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Abstract
Purpose This paper presents an in-depth analysis of the static, buckling, and free vibration behavior of carbon nanotube 
reinforced composite (CNTRC) plates resting on Pasternak's elastic foundation. The displacement field for the analysis is 
formulated using a secant function-based non-polynomial shear deformation theory, which captures the effects of transverse 
shear deformation more accurately than traditional polynomial-based theories. The governing differential equations are 
derived using Hamilton's principle and subsequently solved using Navier's solution method for CNTRC plates with simply 
supported boundary conditions. The novelties of this study include a comprehensive exploration of various parametric con-
ditions, such as different volume fractions and distributions of carbon nanotubes, and variations in the foundation stiffness 
parameters (shear layer and Winkler modulus), providing deeper insights into the mechanical behavior of CNTRC plates 
under realistic loading conditions.
Methods The study incorporates various parametric conditions, including different volume fractions and distributions of 
carbon nanotubes, and variations in the foundation stiffness parameters (shear layer and Winkler modulus). The influence 
of these parameters on the mechanical behavior of CNTRC plates is systematically investigated.
Results Results demonstrate the significant impact of the Pasternak’s foundation parameters and carbon nanotube reinforce-
ment on the static deflection, critical buckling load, and natural frequencies of the plates. The analysis reveals that an appro-
priate selection of the foundation stiffness and nanotube distribution can significantly enhance the structural performance 
of CNTRC plates.
Conclusion This research provides valuable insights into the design and optimization of CNTRC plates on Pasternak’s foun-
dations, highlighting their potential applications in advanced engineering structures where enhanced mechanical properties 
and stability are crucial.

Keywords Carbon nanotube reinforced composite (CNTRC) · Pasternak elastic foundation · Secant function-based non-
polynomial shear deformation theory · Hamilton's principle · Navier's solution method · Static, buckling, and free vibration 
analysis

Introduction

Since being first identified in 1991 by Iijima [6], carbon 
nanotubes (CNTs) have been in high demand in a variety of 
industries, including mechanical, biomechanics, chemical, 
aeronautical, electronics, and automobiles [1–5]. CNTs' out-
standing chemical and mechanical properties have contrib-
uted to the sudden increase in demand. Since graphene sheet 
is the starting material for CNT production, their mechani-
cal characteristics are comparable [7, 8]. When a single 
graphene sheet or more than one graphene sheet is rolled 
together into a concentric cylinder, the CNTs are referred to 
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as single walled carbon nano tubes (SWCNTs) [9, 10] and 
multi walled carbon nano tubes (MWCNTs) [11].

The mechanical behavior of composite plates, particularly 
those reinforced with carbon nanotubes (CNTs), has been a 
subject of extensive research due to the exceptional mechani-
cal properties of CNTs. Previous studies have demonstrated 
the significant improvements in stiffness, strength, and ther-
mal properties that CNT reinforcement can bring to com-
posite materials. The incorporation of CNTs into polymer 
matrices has been shown to enhance the overall performance 
of composite plates, making them suitable for advanced 
engineering applications [1–5]. Since their discovery by 
Iijima [6] in 1991, carbon nanotubes (CNTs) have been 
extensively studied for their exceptional mechanical proper-
ties, which are akin to those of graphene, the precursor mate-
rial for CNT production [7, 8]. CNTs are categorized based 
on their structure: single-walled carbon nanotubes (SWC-
NTs) [9, 10], formed by rolling a single graphene sheet into 
a cylinder, and multi-walled carbon nanotubes (MWCNTs) 
[11], created by rolling multiple graphene sheets into con-
centric cylinders. The analysis of composite plates on elastic 
foundations has garnered significant attention due to the 
critical role of the interaction between the plate and the foun-
dation in determining structural behavior under various load-
ing conditions. Pasternak's elastic foundation model, which 
incorporates both shear layer and Winkler modulus param-
eters, provides a more accurate representation of this interac-
tion compared to the simpler Winkler model (Pasternak, 
1954). Recent review articles have synthesized current 
developments in CNT research, addressing factors such as 
development, numerical implementation, structural advance-
ment, and applications [12–15]. Ajayan et al. [16] introduced 
the initial structural application of CNTs as reinforcement 
with polymers, leading to their acceptance in elastic struc-
tures [17–19]. Wattanasakulpong and Ungbhakorn [20] 
employed several shear deformable theories to provide an 
analytical solution for the bending analysis of CNTRC 
beams with Winkler-Pasternak elastic foundations. Their 
research demonstrated that a functionally graded (FG)-X 
reinforcement distribution of CNTs effectively counteracts 
bending responses. Yas and Samadi [21] used Timoshenko 
beam theory to investigate the free vibration of CNTRC 
beams, finding that FG-X distribution yields the highest 
natural frequency. Shen and Xiang [22] used high order 
shear deformation theory (HSDT) to examine the non-linear 
bending behavior of CNTRC beams on Winkler elastic foun-
dations. They investigated various CNT distribution pat-
terns, finding that FG-A CNTs generate the highest trans-
verse deflection. They also studied the non-linear bending 
behavior of CNTRC shells on Pasternak elastic foundations, 
revealing the impact of volume fraction and foundation 
parameters on non-linear bending behavior [23]. Addition-
ally, they explored the effect of temperature rise on the 

