CSV file. It then processes the data and collects 
weather information in different grids at different times of 
the day. Next, the county information of each grid is found 
from another API. Finally, the data are stored in some data 
structures for further computation. The presented program 
is sequential and will not scale as the data size grows. One 
could write a parallel computation program which would be 
even more complex.

We propose a domain-specific programming language 
called BoaT to solve these problems. We intend to lower 
the barrier to entry and enable the analysis of ultra-large-
scale transportation data for answering more critical data-
intensive research challenges. The main features of BoaT 
data analysis originated from Dean and Ghemawat (2008), 
Dyer et al. (2015), Pike et al. (2005), and Urso (2012). To 
this, we add built-in transportation-specific data types and 
functions for analysis of large-scale transportation data, 
schema, and infrastructure to preprocess data automatically 
and store efficiently. The main components come as an inte-
grated framework that provides a domain-specific language 
for transportation data analysis, a data processing unit, and 
a storage strategy.

Related Work

Due to the rapid growth of data-driven Intelligent trans-
portation system (ITS) (El Faouzi et al. 2011; Zheng 2015) 
applications and smart cities, the necessity of harnessing the 
power of ultra-large-scale data is becoming more important 
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today than any time before. Though a lot of works are done 
on data-driven smart city design and big data analysis, try-
ing to tackle the challenges of transportation big data from 
the domain-specific language perspective is few. In other 
domains, a lot of advantages are being taken from big data 
using domain-specific programming languages. For exam-
ple, Dyer et al. (2015) used the early version of Boa to ana-
lyze ultra-large-scale software repository data (data from 
repositories like GitHub). However, Dyer et al.’s work is 
limited to software repositories whereas BoaT built on top 
of Boa provides the support of transportation data analysis 
at ultra-large scale, transportation domain types and an infra-
structure of efficient data storage from a variety of transpor-
tation data sources.

There have been some efforts to support domain types 
and computation in transportation in an integrated modeling 
tool called UrbanSim (Borning et al. 2008a, b; Waddell et al. 
2003). UrbanSim is an integrated modeling environment 
that provides a modeling language which provides access 
to urban data for finding models to coordinate transporta-
tion and land usage (Waddell et al. 2003). While Urban-
Sim focuses on simulation, BoaT is for analyzing gathered 
data. Furthermore, supporting analysis of large-scale data 
has not been the focus of UrbanSim, whereas BoaT focuses 
on providing scalable support for data analysis. Simmhan 
et al. (2013) provide a cloud-based software platform for 
data analytics in Smart Grids, whereas BoaT is focused on 
transportation data. Du et al. (2016) proposed City Traf-
fic Data-as-a-Service (CTDaaS). They have used service-
oriented architecture to provide access to data, but do not 
focus on the scalable analysis of big data.

In general, the current approaches using big data analytics 
are either using costly cloud computation or have custom 
build design for solving specific problems using open source 
solution with on-premise servers. Works such as Yang and 

Ma (2015) and Wang and Li (2016) highlight the challenges 
of doing big data-driven transportation engineering today. 
For example, Yang and Ma (2015) use HDFS, MLlib, and 
cluster computing to solve their problems, essentially like 
our motivating example. Each of these technologies creates 
its own barrier to entry. There is a need for a framework that 
would overcome the barrier to use big data analytics, provide 
a domain-specific language, reduce the efforts of data pre-
processing, and will be available at a mass scale.

BoaT: Design and Implementation

To address the challenges of easy and efficient analysis of 
big transportation data, we propose a transportation-specific 
programming language and data infrastructure. The lan-
guage provides simple syntax, domain-specific types, and 
massive abstractions. An overview of the infrastructure is 
shown in Fig. 2.

The user writes the BoaT program and submits it to 
the BoaT infrastructure. The BoaT program is taken by 
the infrastructure and converted by a specialized compiler 
that we have written to produce an executable that can be 
deployed in a distributed Hadoop cluster. This executable 
is run automatically on curated data to produce output for 
the user.

