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Abstract
Purpose The vibration of large membranes is a powerful part of engineering applications, such as in the components of 
drums, pumps, telephones, microphones, and other equipment’s. Various researchers have investigated the above topic, and 
the variables and parameters have been provided in a crisp/exact manner. Although this may be accurate in theory, it is pos-
sible that, in practice, it contains uncertainty due to inaccuracies in observations, maintenance-induced inaccuracies, and 
other sources of error. So, the primary objective of this paper is to solve this important problem numerically under interval 
and fuzzy uncertainty to have an uncertain solution and to study its behaviour.
Methods In this study, we consider these uncertainties as fuzzy/intervals and employ a technique, namely the double para-
metric form of fuzzy numbers (DPFFNs), to solve the uncertain fractional vibration model of order 𝜂 (1 < 𝜂 ≤ 2) . In this 
titled problem has been solved for forward and inverse in various cases using the Adomian decomposition method (ADM).
Results The Adomian decomposition method has been successfully implemented along with the double parametric form to 
find forward and inverse problems of the time-fractional vibration equation of large membranes in an uncertain environment. 
The solution is expressed in compact or power series form, which is an advantage of this technique. In addition, this approach 
converges quickly to a precise solution. In this work, moving to the forward case, we have found fuzzy displacements, and 
in the inverse case, we found fuzzy velocities of the model problem successfully.
Conclusion The forward and inverse problems of the time-fractional vibration equation of large membranes in an uncertain 
environment have been solved by the Adomian decomposition method. The present approach’s computational efficiency 
is good and reliable for providing an approximate numerical solution for various cases. The obtained results are illustrated 
graphically and compared to particular cases.

Keywords Time-fractional vibration equation · Fractional derivatives and integrals · Triangular fuzzy number · Double 
parametric form · Adomian decomposition method
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Introduction

In the past few decades, there has been an increase in the 
number of people engaging in the analysis of fractional 
differential equations (FDEs). Classical differential equa-
tions in mathematical physics, vibration, engineering, and 

oscillation are transformed into these by substituting a frac-
tional derivative (FD) of order fulfilling 1 < 𝜂 ≤ 2 for the 
second-order time derivative. To explain how various mate-
rials and processes retain and transmit their unique charac-
teristics, fractional derivatives are a helpful tool.

The analysis of the vibration equation (VE) is both a fas-
cinating and necessary component of the application. Mem-
branes are used to make the many parts that go into cell 
phones, MP3 players, and other electronic gadgets. Addi-
tionally, membranes can be used to study the physics and 
transmission of waves. In the field of bio-engineering, dif-
ferent kinds of human tissue could be seen as barriers. The 
natural properties of the VE of an eardrum are used to make 
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the human body tolerant of the conversation component. 
To make suitable devices to help deaf people, you need to 
know how membranes work when they vibrate. Inside the 
ruling equation, the time-fractional derivatives are taken into 
account. These days, fractional calculus is seen as a helpful 
tool for figuring out different real-life problems in a way that 
is both useful and correct. As you can see from the sources, 
other researchers have done more work in this area [1–5].

Various authors have conducted various types of research 
on VE. The differential equation was solved by Yildirim 
et al. [6] using the homotopy perturbation technique (HPM). 
The TFVE of large membranes was investigated by Mohyud-
Din and Yildirim [7] using HPM. The nonlinear vibration 
model for a pre-stretched membrane was investigated by 
Sunny et al. [8] using the Adomian decomposition method 
(ADM). The fractional vibration equation (FVE) was solved 
by Srivastava et al. [9] utilizing the Laplace decomposition 
method and the Laplace transform method of q-homotopy 
analysis. Karunakar et al. [10] solved shifted Chebyshev 
polynomials based solution of partial differential equations. 
Analytical approach for traveling wave solution of non-linear 
fifth-order time-fractional Korteweg–De Vries equation 
by Sherriffe and Behera [11–13]. Singh [14] used Jacobi 
polynomials to solve the FVE of large membranes.