natural frequency of CNTRC shells, showing that increased 
temperature leads to a decrease in natural frequency [24]. 
Zhang et al. [25] applied element-free IMLS-Ritz methods 
for non-linear buckling analysis of CNTRC plates on Win-
kler foundations and conducted non-linear bending analysis 
for similar systems [26]. Wattanasakulpong and Chaikittira-
tana [27] used third-order shear deformation theory (TSDT) 
and sinusoidal shear deformation theory (SSDT) to analyze 
static and dynamic responses of CNTRC plates with Paster-
nak elastic foundations, highlighting the effectiveness of 
FG-X reinforcement in balancing bending responses. Lei 
et al. [28] employed first-order shear deformation theory 
(FSDT) to analyze the buckling of CNTRC plates with Pas-
ternak elastic foundations, concluding that volume fraction 
and foundation parameters significantly influence critical 
buckling loads. Their vibration analysis further confirmed 
the impact of these parameters on natural frequency [29]. 
Zhang and Liew [30] investigated the non-linear bending 
behavior of CNTRC skew plates on elastic foundations using 
FSDT, demonstrating the influence of skew angle and foun-
dation parameters. Further studies explored various aspects 
of CNTRC structures on elastic foundations. Keleshteri et al. 
[31] analyzed vibration behavior of angular CNTRC plates 
with piezoelectric layers. Kutlu and Omurtag [32] examined 
bending behavior of elliptical CNTRC plates, and Duc et al. 
[33] investigated buckling of angular conical shells on elas-
tic foundations. Ansari et al. [34] utilized the variational 
differential quadrature method to study free vibration of 
functionally graded carbon nanotube-reinforced composite 
(FG-CNTRC) structures. Tham et  al. [35] introduced a 
refined shell theory for analyzing free vibration behavior of 
multi-layered FG-CNTRC shallow shell panels. Thi et al. 
[36] applied the cell-based smoothed discrete shear gap 
method for static and free vibration analysis of CNTRC 
plates. Zghal et al. [37] explored free vibration in function-
ally graded composite shell structures reinforced by CNTs. 
Forooghi et al. [38] investigated stability and vibration prop-
erties of FG-SWCNTRC plates using higher-order shear 
deformation theory and a Visco-Hetenyi medium. Thai et al. 
[39] developed a size-dependent meshfree model for FG 
CNTRC nanoplates, integrating higher-order shear deforma-
tion plate theory with nonlocal Eringen elasticity theory. 
They also proposed a NURBS formulation based on refined 
plate theory for comprehensive analysis of multilayer FG 
GPLRC plates [40]. Daikh et al. [41] examined thickness 
stretching effects on multilayer FG CNTRC nanoplates, 
enhancing understanding of their free vibration, stability, 
and bending characteristics. Sharma et al. [42] studied buck-
ling and free vibration traits of FG CNT-reinforced plates 
using an inverse hyperbolic shear deformation theory. 
Uymaz and Uymaz [43] explored three-dimensional thermal 
vibration analysis of FG-CNT reinforced composite plates 
under varying temperature distributions. Li et  al. [44] 
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investigated the nonlinear thermally induced vibration in 
sandwich beams with auxetic honeycomb cores under varied 
boundary conditions. Using first-order shear deformation 
theory and considering geometric nonlinearity and tempera-
ture effects, it employs finite element analysis and New-
ton–Raphson–Newmark method. Findings highlight how 
altering honeycomb geometry and thermal conditions can 
mitigate vibration, aiding in beam design. Zhang et al. [45] 
studied the graphene platelet (GPL)-reinforced nanocom-
posite lattice sandwich plates under supersonic airflow, inte-
grating temperature- and moisture-dependent properties. It 
assesses GPL distribution and reinforcement in truss cores, 
employing Halpin–Tsai model for elasticity, and rule of mix-
ture for properties. Flutter analysis via Lagrange method 
considers aerodynamic loads, emphasizing impacts of tem-
perature, moisture, and GPL parameters on aero-thermo-
elastic behavior. Wang et al. [46] employed a nonlinear 
energy sink (NES) to mitigate nonlinear aeroelastic 
responses in graphene platelet reinforced composite 
(GPLRC) lattice sandwich plates under supersonic airflow. 
It integrates Halpin–Tsai model for material properties, 
Kirchhoff and shear deformation theories for structural mod-
eling, and Newmark method for analysis, showing effective 
suppression of flutter behavior with NES intervention. Yang 
et al. [47] examined the nonlinear free vibration and bifurca-
tion in a carbon fiber-reinforced plastic (CFRP) truncated 
laminated conical shell using first-order shear deformation 
theory. It formulates governing equations via Hamilton's 
principle and Galerkin method, analyzing temperature and 
shell geometry effects on vibration behavior through para-
metric investigation. Yang et al. [48] investigated the static 
bending and buckling behavior of a simply supported trun-
cated sandwich conical shell with a variable thickness core. 
The core's porous structure varies along its length, influenc-
ing system stiffness. Utilizing Hamilton's principle, First-
Order Shear Deformation Theory (FSDT), and the Galerkin 
method, matrix equations are derived to analyze deflections 
and critical buckling loads under thermal conditions. Static 
properties and modes of the system are thoroughlyexamined, 
considering five different porosity distribution schemes for 
the foam core. Wang et al. [49] carried out the modelling and 
analysis for the free vibration of a truncated sandwich coni-
cal shell with a variable stiffness system, using a porous 
aluminum foam core and carbon fiber face sheets under sim-
ply supported conditions. It considers various porosity dis-
tributions and thermal effects, deriving nonlinear dynamic 
equations with first-order shear deformation theory and 
Hamilton’s principle. The study comprehensively examines 
natural frequencies, mode shapes, and their dependencies on 
key parameters. Yang et al. [50] investigated the static and 
dynamic stability of a laminated CFRP cylindrical shell 
under a non-normal boundary condition. It applies Hamil-
ton's principle and von-Karman relationships with first-order 

shell theory, deriving equations via the Galerkin method. 
Stability is analyzed using eigenvalue analysis and the Bolo-
tin method, exploring key influences on stability. Yang et al. 
[51] investigated the nonlinear dynamic responses and bifur-
cations of a truncated sandwich conical shell with varying 
thickness and porous core under 1:1 internal resonance. 
Using FSDT, von-Karman theory, Hamilton’s principle, and 
Galerkin method, it explores dynamic formulations, reso-
nance effects, and influences of damping, detuning, tempera-
ture, and excitations. Chai et al. [52] carried out the free 
vibration of variable thickness graphene-reinforced porous 
cylindrical curved plates under simply supported bounda-
ries. It employs the Halpin–Tsai model, mixing rule, FSDT, 
and Hamilton's principle to derive nonlinear dynamic equa-
tions and determine natural frequencies. Factors influencing 
frequencies and modal shapes are comprehensively ana-
lyzed. Grover et al. [53] proposed a shear deformation theory 
based on a secant function (SDTSF) for predicting static and 
dynamic characteristics of laminated composite plates. This 
theory does not require a shear correction factor as it satis-
fies the traction-free boundary conditions at the plate's top 
and bottom surfaces. The investigations confirmed SDTSF's 
effectiveness in predicting both static and dynamic behavior 
of laminated composite plates.

It is identified from the literature investigation that 
a lack of an analytical model for the bending, buckling and 
free vibration responses of the CNTRC plate resting on the 
Pasternak's elastic foundation with shear layer and Winkler 
springs in the framework of non-polynomial shear defor-
mation theory based on secant function. In the current 
study, An analytical model for the bending, buckling, and 
free vibration responses of the CNTRC plate resting on the 
Pasternak's elastic foundation has been provided in order 
to fill in the informed gap in the literature. The bending, 
buckling, and free vibration behaviours of the CNTRC 
plate are examined under a variety of parametric condi-
tions, including different CNTs volume fractions, CNTs 
distribution patterns, side thickness ratios, and spring con-
stant factors. The bending, free vibration, and buckling 
of plates are carefully investigated and addressed in this 
study.