To illustrate, we consider the question in section “Moti-
vation” “Which counties have the highest and the lowest 
average temperatures in a day?” A BoaT program to answer 
this question is shown in Fig. 1, right column. Line 1 of the 
program says that it takes a County as input. So, if there are 
n counties in the dataset, the statements on lines 4–16 of this 
program would be automatically run in parallel by the BoaT 
infrastructure (once for each county). Lines 2 and 3 of this 
program declare output variables. These write only output 

Fig. 2   An overview of BoaT, 
showing workflow of a BoaT 
user and BoaT infrastructure
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variables that are shared between all parallel tasks created 
by the BoaT infrastructure and the infrastructure manages 
the details of effectively interleaving and maximizing perfor-
mance. Line 2 says that this output variable will collect val-
ues written to it and compute the maximum of those values. 
This is called aggregation in BoaT and several other kinds 
of aggregation algorithms are supported as shown in Fig. 4. 
Line 15 shows an example of writing to that output variable. 
Lines 4–16 are run sequentially for each county. They look 
into each grid of the county (lines 6, 7, 14) to find tem-
perature data of the grid while maintaining a running sum 
and frequency to compute average on lines 15–16. While 
the details of this program are also important, astute read-
ers would have surely observed that writing this program 
needed no knowledge of how the data are accessed, what is 
the schema of the data, and how to parallelize the program. 
No parallelization and synchronization code is needed. The 
BoaT program produces result running in a Hadoop cluster. 
So the program scales well saving hours of execution time.

As the program runs on a cluster, it outperforms the 
Java program (sequential) as the input data size grows. A 
comparison is shown in Fig. 1 on the lower right corner. 

The BoaT program provides output almost 20.4 times 
faster only on 1-day weather data of Iowa (10 GB). To 
achieve these goals, we have solved following problems:

•	 providing transportation domain types and functions;
•	 designing the schema for efficient storage strategy and 

parallelization; and
•	 providing an effective solution to data fusion.

Language Design

The language BoaT is the extended version of the work 
done by Dyer et al. (2015). They provide the syntax and 
tools to analyze the mining software repository data. We 
extended their work to provide domain types, functions, 
and computational infrastructure for big data-driven 
transportation engineering. We create the schema using 
the Google protocol buffer. Google protocol buffer is an 
efficient (Dyer et al. 2015) data representation format that 
provides faster memory efficient computation in BoaT.

Fig. 3   Domain types for trans-
portation data in BoaT

  Type  Attributes Details 
      

 
   countyCode Code of the county 

County  countyName Name of the county  
   Grids List of Grid in the county.  
        

   ID ID of a grid  
 Grid  Location Spatial location of the grid  
   WeatherRoot Link to the Weather data for the grid  
   SpeedRoot Link to the speed data for that grid  
     

 
SpeedRoot  speedRecords List of SpeedRecord 

     

 
WeatherRoot  weatherRecords List of WeatherRecord 

      

 
   detectorcode The code of the detector giving the current record 
   type Type of the vehicle  

SpeedRecord  speed Speed of the vehicle  
   reference Reference speed  
   time Time of the record  
   roadname Name of the road of the record  
        

   tmpc 2 m above the ground level temperature  
   wawa Watches, warnings, and advisories issued by the National Weather Service  
   ptype Type of Precipitation  
   dwpc Dew point temperature  
   smps Wind speed  

WeatherRecord  drct Wind direction  
   vsby Horizontal visibility from sensors in Km  
   roadtmpc Pavement surface temperature  
   srad Solar radiation  
   snwd Snow fall depth  
   pcpn Precipitation accumulation  
   time Time of the reading  

Fig. 4   Aggregators in BoaT to 
reduce manual coding require-
ments for parallel computations