Most of the authors have taken the variables and 
parameters involved in the VE as exact (crisp). However, in 
practice, it can be challenging to determine the parameters 
due to errors in testing, observations, etc. As a result, 
the factors and variables must be treated as unknowns. 
Therefore, uncertainty in differential equations is an 
essential aspect of practical modeling problems. In this 
paper, we explore the fuzzy/interval nature of these uncertain 
relationships. Since solving a fuzzy or interval DE might be 
challenging, a numerically efficient solution for such a DE is 
necessary. Chang and Zadeh [15] proposed the concept of a 

fuzzy derivative, which is often credited to them as the first 
to do so. Prade and Dubois [16] described and investigated 
the extension principle from Ref. [15]. Fuzzy DEs (FDEs) 
and initial value difficulties were the focus of research by 
Seikkala [17] and Kaleva [18]. Regarding various physical 
problems associated with differential equations in the 
presence of uncertainty, Chakraverty et al. [4, 5, 19, 20] 
have conducted an extensive amount of research.

As a result of the work discussed in this article, the 
fractional fuzzy vibration equation (FFVE) has been reduced 
to a parametric form of differential equation, making it 
possible to apply a new idea known as the double parametric 
form of fuzzy numbers. After that, a fuzzy/interval solution 
in double parametric form (DPF) is obtained by solving the 
corresponding differential equation using ADM. FVE with 
an uncertain initial condition (IC) has been considered. 
Uncertainties are expressed in terms of convex normalized 
triangular fuzzy numbers.

Most of the analyses for the FVE have been noted in 
literature for the forward case only, which deals with crisp 
environments and seldom in uncertain environments. 
Solving the inverse problem related to FVE in an uncertain 
environment may be interesting. Accordingly, in this work, 
we have looked for forward as well as inverse problems in a 
fuzzy-number-based uncertain environment, with the initial 
condition being a TFN. The novelty of this paper is that it 
gives an idea of how to figure out unknown parameters by 
using known displacements of free vibration from numerical 
results or experiments (if available). In addition to taking 
less time, this method requires less computing power and 
higher accuracy. Only a few experts have looked at how to 
solve fuzzy DE using other methods in the last few years 
[21–24]. Tapaswini et al. [25–28] have explained a few 
works on uncertain differential equations.

Our work mainly applies ADM to the FVE uncertainty 
problem,

Corresponding fuzzy initial condition (FIC) is considered 
as

where �(r) , �(r) are the functions of the radius of the 
membrane (r) and, c̃ and �̃(r, t) are the wave velocity and 
displacement of free vibration in an uncertain environment.

The structure of the present paper is as follows: 
“Preliminaries” contains the fundamental concepts of fuzzy 
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Fig. 1  Triangular fuzzy number �̃ = (�, �, �)
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theory and the basic definitions of fractional derivatives and 
integrals. “Double parametric form of FFVE” incorporates 
the structure of the double parametric form of a fuzzy 
fractional vibration equation. “Implementing ADM for 
solving FFVE” implements ADM for solving FFVE. In 
“Particular cases”, the FICs are given for particular cases. 
The inverse problem is described in “Inverse Problem”. 
“Numerical results and discussions” illustrates the numerical 
results and their discussions. Lastly, the conclusion is drawn 
in “Conclusion”.

Preliminaries

Definition 1 [29, 30] A fuzzy set �̃ is defined as the col-
lection of order pairs (h, m(h)), L is the universal set, and h 
belongs to L, here m(h) as its membership value of � then 
it can be written as

Definition 2 Triangular fuzzy number (TFN) [19, 31] The 
arbitrary TFN is a convex fuzzy set �̃ = (�, �, �) is taken into 
consideration in the real line ℝ . The membership function 
��̃ of �̃ is represented as.

It satisfies, 

1. There exists exactly one x
0
∈ �̃ such that ��̃(x0) = 1.

2. ��̃(x) is piecewise continuous.