In conclusion, this research advances the understand-
ing of CNTRC plate mechanics on Pasternak's founda-
tions by elucidating the intricate interplay between mate-
rial composition and foundation characteristics. The 
findings underscore the potential for tailored designs that 
optimize structural performance through judicious selec-
tion of foundation stiffness and carbon nanotube distri-
bution. Such insights are critical for the development of 
robust CNTRC-based engineering structures that exhibit 
enhanced mechanical properties and stability, thereby 
opening new avenues for their application in demanding 
technological fields.
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Geometrical Models and Properties

Figure 1 represents the CNTRC plate resting on the Pas-
ternak elastic foundation with the Winkler spring and 
shear layer. The selected CNTRC plate includes the fol-
lowing dimensions: (a), (b), and (h) as length, width, and 
height respectively. Here, multiple dispersions of CNTs 
patterns that have been uniaxially aligned across the thick-
ness of the CNTRC plate are taken into consideration for 
the study. For UD, FG-X, and FG-O reinforced CNTRC 
plates, the CNTs distribution patterns are symmetrical; for 
FG-V reinforced CNTRC plates, they are asymmetrical. 
Figure 2 displays the cross sections of the CNTRC plate 
with various CNTs dispersion patterns.

Due to the different categories CNTs dispersion pat-
terns throughout the plate's thickness, the mechanical 
properties of CNTRC plates change along with thickness. 
Table 1 lists the mathematical relationships that describe 
the different types of reinforcing distribution throughout 

the thickness of the composite plates. Table 2 lists the 
mechanical properties of the different elements of the 
CNTRC plate, specifically SWCNTs as reinforcement fibre 
and PmPV (methyl methacrylate-co-polyvinyl acetate) as 
the polymer matrix. The volume fraction of the CNTs 
influences the effectiveness of CNTRC plate. In Table 3, 
the efficiency parameter, ηi, for various CNTs volume frac-
tions are listed.

Winkler Spring
Shear layer

y

z

x

Fig. 1  CNTRC plate resting on the Pasternak’s elastic foundation

  (a)        (b)                                   (c) (d)

Fig. 2  Cross section of CNTRC plate with different distribution pattern of CNTs a UD b FG-V c FG-X d FG-O

Table 1  Distribution relationship of CNTRC plates

Distribution FG Distribution relationship

UD CNTRC plate VCNT = V∗

CNT

FG-V CNTRC plate
VCNT =

(
1 +

2z

h

)
V∗

CNT

FG-O CNTRC plate
VCNT = 2

(
1 −

2|z|
h

)
V∗

CNT

FG-X CNTRC plate
VCNT = 2

(
2|z|
h

)
V∗

CNT



Journal of Vibration Engineering & Technologies 

Rule of mixture (ROM) has been employed for analys-
ing the mechanical properties of CNTRC plate and it is 
described as follows:

where, E11, ECNT
11

, Em, E22 and ECNT
22

 are the Young’s moduli. 
G12, GCNT

12
 and Gm are the shear modulus. υ12, �CNT

12
 and υm 

are the Poisson’s ratios. V∗

CNT
 and Vm are the volume fraction 

of CNTs and isotropic matrix. ηi (i = 1–3) is the coefficients 
of the CNTs efficiency parameters.

where, V∗

CNT
 is expressed as,

where wCNT is the mass fraction of the CNTs.

Mathematical Formulations

Displacement Field

The displacement field for non-polynomial shear deforma-
tion theory based on secant function [44] is chosen in order 

(1a)E11 = (�1)VCNTE
CNT
11

+ VmE
m

(1b)
(�2)

E22

=

VCNT

ECNT
22

+

Vm

Em

(1c)
(�3)

G12

=

VCNT

GCNT
22

+

Vm

Gm

(1d)v12 = V∗

CNT
vCNT
12

+ Vmv
m

(1e)� = VCNT�
CNT

+ Vm�
m

(2)V∗

CNT
+ Vm = 1

(3)V∗

CNT
=

wCNT

wCNT + (�CNT∕�m) − (�CNT∕�m)wCNT

to forecast both the static and dynamic behaviour of the 
CNTRC plate supported by the Pasternak’s elastic founda-
tion. The non-polynomial trigonometric function is selected 
here in such a way that it generates a non-linear distribu-
tion of transverse shear stresses. The transverse shear stress 
boundary conditions are implemented so that the transverse 
shear stresses at the boundary vanish, and this allows us to 
assess a constant parameter. Thus, the shear correction fac-
tor is no longer necessary because the considered non-poly-
nomial displacement field fulfils the traction-free boundary 
conditions at the top and bottom of the plate.

where u0 , v0 , w0 , and �x,�y are the displacement and shear 
deformations at the mid plane, respectively. f(z) = g(z) + Ωz 
in which g(z) = z(sec(rz/h)) and Ω = −sec(r/2) [1 + (r/2) 
tan(r/2)]. The value of the transvers shear stress parameter 
i.e. r = 0.1.

The strain in conjunction with the displacement field is 
expressed as follows:

The stress in conjunction with the strain is expressed as 
follows:

where, [Q]n is known as the reduced stiffness matrix and it 
is used to relate the stress and strain vectors of the nth layer. 
The elements of reduced stiffness matrix are the functions 
of material properties E11, E22, G12, G23, G13, and ν12 which 
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Table 2  Material properties 
used for CNTRC plates

Material E1 (GPa) E2 = E3 (GPa) G12 = G12 = G12 
(GPa)

υ12 = υ23 = υ13 ρ (kg/m3)

CNTs 5646.6 7080 1944.5 0.175 1400
PmPV(M1) 2.1 2.1 0.7835 0.34 1150

Table 3  CNTs efficiency 
parameter for PmPV (M2)/CNT

V
∗

CNT
η1 η2 η3

0.11 0.149 0.934 0.934
0.14 0.150 0.941 0.941
0.17 0.149 1.381 1.381
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are function of thickness co-ordinate and depend upon the 
distribution of CNTs across the thickness. These elements 
are defined as

Equation of Motion

The equation of motion of the CNTRC plate with Paster-
nak’s elastic basis is derived using Hamilton's principle.

where δL = δT − (δUs + δVf + δV); δT, δUs, δVf, and δV 
are the change in kinetic energy, change in strain energy, 
change in potential energy of elastic foundation and change 
in potential energy due to external applied load, respectively.