  Aggregator  Description 
    

 MeanAggreagtor Calculates the average  
 MaxAggreagtor Finds the maximum value  
 QuantileAggregator Calculates the quantile. An argument is passed to tell the quantile of interest  
 MinAggregator Finds the minimum value  
 TopAggregator Takes an integer argument and returns that number of top elements  
 StDevAggregator Calculates the standard deviation  
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Domain Types

The transportation-specific types in BoaT are shown in 
Fig. 3. As we and others use this infrastructure, these 
types will surely evolve, and the BoaT infrastructure is 
designed to support such evolution. County is the top-
level type. This type has attributes that relate to the code 
of the county, name of the county, and a list of grids in 
the county. A grid is related to a location in a county. For 
the convenience of computation, the whole Iowa is split 
into 213,840 Grids by Iowa DOT. So we used Grid as the 
domain type. The Grid has attributes such as ID, location 
(spatial location of the Grid), reference to the Weather-
Root which refers to the weather records in that Grid, and 
reference to SpeedRoot which refers to the speed records 
in that Grid. WeatherRoot contains WeatherRecords (a list 
of WeatherRecords). SpeedRoot contains SpeedRecords (a 
list of SpeedRecords). So we can easily go to the speed or 
weather data of a particular location in a particular Grid 
under a particular County without searching through all 
the data in the cluster. SpeedRecord contains the attributes 
like DetectorCode, type of detector, speed (average speed 
for a detector), reference (reference speed for a detector), 
roadname, and time.

The data design has led to two innovations:

•	 First to balance query speed, flexibility, and storage 
capacity.

•	 Second to allow future extension via data fusion (Fig. 4).

While designing the schema, we came to a successful 
data reduction strategy after multiple trials. Initially, we 
were using all the data at the top level. That means when we 
access a row we accessed all the relevant data for that row 
like weather and speed. Following this strategy, the storage 
size increased than the raw data. Then, we split the data 
keeping county data at the top level and the relevant weather 
and speed records at the second level in the same list. We 
were not getting enough mappers to make a lot of paral-
lelization in the program as the splitting was not possible. 
And at the same time, storage size was almost near the raw 
data size. Then, we made multiple levels of hierarchy in 
our type system. The top level is the county. The county 
contains a list of grids (spatial locations), each grid contains 
two optional fields to point to speed data and weather data. 
This strategy of data representation gives us benefit in stor-
age as well as in faster computation as only relevant data 
are accessed. We can store incremental data without regen-
erating the whole dataset from the beginning. Without this 
hierarchical schema strategy, all the data need to be merged 
together creating a merged schema hampering the sustain-
ability, scalability, and storage benefit of the system. And the 
addition of new data would be impossible.

Fusion of multiple data sources in existing big data 
frameworks is difficult due to size, the necessity of join and 
parallel queries in the data sources. In BoaT, we addressed 
this problem in data infrastructure. Any new dataset can be 
added to the infrastructure easily. For example, we started 
with speed dataset initially and we were able to answer ques-
tions on speed data. The access link to speed data is optional. 
That means we do not load the data unless it is necessary. 
Then, we added another optional link to weather dataset. 
We came up with a successful fusion of data and were able 
to answer queries that cover both speed and weather dataset 
without losing any performance. The queries of category E 
in Fig. 5 are examples of using the fusion of weather and 
speed dataset. And the performance is not affected by this. 
This makes our infrastructure sustainable to any new data-
sets of interest to be added to the infrastructure. To do that, 
we have to just add an optional link to that new dataset after 
providing the schema for new dataset. The infrastructure will 
take care of all other complexities related to data generation 
and type generation.

Evaluation and Results

This section evaluates applicability, scalability, and storage 
efficiency of BoaT and its infrastructure. By applicability 
we mean whether a variety of transportation analytics use 
cases can be programmed using BoaT. By scalability, we 
mean whether the resulting BoaT programs scale when 
more resources are provided. By storage efficiency, we mean 
whether storage requirements for data are comparable to the 
raw data, or whether BoaT requires less storage, and if so 
how much.