Let us consider a TFN �̃ = (�, �, �) as in Fig. 1. By 
using the �-cut approach, we may express the TFN 
�̃ = (�, �, �) as an ordered pair of functions, thus 
[�(�),�(�)] = [(� − �)� + �,−(� − �)� + �]  ,  w h e r e 
� ∈ [0, 1].

Definition 3 [19] Generally, a fuzzy number �̃ is defined by 
�̃ = [�(�),�(�)] in its parametric form, with the required 
conditions as follows: 

 (I) �(�) is an increasing function, bounded and left 
continuous, between closed intervals 0 to 1.

 (II) �(�) is a decreasing function, bounded, and right 
continuous, between closed interval 0–1.

�̃ = {(h,m(h)) ∶ h ∈ L, m(h) ∈ [0, 1]}

��̃(x) =

⎧
⎪⎪⎨⎪⎪⎩

0, x ≤ �
x−�

�−�
, � ≤ x ≤ �

�−x

�−�
, � ≤ x ≤ �

0, x ≥ �

 (III) �(�) ≤ �(�) , where � belongs to closed interval 
0–1.

Definition 4 Double parametric form of fuzzy number 
(DPFFN) [19]

Using the single parametric form as discussed in 
Definition 2, we have �̃ = [�(�),�(�)].

This may now be expressed in double parametric form 
as �̃(�, �) = �(�(�) − �(�)) + �(�), where � and � ∈ [0, 1].

Definition 5 [5, 32] For the fractional integral (FI) of a func-
tion �(t) , we defined the Riemann–Liouville (RL) type of 
order 𝜂 > 0 . It follows that

Definition 6 [5, 32] The fractional derivative of order � and 
the function �(t) can be represented in the Caputo type as

Double parametric form of FFVE

First, using the single parametric form, the FFVE is changed 
into an interval-based fuzzy differential equation. Then, the 
fuzzy differential equation based on intervals is transformed into 
a parametric form of FVE with two parameters that can control 
the uncertainty using the double parametric form. Lastly, ADM 
is used to solve the fractional differential equation that goes with 
it to get the desired solution in terms of fuzzy/interval.

Here’s how to rewrite Eq. (1) in a single parametric form:

(4)J
𝜂𝜔(t)=

1

Γ(𝜂) ∫
t

0
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+
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(6)c
D

�
t
�(t) = J
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1
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m − 1 < 𝜂 < m

}

(8)=
dm�(t)

dtm
, � = m,m ∈ ℕ
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=
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with FICs

where � ∈ [0, 1] . The interval form is used in Eqs. (9), (10), 
and (11). This interval fractional differential equation can be 
solved directly, although dealing with interval computations 
may sometimes be a bit challenging. In this case, the writers 
have used the double parametric form on the aforementioned 
three equations to get

with FICs

Then, let’s define

(10)
[
�(r, 0;�),�(r, 0;�)

]
= [0.2 + 0.8�, 1.8 − 0.8�]�(r)

(11)

[
�
t
(r, 0;�),�

t
(r, 0;�)

]

=
[
c(�), c(�)

]
�(r)

(12)

{
�

(
���(r, t;�)

�t�
−

���(r, t;�)

�t�

)
+

���(r, t;�)

�t�

}
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}2
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�

(
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�

(
��(r, t;�)

�r
−
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�r

)
+

��(r, t;�)
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(13)
{
�
(
�(r, 0;�) − �(r, 0;�)

)
+ �(r, 0;�)

}
= {�(1.4 − 1.4�) + (0.3 + 0.7�)}�(r)

(14)

{
�
(
�
t
(r, 0;�) − �

t
(r, 0;�)

)
+ �

t
(r, 0;�)

}

=
{
�
(
c(�) − c(�)

)
+ c(�)

}
�(r)

{
�
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+

���(r, t;�)

�t�

}

=
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�
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Solving Eqs. (12)–(14) using the aforementioned 
equations yields

with FICs

If we solve Eq. (15) using the FICs Eqs. (16)–(17), we can 
get the solution �̃(r, t;�, �) for � and � . In order to get the 
lower and upper solutions in one parametric form, we may 
use the values � = 0 and 1, respectively. The mathematical 
notations for these are

When we change the values of � and � , we may get different 
uncertain solutions as per the requirement.