The change in the kinetic energy of the system is 
expressed as follows:

The change in the strain energy of the system is expressed 
as follows:

where, � ∈ is the small variation in the strain at any point 
in the nth lamina defined in the material coordinate’s axes 
system.

The change in the potential energy of the system due to 
external applied load is expressed as follows:

The change in the potential energy of the system due to 
Pasternak elastic foundation is expressed as follows:

where Kw and Ks are the Winkler and shear layer spring 
constants, respectively

Q11(z) =
E11(z)

1 − �12(z)�21(z)
, Q22(z) =

E22(z)
1 − �12(z)�21(z)

,
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= G23(z), Q55(z) = G13(z)

(7)∫
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}
dxdy

(9)
�U = ∫Ω0

{

∫

h
2

− h
2

[�xx� ∈xx +�yy� ∈yy +�xy��xy + �yz��yz + �zx��zx]dz
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ks(
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�y
)dxdy

here, βw and βs are the Winkler and shear layer spring con-
stant factor, respectively.

The CNTRC plate with Pasternak elastic foundation is 
subjected to the transverse load q, which is the bending load 
and the in-plane compressive load of ΨxNcr and ΨyNcr which 
is the buckling load in x and y direction, respectively. The 
total potential energy of the system due to external applied 
load is expressed as follows:

The mid-plane displacement and rotation coefficients 
are separated, and the variation of the system's energies 
from Eqs. (8) to (12) is substituted in Eq. (7), Partial dif-
ferential equation terms of the primary variables are sepa-
rated for different displacement modes derived at the mid 
plane are shown in Appendix A. This process results in the 
development of the governing differential equation for the 
CNTRC plate with Pasternak’s elastic foundation, which is 
as follows:
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The moment resultants associated with the governing dif-
ferential equation of the CNTRC plate with Pasternak elastic 
foundation Eq. (13) is as follows:

for i, j = 1, 2, and 3.

for i, j = 4 and 5.

Analytical Solution Methodology

Using Navier's method, the governing differential equa-
tion of the CNTRC plate with the Pasternak elastic founda-
tion Eq. (13) is solved. The CNTRC plate is simply sup-
ported from all four sides using the following boundary 
requirements.

The displacement variables are assumed in such a way 
that it satisfies the above mentioned boundary condition 
requirements.

(13e)
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(17)

[Aij Bij Dij Eij Fij Hij] = ∫
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(k)
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[1 z z2 g(z) z.g(z) (g(z))2] dz
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[
Q

(k)

ij

]

2×2
[g�(z) (g�(z))2] dz

(19)

at y = 0, y = b(parallel to x axis)

u0 = 0, w0 = 0, �x = 0, Nyy = 0, Myy = 0, Pyy = 0.

at x = 0, x = l(parallel to y axis)

v0 = 0, w0 = 0, �y = 0, Nxx = 0, Mxx = 0, Pxx = 0.

(20a)u0 =

∞∑

m=1

∞∑

n=1

u0mne
i�tcos(�x)sin(�y)

where, u0mn , v0mn , w0mn
 , �xmn and �ymn are the arbitrary param-

eter, ω is the natural frequency α = mπ/a, and β = mπ/b.
The transverse load q is defined as follow:

The simultaneous equation for static and dynamic analy-
sis is obtained by substituting the assumed displacement 
variables from Eq. (20) into the governing differential equa-
tions of CNTRC plate resting on Pasternak's elastic founda-
tion Eq. (13) that governs the CNTRC plate. This equation 
is as follows:

where, [K] and [M] are the stiffness and mass matrix respec-
tively, and the coefficients of mass matrix is discussed in 
Appendix B.

The in-plane compressive lode and natural frequency are 
removed from Eq. (22) for the static analysis of the CNTRC 
plate with Pasternak’s elastic foundation, and Eq. (22) is then 
transformed into the simultaneous equation for the static analy-
sis of the CNTRC plate with Pasternak elastic foundation. The 
determent of the coefficient of the load vector is equal to zero 
to produce the set of homogeneous equations for the buckling 
and free vibration analysis of the CNTRC plate with Paster-
nak’s elastic basis. As an Eigen-value problem, the derived 
homogeneous equations are resolved.
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Simultaneous Equations for Static 
and Dynamic Analysis

The simultaneous equation for static analysis of the CNTRC 
plate with Pasternak elastic foundation is mentioned as 
follows:

The simultaneous equation for the buckling analysis of the 
CNTRC plate with Pasternak elastic foundation is mentioned 
as follows:

where, Ncr and [G] are the buckling load, and geometric 
stiffness matrix, respectively.

The governing equation for the vibration analysis of the 
CNTRC plate with Pasternak elastic foundation is mentioned 
as follows:

Results and Discussions

The findings of the banding, buckling and free vibration analy-
sis of the CNTRC plate with the Pasternak’s elastic foundation 
are carried out in detail in this part. The following non-dimen-
sional parameter is used to provide the findings in dimension-
less form.
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Static Analysis

This section goes into extensive detail on the static analy-
sis of the CNTRC plate resting on Pasternak’s elastic base.

Table 4 investigates the non-dimensional transverse dis-
placement for the variations in CNTs distributions, consid-
ering different thickness ratios, CNT volume fractions, and 
spring constant factors. The FG-V, FG-O, and FG-X dis-
tributions, along with the UD distribution, are specifically 
analyzed in the context of CNTRC plates with and without 
a Pasternak’s elastic foundation. These plates are com-
posed of CNT fibers within a poly (methyl methacrylate)-
polyvinylidene fluoride (PmPV) matrix. The analysis 
focuses on a square CNTRC plate with simple supported 
boundary conditions under sinusoidal loading. The find-
ings are presented using a non-dimensional parameter as 
defined by Eq. (26). The non-dimensional transverse dis-
placement data from this study are compared with those 
reported by Wattanasakulpong and Chaikittiratana [27]. 
For a side-to-thickness ratio of 10, the results align closely 
with those of Wattanasakulpong and Chaikittiratana [27]. 
It is apparent that among the reinforcement distributions 
examined UD, FG-O, FG-V, and FG-X, the FG-X distri-
bution exhibits superior performance in minimizing non-
dimensional transverse displacement, effectively counter-
ing bending responses in both the presence and absence 
of a Pasternak’s elastic foundation. This superior perfor-
mance can be attributed to the optimal gradation of CNTs 
in the FG-X distribution, which enhances the stiffness and 
load-bearing capacity of the plate more effectively than 
the other distributions. The table also demonstrates that as 
the system stiffness increases, due to higher Winkler and 
shear layer spring constant factors, the non-dimensional 
transverse displacement of CNTRC plates with Pasternak’s 
elastic foundations decreases. Additionally, increasing 
the volume fraction of CNTs enhances the stiffness of 
the CNTRC plate for various CNTs distribution patterns. 
The higher CNT volume fraction increases the compos-
ite's overall rigidity, leading to a reduction in transverse 
displacement.
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The non-dimensional transverse deflection of the CNTRC 
plate on a Pasternak elastic foundation is influenced by 
variations in the side-to-thickness ratio, as illustrated in 
Fig. 3. The study delves into non-dimensional transverse 
displacement variations across diverse CNT distributions, 
considering different thickness ratios and CNT volume 
fractions as 0.14 along with this the Winkler spring con-
stant factors and shear layer spring constant factors set at 
100 and 50, respectively. It scrutinizes FG-V, FG-O, FG-X, 
and UD distributions within the CNTRC plate. The analy-
sis involves a square CNTRC plate with simple supported 
boundary conditions under sinusoidal loading, with findings 
expressed through a non-dimensional parameter specified 
in Eq. (26). Analysis indicates that among the UD, FG-V, 
and FG-O reinforcement distributions, the FG-X reinforce-
ment distribution in the composite plate with a Pasternak’s 
elastic foundation results in the minimal transverse deflec-
tion. This superior performance of the FG-X distribution can 