Applicability

To support our claim of applicability, we use BoaT to answer 
queries on weather and speed data to provide answers to 
multiple queries from different categories and classes. A 
small BoaT program can answer queries that would need 
a lot of efforts with other general purpose languages, dis-
tributed system, and data processing. We provide a range of 
queries in six different categories and four different classes 
in the table shown in Fig. 5.

As an example scenario, we consider that a researcher 
wants to know the maximum and minimum temperature 
in different counties of a state in the USA in a date in 
May 2017. To achieve the result in the above scenario, we 
have to write a small program in Fig. 6. All the complex 
technical details of big data analytics are abstracted from 
the user. In Line 1, we are taking the data as input. In 
our BoaT infrastructure, we currently use county as the 
top-level entry point. In lines 2 and 3, we are declaring 
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two output variables. The declaration tells clearly that one 
variable is going to store the maximum of some floating 
point numbers having a String, i.e. the county name as key 
and the other variable is going to store the minimum of 
some floating point numbers. The floating point numbers 
here are temperature found from the data. In the next line, 
there is a loop to iterate over all the grids of the county 
and for each county, we assign the temperature at that grid 
as weight. The program keeps track of the temperature 
values for each county and at the end returns maximum 
and minimum temperature at different counties in a day.

The output of the program is shown in Fig. 7. It also 
contains average temperature which is computed from the 
Task A.1.

To go through another example consider the Task D.1. 
Here, we calculate the mean and standard deviation of speed 
at different locations. The program is given in Fig. 8.

The program shown in Fig. 6 first declares the output 
types. The output variable for mean uses the MeanAggrega-
tor in BoaT and the output variable for standard deviation 
uses the StDevAggregator. The program iterates through 
each county one by one and all the grids in that county. 
While visiting a grid of the county, the program gets the 
speed data at that grid using a domain-specific function 
getspeed(). The function getspeed() has multiple versions 
and the version that we are using in this program takes the 
grid and a date as input and returns the speed data of that 
grid on that day. Then for each record of the speed data, we 

Fig. 6   Task A.4: find the highest and lowest temperature in different 
counties

Fig. 7   Error bar graph of temperature showing minimum, maximum, and average temperature of different counties in a day. The result is pro-
duced from the code in Fig. 6 and average is found from Task A.1

Fig. 8   Task D.1: compute the mean and standard deviation of speed 
at different locations
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aggregate the values in the output. These visits run in dif-
ferent mapper nodes and the aggregation is done in different 
reducer nodes. Finally, the result is returned to the user.

We use two metrics to evaluate BoaT’s applicability.

•	 LOC: Line of Code. The total lines needed to write the 
program.

•	 RTime: Runtime of the program.

We show the comparison of these metrics for different 
programs in Fig. 5. The Java column shows the metric for 
Java program and the BoaT columns shows the values of 
the metrics for equivalent BoaT programs. The diff col-
umn shows how many times the BoaT program is efficient 
compared to Java in terms of Line of code. These Java 

programs are only for sequential operation. The Hadoop 
version of these programs can also be written, but that 
would require additional expertise and significantly larger 
lines of code.

BoaT can be adapted to any new transportation data-
set. We presented the use of Speed and Weather data, 
which contains totally different schema. If we want to add 
new dataset, then we need to add the schema of the new 
dataset in our compiler using Google protocol buffer and 
the compiler automatically converts the schema to usable 
types in the language. Then, the user can write wrappers 
to convert raw dataset to BoaT dataset. In the overview 
shown in Fig. 2, the BoaT Language infrastructure and 
Data Reader components need to be updated to support 
new dataset. Then the user can write BoaT query on the 

Fig. 9   Lines of code and run 
time comparison between Java 
and BoaT codes
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new dataset and use the domain-specific types automati-
cally created by the compiler.