Implementing ADM for solving FFVE

The operator form of the FFVE Eq. (1) is expressed as

where L
tt
=

�2

�t2
, L

rr
=

�2

�r2
    and L

r
=

�

�r

Applying the L−1
tt

 both sides of the above equations we have

The solution �̃(r, t ∶ �, �) is given by Adomian’s method 
[33, 34] as a series,

in which the elements of �̃
0
, �̃

1
, �̃

2
, ... are usually found by

(15)

���̃(r, t;�, �)

�t�
= c̃(�, �)2

(
�2�̃(r, t;�, �)

�r2
+

1

r

��̃(r, t;�, �)

�r

)

(16)�̃(r, 0;�, �) = {�(1.4 − 1.4�) + (0.3 + 0.7�)}�(r)

(17)�̃
t
(r, 0;�, �) = c̃(�, �)�(r)

(18)
�̃(r, t;�, 0) = �(r, t;�)

�̃(r, t;�, 1) = �(r, t;�)

(19)
L
tt
�̃(r, t;�, �) = c̃(�, �)2

�2−�

�t2−�(
L
rr
�̃(r, t;�, �) +

1

r
L
r
�̃(r, t;�, �)

)

(20)
�̃(r, t;�, �) = �

t
+ c̃(�, �)2L−1

tt

(
�2−�

�t2−�

(
L
rr
�̃(r, t;�, �)

+
1

r
L
r
�̃(r, t;�, �)
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(21)�̃(r, t;�, �) =

∞∑
n=0

�̃
n
(r, t;�, �)



Journal of Vibration Engineering & Technologies 

The final kth term series solution is

Particular cases

This paper uses the single parametric form of FIC and wave 
velocity as

and c̃(�) = [5.2 + 0.8�, 6.8 − 0.8�] . A few specific cases are 
considered by looking at different values of �(r) and �(r) , 
which may be found in reference [6].

Case 1: When �(r) = r2 and �(r) = r, the corresponding 
Eqs. (1)–(3) are

These three equations can be written in the following 
double-parametric form:

(22)

�̃
0
(r, t ∶ �, �)

= �̃(r, 0 ∶ �, �) + t�̃
t
(r, 0 ∶ �, �)

�̃
1
(r, t ∶ �, �)

= c̃(�, �)2L−1
tt(

�2−�

�t2−�

(
L
rr
�̃
0
(r, t;�, �) +

1

r
L
r
�̃
0
(r, t;�, �)

))

�̃
2
(r, t ∶ �, �)

= c̃(�, �)2L−1
tt(

�2−�

�t2−�

(
L
rr
�̃
1
(r, t;�, �) +

1

r
L
r
�̃
1
(r, t;�, �)

))

...

�̃
k
(r, t ∶ �, �)

= c̃(�, �)2L−1
tt(

�2−�

�t2−�

(
L
rr
�̃
k−1(r, t;�, �) +

1

r
L
r
�̃
k−1(r, t;�, �)

))

(23)
�̃(r, t;�, �) = �̃

0
(r, t ∶ �, �) + �̃

1
(r, t ∶ �, �)

+ �̃
2
(r, t ∶ �, �) +⋯ + �̃

k−1(r, t ∶ �, �).