be physically explained by the optimal gradation of CNTs, 
which enhances the stiffness and load-bearing capacity 
of the plate more effectively than other distributions. The 
FG-X distribution provides a more uniform distribution of 
stress and strain across the plate, thereby reducing localized 
bending and deformation. Additionally, the non-dimensional 
transverse displacement decreases with increasing system 
stiffness due to higher Winkler and shear layer spring con-
stant factors. This behavior is due to the increased resistance 
provided by the stiffer foundation, which mitigates the bend-
ing and deflection of the plate under transverse loading. The 
stiffer foundation effectively supports the plate, distributing 
the load more evenly and reducing overall displacement.

The non-dimensional transverse deflection of the CNTRC 
plate on a Pasternak elastic foundation varies with the vari-
ations in the Winkler spring constant factors and shear layer 
spring constant factors, as depicted in Fig. 4. This study 
investigates the non-dimensional transverse displacement 

Table 4  Dimensionless deflection w
(

a

2
;
b

2
;
h

2

)
 of CNTRC plate with and without elastic foundation

βw βs V
∗

CNT
  = 0.11 V

∗

CNT
 = 0.14 V

∗

CNT
 = 0.17

UD X O V UD X O V UD X O V

0 0 Present 0.4963 0.4227 0.7080 0.5869 0.4395 0.3817 0.6147 0.5132 0.3176 0.2722 0.4525 0.3768
TSDT [27] 0.4964 0.4227 0.7081 0.5869 0.4396 0.3817 0.6148 0.5133 0.3177 0.2723 0.4526 0.3769
SSDT [27] 0.4953 0.4208 0.7104 0.5859 0.4383 0.3800 0.6168 0.5121 0.3170 0.2715 0.4537 0.3763

100 0 Present 0.4729 0.4055 0.6612 0.5543 0.4210 0.3676 0.5791 0.4882 0.3078 0.2651 0.4329 0.3631
TSDT [27] 0.4729 0.4056 0.6612 0.5544 0.4210 0.3677 0.5792 0.4882 0.3079 0.2651 0.4330 0.3632
SSDT [27] 0.4719 0.4038 0.6633 0.5534 0.4199 0.3661 0.5809 0.4872 0.3072 0.2644 0.4340 0.3626

100 50 Present 0.3224 0.2896 0.4001 0.3583 0.2974 0.2697 0.3685 0.3294 0.2361 0.2101 0.3033 0.2673
TSDT [27] 0.3224 0.2896 0.4001 0.3583 0.2974 0.2698 0.3685 0.3295 0.2361 0.2101 0.3034 0.2674
SSDT [27] 0.3219 0.2888 0.4009 0.3579 0.2969 0.2689 0.3692 0.3290 0.2357 0.2097 0.3039 0.2671

Fig. 3  The effect of side to 
thickness ratio on non-dimen-
sional transverse deflection w 
on CNTRC plate resting on the 
Pasternak’s elastic foundation
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across different CNT distributions, considering thickness 
ratios as 10 and a CNT volume fraction of 0.17. The analysis 
examines FG-V, FG-O, FG-X, and UD distributions within 
the CNTRC plate. A square CNTRC plate with simply sup-
ported boundary conditions under sinusoidal loading is 
analyzed, with results presented using a non-dimensional 
parameter specified in Eq. (26). The figure shows that the 
non-dimensional transverse deflection of a CNTRC plate 
with a Pasternak’s elastic foundation reduces when the Win-
kler spring constant factors and shear layer spring constant 
factors are increased, due to increase in the stiffness of the 
system. The higher CNT volume fraction increases the com-
posite's overall rigidity, leading to a reduction in transverse 
displacement. This enhancement in stiffness is due to the 
superior mechanical properties of CNTs, which improve the 

load-carrying capacity and structural integrity of the com-
posite plate.

Figure 5 illustrates the effect of non-dimensional axial 
stress variation across the thickness of a CNTRC plate rest-
ing on a Pasternak’s elastic foundation. This examines non-
dimensional axial stress variations among different CNT 
distributions, considering span thickness ratios as 10 and 
CNTs volume fractions as 0.11 along with this Winkler and 
shear layer spring constants of 100 and 50, respectively. It 
analyzes FG-V, FG-O, FG-X, and UD distributions within 
CNTRC plates. The study focuses on a square CNTRC plate 
with simple supported boundary conditions under sinusoidal 
loading, presenting results via a non-dimensional param-
eter defined in Eq. (27). The figure reveals that the axial 
stress profile is symmetrical for symmetric CNT distribution 

Fig. 4  The effect of differ-
ent spring constant factors on 
non-dimensional transverse 
deflection w on CNTRC plate 
resting on the Pasternak’s elas-
tic foundation
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Fig. 5  The variation of non-
dimensional axial stress �̄�xx 
across the thickness of CNTRC 
plate resting on the Pasternak’s 
elastic foundation for different 
distribution of CNTs
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patterns, such as UD, FG-X, and FG-O, across the mid-plane 
of the plate. In contrast, it is asymmetrical for the FG-V dis-
tribution pattern. The distribution patterns of CNTs across 
the thickness significantly influence the axial stress varia-
tion. Specifically, the FG-V distribution shows the highest 
axial stress at the top of the plate, approaching zero at the 
bottom. Similarly, the FG-O distribution results in an axial 
stress profile that approaches zero at both the top and bot-
tom of the plate due to minimal CNT concentration in these 
regions. At the midpoint of the CNTRC plate, the axial stress 
profile is zero for the UD, FG-X, and FG-O distributions 
but non-zero for the FG-V distribution. This behavior is due 
to the symmetrical CNT distribution in the UD, FG-X, and 
FG-O patterns, and the asymmetrical distribution in the 
FG-V pattern. These findings highlight the importance of 
CNT distribution patterns in influencing the stress response 
of CNTRC plates. The choice of distribution pattern can 
significantly affect the stress profile, which in turn impacts 
the overall structural performance and reliability of the com-
posite plate.