Scalability

Now, we evaluate the scalability of BoaT programs. The 
compiled BoaT program runs in a Hadoop cluster. BoaT 
provides all the advantages of parallel and distributed 
computation to the users that a Hadoop user would get 
(Fig. 9).

To evaluate scalability, we set up a Hadoop cluster 
with 23 nodes and with a capability of running 220 map 

tasks. We select one BoaT program from each category 
in Fig. 5. Then, we run the programs gradually increasing 
number of map tasks. The result of running the programs 
is shown in Fig. 10. The vertical axis represents the time 
in seconds. We see as the number of maps increases, the 
run time of the program decreases.

Example Dashboard Visualization

BoaT query results can be used to create interactive visuali-
zations and dashboards. To support this claim, we present a 
few examples of simple visualizations.

Fig. 11   Visualization of Tasks F.1 and D.2
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We present the query result from Task F.1 in a simple 
dashboard created using JavaScript and Google Map in 
Fig. 11a. The markers show different speeding incident 
locations. Once a marker is clicked, then the chart on the 
right side shows the number of vehicles recorded above 70 
mph at that location. For example, at location (41.97399057, 
− 93.5702799) more than 150 vehicles were running at 
71 mph on that day.

We provide another visualization of Task D.2 in Fig. 11b. 
In this task, we find out the top ten counties where the aver-
age speed was higher than other counties on that day. BoaT 
output can be easily imported into Tableau or other visu-
alization software. To show an example of this, we visual-
ize the result of Task A.5 in tableau in Fig. 12. DOTs and 

researchers who use visualization tools like tableau can 
directly benefit from the BoaT results.

Storage Efficiency

For evaluating the benefit, we compare raw data along with 
the data storage in BoaT. If we compress the raw data to 
reduce the size, we would lose the performance of the query; 
therefore, a compressed format is not desirable. But in BoaT, 
we can achieve the desired performance even after a huge 
reduction in the data size. The language reads the objects 
according to the domain type and emits the result from the 
Hadoop nodes to produce the final result. For comparison, 
we used the weather and speed data of 1 week for the state of 
Iowa. The weather data contains different weather informa-
tion-related grids at different locations at 5-min interval. The 
speed data contains the readings from Inrix sensors at 20-s 
intervals. The preprocessed raw weather data size is 75.5 GB 
and the preprocessed raw speed data size 12.07 GB. We took 
these datasets to generate a model BoaT dataset. On top of 
the raw weather and speed data, we add a lot more other 
data like county names of grids, county code, county names 
where the speed detector is located, and road names of speed 
detectors. We collect some of this additional information 
from other metadata sources and some others using Google 
API. Even after adding a lot more additional data, our gen-
erated BoaT dataset size is much smaller than the original 
raw data. The original 75.5 GB speed dataset is reduced to 

Fig. 12   This Tableau dashboard shows the road temperatures in 
degree Celsius at different times of the day at different locations. We 
can select the time from the time selector panel on the right. And 

once hovering the marker, we will be able to see the road temperature 
at that location at that time

Fig. 13   Reduction in data storage size in BoaT data infrastructure 
compared to the raw data
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5.38 GB in BoaT and the original 12.07 GB speed dataset is 
reduced to 942 MB in BoaT as shown in Fig. 13.

Conclusion and Future Work

Big data-driven transportation engineering is ripe with 
potential to make a significant impact. However, it is hard 
to get started today. In this work, we have proposed BoaT, a 
transportation-specific big data programming language that 
is designed from the ground up to simplify expressing data 
analysis task by abstracting away the tricky details of data 
storage strategies, parallelization, data aggregation, etc. We 
showed the utility of our new approach, as well as its scal-
ability advantages. Our future work will try out more appli-
cation as well as create a web-based infrastructure so that 
others can also take advantage of BoaT’s facilities.
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