Figure 6 depicts the variation of non-dimensional axial 
stress across the thickness of a CNTRC plate with FG-X 
CNT distribution, supported by a Pasternak’s elastic foun-
dation. The analysis is performed on a square CNTRC plate 
with simple supported boundary conditions under sinusoi-
dal loading. Findings are reported using a non-dimensional 
parameter described in Eq.  (27). The variation of non-
dimensional axial stress across the thickness of a CNTRC 
plate under different Winkler and shear layer spring constant 
factors demonstrates that as the values of the Winkler and 
shear layer spring constant factors increase, the non-dimen-
sional axial stress decreases. These findings highlight the 
significant role of foundation stiffness and CNT distribution 
patterns in influencing the stress response of CNTRC plates. 
By selecting appropriate foundation parameters and CNT 

distributions, the structural performance and durability of 
CNTRC plates can be significantly improved.

Figure 7 presents the fluctuation of non-dimensional 
transverse shear stress across the thickness of the CNTRC 
plate resting on a Pasternak elastic foundation. The analysis 
considers a side-to-thickness ratio of 10 and various CNT 
dispersion patterns, with a CNT volume fraction of 0.14, 
and Winkler and shear layer spring constant values of 100 
and 50, respectively. The analysis involves a square CNTRC 
plate with simple supported boundary conditions and sinu-
soidal loading. Findings are expressed using a non-dimen-
sional parameter specified in Eq. (28). The figure reveals that 
the transverse shear stress profile is symmetrical for symmet-
ric CNT distribution patterns, such as UD, FG-X, and FG-O, 
across the mid-plane of the plate, while it is asymmetrical 
for the FG-V distribution. The distribution of CNTs signifi-
cantly affects the transverse shear stress variation across 
the thickness. The FG-O distribution exhibits the highest 
non-dimensional transverse shear stress, whereas the FG-X 
distribution shows the lowest. These findings highlight the 
importance of selecting appropriate CNT distribution pat-
terns to optimize the shear stress response of CNTRC plates. 
The choice of distribution pattern can significantly influ-
ence the transverse shear stress profile, impacting the overall 
structural performance and reliability of the composite plate.

Buckling Analysis

This section goes into comprehensive detail on the buck-
ling analysis of the CNTRC plate with Pasternak’s elastic 
foundation under uniaxial and biaxial compressive stresses.

Table  5 presents the dimensionless critical buckling 
load of a CNTRC plate, both with and without a Paster-
nak’s elastic foundation, under a uniaxial compressive load 
(Ψx = −1, Ψy = 0). This research focuses on the variations 

Fig. 6  The variation of non-
dimensional axial stress �̄�xx 
across the thickness of CNTRC 
plate resting on the Pasternak’s 
elastic foundation for FG-X 
CNTs distribution with different 
spring constant factors
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in non-dimensional critical buckling load under a uniaxial 
compressive load (Ψx = −1, Ψy = 0) across different distri-
butions of carbon nanotubes (CNTs), examining diverse 
thickness ratios and CNT volume fractions. The study scru-
tinizes FG-V, FG-O, and FG-X distributions, in addition to 
the UD distribution, within CNTRC plates. The analysis 
is conducted on a square CNTRC plate with simple sup-
ported boundary conditions subjected to sinusoidal load-
ing. Results are reported using a non-dimensional parameter 
outlined in Eq. (31). The dimensionless critical buckling 
loads obtained are compared with those reported by Wattan-
asakulpong and Chaikittiratana [27], showing good agree-
ment for a side-to-thickness ratio of 10. The table indicates 
that the FG-X CNT reinforcement distribution provides the 

highest dimensionless critical buckling load under a uni-
axial compressive load (Ψx = −1, Ψy = 0), followed by the 
UD and FG-O distributions, for both the CNTRC plate with 
and without the Pasternak’s elastic foundation. The influ-
ence of the Winkler and shear layer spring constant factors 
is evident from the data due to which the lateral stiffness of 
the system increases due to higher Winkler and shear layer 
spring constant factors, the dimensionless critical buckling 
load under a uniaxial compressive load (Ψx = −1, Ψy = 0) 
also increases for the CNTRC plate with a Pasternak’s elas-
tic foundation. Similarly, increasing the volume fraction of 
CNTs enhances the stiffness and, consequently, the dimen-
sionless critical buckling load. These findings highlight 
the importance of selecting appropriate CNT distribution 

Fig. 7  The effect of variation 
of non-dimensional transverse 
shear stress �xz across the thick-
ness of CNTRC plate resting on 
the Pasternak’s elastic founda-
tion for different distribution of 
CNTs
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Table 5  Dimensionless critical buckling load Ncr under uniaxial compressive load (Ψx = −1, Ψy = 0) for CNTRC plate with and without elastic 
foundation

βw βs V
∗

CNT
 = 0.11 V

∗

CNT
 = 0.14 V

∗

CNT
 = 0.17

UD X O UD X O UD X O

0 0 Present 20.6812 24.2858 14.4994 23.3556 26.8936 16.6988 32.3177 37.6938 22.6828
TSDT [27] 20.6814 24.2864 14.4990 22.3559 26.8941 16.6984 32.3180 37.6944 22.6823
SSDT [27] 20.7286 24.3943 14.4515 23.4229 27.0177 16.6451 32.3890 37.8069 22.6276

100 0 Present 21.7078 25.3424 15.5260 24.3822 27.9200 17.7254 33.3443 38.7204 23.7094
TSDT [27] 21.7080 25.3130 15.5256 24.3825 27.9207 17.7250 33.3446 38.7210 23.7089
SSDT [27] 21.7552 25.4209 15.4781 24.4495 28.0443 17.6717 33.4156 38.8335 23.6542

100 50 Present 31.8399 34.4445 25.6581 34.5143 38.0521 27.8576 43.4764 48.8525 33.8415
TSDT [27] 31.8401 35.4451 25.6577 34.5146 38.0528 27.8571 43.4768 48.8531 33.8410
SSDT [27] 31.8873 35.5531 25.6102 34.5816 38.1764 27.8038 43.5477 48.9656 33.7863
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patterns and foundation stiffness parameters to optimize the 
buckling resistance of CNTRC plates. The choice of distri-
bution pattern and foundation parameters can significantly 
influence the critical buckling load, impacting the overall 
structural performance and reliability of the composite plate.

Table 6 shows the dimensionless critical buckling load 
under a biaxial compressive load (Ψx = −1, Ψy = −1). This 
analysis explores non-dimensional critical buckling load 
under a biaxial compressive load variation among various 
distributions of carbon nanotubes (CNTs), considering dif-
ferent thickness ratios and CNT volume fractions. FG-V, 
FG-O, and FG-X distributions, as well as UD distribution, 
are examined within the framework of CNTRC plates. 
The study focuses on a square CNTRC plate with simple 
supported boundary conditions under sinusoidal loading, 
presenting results through a non-dimensional parameter 
described in Eq. (31). Again, the results are compared with 
those of Wattanasakulpong and Chaikittiratana [27], and the 
agreement is satisfactory. A comparison of Tables 5 and 6 
reveals that the dimensionless critical buckling loads under 
biaxial compressive loading are lower than those under 
uniaxial compressive loading for the same CNT volume 
fractions, distribution patterns, and spring constant fac-
tors. These findings underscore the importance of select-
ing appropriate CNT distribution patterns and foundation 
stiffness parameters to optimize the buckling resistance of 
CNTRC plates under various loading conditions. The choice 
of distribution pattern and foundation parameters can sig-
nificantly influence the critical buckling load, impacting the 
overall structural performance and reliability of the com-
posite plate.

Figure 8 illustrates the effect of varying the Winkler and 
shear layer spring constant factors on the non-dimensional 
critical buckling load of a CNTRC plate with a Pasternak’s 
elastic foundation with UD reinforcement distribution. The 

analysis involves a square CNTRC plate with simple sup-
ported boundary conditions and sinusoidal loading. Findings 
are expressed using a non-dimensional parameter specified 
in Eq. (31). The analysis includes different Winkler and 
shear layer spring constant factors and CNT volume frac-
tions. The figure shows that for a given CNT volume frac-
tion, the non-dimensional critical buckling load increases 
with the values of the Winkler and shear layer spring con-
stant factors. In composite structures like CNTRC plates, the 
foundation stiffness plays a crucial role in resisting buckling 
under compressive loads. Higher values of the Winkler and 
shear layer spring constants result in a stiffer support system 
beneath the plate. This increased stiffness effectively distrib-
utes and absorbs the compressive forces applied to the plate, 
thereby increasing its buckling resistance. Essentially, the 
stiffer foundation reduces the magnitude of deformations that 

Table 6  Dimensionless critical buckling load Ncr under bi axial compressive load (Ψx = −1, Ψy = −1) for CNTRC plate with and without elastic 
foundation

βw βs V
∗

CNT
 = 0.11 V

∗

CNT
 = 0.14 V

∗

CNT
 = 0.17

UD X O UD X O UD X O

0 0 Present 10.3406 12.1429 7.2497 11.6788 13.4467 8.3494 16.1588 18.8469 11.3414
TSDT [27] 10.3407 12.1432 7.2495 11.6780 13.4471 8.3492 16.1590 18.8472 11.3412
SSDT [27] 10.3643 12.1972 7.2257 11.7115 13.5089 8.3225 16.1945 18.9035 11.3138

100 0 Present 10.8539 12.6562 7.7630 12.1911 13.9600 8.8627 16.6721 19.3602 11.8547
TSDT [27] 10.8540 12.6565 7.7628 12.1913 13.9604 8.8625 16.6723 19.3605 11.8544
SSDT [27] 10.8776 12.7105 7.7390 12.2248 14.0222 8.8358 16.7078 19.4168 11.8271

100 50 Present 15.9199 17.7222 12.8291 17.2571 19.0261 13.9288 21.7382 24.4263 16.9208
TSDT [27] 15.9201 17.72260 12.8289 17.2573 19.0264 13.9285 21.7384 24.4265 16.9205
SSDT [27] 15.9437 17.7765 12.8051 17.2980 19.0882 13.9019 21.7739 24.4828 16.8931
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Fig. 8  Effect of different spring constant factors on non-dimensional 
critical buckling load under uni-axial loading Ncr (Ψx = −1, Ψy = 0) 
condition for different volume fraction of CNTs on CNTRC plate 
resting on the Pasternak’s elastic foundation
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Fig. 9  First six mode shapes of simply supported CNTRC plate resting on the Pasternak’s elastic foundation for buckling loads Ncr
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could lead to instability, thereby raising the critical buckling 
load. Similarly, for a given set of spring constant factors, 
the non-dimensional critical buckling load increases with 
the CNT volume fraction. This phenomenon occurs because 
higher CNT volume fractions enhance the overall stiffness 
and strength of the CNTRC plate. The increased stiffness 
provided by a higher volume fraction of CNTs allows the 
plate to withstand higher compressive loads before buckling 
occurs, thereby increasing the critical buckling load.

Figure 9 depicts the first six buckling mode shapes of 
a simply supported CNTRC plate on a Pasternak’s elastic 
foundation, focusing on the FG-X distribution of CNTs. The 
analysis is conducted on a square CNTRC plate with simple 
supported boundary conditions subjected to sinusoidal load-
ing. Results are reported using a non-dimensional parameter 
outlined in Eq. (31). The mode shapes are constructed for a 
CNT volume fraction of 0.17 and a side-to-thickness ratio 
of 10, with shear layer spring constant factors of 50 and 100, 
respectively, for the Winkler spring constant factors. This 
phenomenon arises because the FG-X distribution effec-
tively reinforces the plate, distributing compressive forces 
more evenly and resisting buckling across its surface.

Free Vibration Analysis

This section goes into extensive detail on the free vibra-
tion analysis of the CNTRC plate with Pasternak’s elastic 
foundation.

Table 7 presents the dimensionless natural frequency of 
the CNTRC plate with and without a Pasternak’s elastic 
foundation. This study explores the dimensionless natural 
frequency of CNTRC plates across various CNT volume 
fractions, CNT distribution patterns, and spring constant fac-
tors. The FG-V, FG-O, and FG-X distributions, along with 
the UD distribution, are specifically analyzed in the con-
text of CNTRC plate with and without a Pasternak’s elastic 
foundation. The analysis focuses on a square CNTRC plate 
with simple supported boundary conditions. The findings 

are presented using a non-dimensional parameter as defined 
by Eq. (30). The results obtained align closely with those 
reported by Wattanasakulpong and Chaikittiratana [27]. 
For a side-to-thickness ratio of 10, the dimensionless natu-
ral frequency is computed for CNTRC plates both with and 
without the Pasternak elastic foundation. The table reveals 
that the FG-X reinforcement distribution of CNTs yields 
the highest natural frequency, followed by the UD, FG-V, 
and FG-O distributions. This trend can be explained by the 
superior mechanical properties imparted by the FG-X distri-
bution, which optimally reinforces the plate against deforma-
tion and enhances its stiffness. As a result, the plate exhib-
its higher natural frequencies due to increased rigidity and 
reduced mass per unit area, leading to faster vibration cycles. 
The data indicate that the dimensionless natural frequency 
increases with higher Winkler spring constant factors and 
shear layer spring constant factors for the CNTRC plate with 
a Pasternak elastic foundation. Additionally, increasing the 
CNT volume fraction enhances the dimensionless natural 
frequency across different CNT distribution patterns. Addi-
tionally, increasing the CNT volume fraction enhances the 
dimensionless natural frequency across different distribution 
patterns. Higher volume fractions improve the overall stiff-
ness and strength of the CNTRC plate, resulting in higher 
natural frequencies due to enhanced structural integrity and 
reduced deformation under vibrational modes.

Figure 10 illustrates the first six mode shapes of the nat-
ural frequency for a simply supported CNTRC plate on a 
Pasternak elastic foundation. The mode shapes are depicted 
for an FG-O CNT distribution with a CNT volume fraction 
of 0.14 and a side-to-thickness ratio of 10. The shear layer 
spring constant factors and Winkler spring constant factors 
are set at 50 and 100, respectively. The mode shapes repre-
sent distinct vibrational patterns exhibited by the CNTRC 
plate under natural frequency conditions. Each mode shape 
corresponds to a specific vibration mode and frequency, 
characterized by the spatial distribution of displacements 
across the plate.

Table 7  Dimensionless natural frequency � for CNTRC plate with and without elastic foundation

βw βs V
∗

CNT
= 0.11 V

∗

CNT
= 0.14 V

∗

CNT
= 0.17

UD X O V UD X O V UD X O V

0 0 Present 0.1355 0.1469 0.1134 0.1245 0.1436 0.1541 0.1213 0.1328 0.1683 0.1819 0.1409 0.1544
TSDT [27] 0.1355 0.1469 0.1134 0.1245 0.1436 0.1541 0.1213 0.1328 0.1683 0.1819 0.1409 0.1544
SSDT [27] 0.1357 0.1472 0.1132 0.1246 0.1438 0.1545 0.1211 0.1329 0.1685 0.1821 0.1408 0.1546

100 0 Present 0.1388 0.1500 0.1173 0.1281 0.1467 0.1570 0.1250 0.1362 0.1710 0.1443 0.1441 0.1573
TSDT [27] 0.1388 0.1500 0.1173 0.1281 0.1467 0.1570 0.1250 0.1362 0.1710 0.1443 0.1441 0.1573
SSDT [27] 0.1390 0.1503 0.1172 0.1282 0.1469 0.1574 0.1248 0.1363 0.1712 0.1846 0.1439 0.1574

100 50 Present 0.1683 0.1775 0.1509 0.1594 0.1746 0.1833 0.1567 0.1657 0.1953 0.2070 0.1721 0.1834
TSDT [27] 0.1683 0.1775 0.1509 0.1594 0.1746 0.1833 0.1567 0.1657 0.1953 0.2070 0.1721 0.1834
SSDT [27] 0.1683 0.1777 0.1507 0.1595 0.1747 0.1836 0.1566 0.1659 0.1954 0.2073 0.1720 0.1835
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Fig. 10  First six mode shapes of simply supported CNTRC plate resting on the Pasternak’s elastic foundation for free vibration �



Journal of Vibration Engineering & Technologies 

Conclusions

The secant function-based non polynomial shear deforma-
tion theory (SDTSF) is employed to analyze the bending, 
buckling, and free vibration behaviors of a CNTRC plate 
resting on a Pasternak’s elastic foundation. This foundation 
model includes Winkler spring and shear layer components, 
which are fundamental to Pasternak's elastic theory. The 
equation of motion for the CNTRC plate with a Pasternak 
elastic foundation is derived using Hamilton's principle and 
solved using Navier's solution method. The static analysis 
reveals that the FG-X reinforcement distribution of CNTs 
in the composite plate with the Pasternak’s elastic founda-
tion effectively minimizes transverse deflection, whereas the 
FG-O distribution results in the maximum transverse deflec-
tion. By adjusting the CNTs volume fraction, Winkler spring 
constant factors, and shear layer spring constant factors, the 
stiffness of the CNTRC plate can be optimized for various 
CNT distribution patterns. Axial stress and transverse shear 
stress profiles are found to be symmetrical for UD, FG-X, 
and FG-O CNT distribution patterns across the mid-plane of 
the plate, but asymmetrical for the FG-V pattern. Among the 
different distribution patterns, the FG-O distribution exhibits 
the highest non-dimensional transverse shear stress, while 
the FG-X distribution shows the lowest. Buckling analysis 
indicates that the FG-X reinforcement distribution of CNTs 
in the composite plate with the Pasternak elastic foundation 
achieves the highest dimensionless critical buckling load, 
followed by the UD and FG-O distributions. The FG-X 
distribution also results in the highest natural frequency, 
followed by UD, FG-V, and FG-O distributions. Increasing 
the volume fraction of CNTs, Winkler spring constant fac-
tors, and shear layer spring constant factors enhances the 
buckling and free vibration responses of CNTRC plates with 
Pasternak elastic foundations. However, the current study 
has some limitations that future work should address. The 
present analysis is restricted to simply supported bound-
ary conditions, and extending it to other boundary condi-
tions could provide a more comprehensive understanding 
of CNTRC plate behavior. Additionally, while this study 
considers static, buckling, and free vibration behavior, the 
effects of dynamic loading and thermal environments remain 
unexplored and warrant further investigation. Future stud-
ies could also incorporate more complex loading scenarios 
and explore the long-term durability and performance of 
CNTRC plates in real-world applications.

Appendix A

Partial differential equation terms of the primary variables 
are separated for different displacement modes derived at the 
mid plane are shown below:
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Appendix B: Coefficient of Mass Matrix

Data availability The raw/processed data required to reproduce these 
findings cannot be shared at this time as the data also forms part of an 
ongoing study.
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