�̃(r, 0;�) = [0.2 + 0.8�, 1.8 − 0.8�]�(r), �̃t(r, 0;�)
= [5.2 + 0.8�, 6.8 − 0.8�]� (r)

���̃

�t�

= [5.2 + 0.8�, 6.8 − 0.8�]2
(
�2�̃

�r2
+

1

r

��̃

�r

)

�̃(r, 0;�)

= [0.2 + 0.8�, 1.8 − 0.8�]�(r)

�̃
t
(r, 0;�)

= [5.2 + 0.8�, 6.8 − 0.8�]�(r)

Putting Eqs. (24)–(26) into Eq. (22), we get

and so on.
The obtained 5th term series solution is

The final series solution is

(24)

���̃(r, t;�, �)

�t�

= [�(1.6 − 1.6�) + (5.2 + 0.8�)]2(
�2�̃(r, t;�, �)

�r2

+
1

r

��̃(r, t;�, �)

�r

)

(25)�̃(r, 0;�, �) = {�(1.6 − 1.6�) + (0.2 + 0.8�)}r

(26)�̃
t
(r, 0;�, �) = {�(1.6 − 1.6�) + (5.2 + 0.8�)}

(27)

�̃
0
(r, t;�, �)

= (�(1.6 − 1.6�) + (5.2 + 0.8�))rt

+ (�(1.6 − 1.6�) + (0.2 + 0.8�))r2

�̃
1
(r, t;�, �)

= 4(�(1.6 − 1.6�) + (0.2 + 0.8�))

(�(1.6 − 1.6�) + (5.2 + 0.8�))2
t�

Γ(� + 1)

+
1

r
(�(1.6 − 1.6�) + (5.2 + 0.8�))3

t�+1

Γ(� + 2)

�̃
2
(r, t;�, �)

=
(�(1.6 − 1.6�) + (5.2 + 0.8�))5

r3

t2�+1

Γ(2� + 2)

�̃
3
(r, t;�, �)

=
9(�(1.6 − 1.6�) + (5.2 + 0.8�))7

r5

t3�+1

Γ(3� + 2)

�̃
4
(r, t;�, �)

=
225(�(1.6 − 1.6�) + (5.2 + 0.8�))9

r7

t4�+1

Γ(4� + 2)

(28)

�̃(r, t;�, �) = �̃
0
(r, t ∶ �, �) + �̃

1
(r, t ∶ �, �)

+ �̃
2
(r, t ∶ �, �) + �̃

3
(r, t ∶ �, �) + �̃

4
(r, t ∶ �, �) + ...



 Journal of Vibration Engineering & Technologies

By putting � = 0 and � = 1 into Eq. (29), we get lower and 
upper fuzzy solutions as follows,

and

In particular, it is seen that the solution obtained by the pre-
sent method at � = 1 and c = 6 is the same as that obtained 
by using the value of � = 2 , Yildirim et al. [6]. The series 
mentioned above will converge if and only if the values of 
∣

t

r
∣≤ 1.

(29)

�̃(r, t;�, �) = (�(1.6 − 1.6�) + (5.2 + 0.8�))rt

+ (�(1.6 − 1.6�) + (0.2 + 0.8�))r2

+ 4(�(1.6 − 1.6�) + (0.2 + 0.8�))

(�(1.6 − 1.6�) + (5.2 + 0.8�))2
t�

Γ(� + 1)

+
1

r
(�(1.6 − 1.6�) + (5.2 + 0.8�))3

t�+1

Γ(� + 2)
+

(�(1.6 − 1.6�) + (5.2 + 0.8�))5

r3

t2�+1

Γ(2� + 2)

+
9(�(1.6 − 1.6�) + (5.2 + 0.8�))7

r5

t3�+1

Γ(3� + 2)
+

225(�(1.6 − 1.6�) + (5.2 + 0.8�))9

r7

t4�+1

Γ(4� + 2)
+⋯

(30)

�̃(r, t;�, 0) = (0.2 + 0.8�)r2

+ (5.2 + 0.8�)rt + 4(0.2 + 0.8�)(5.2 + 0.8�)2
t�

Γ(� + 1)

+
1

r
(5.2 + 0.8�)3

t�+1

Γ(� + 2)
+

1

r3
(5.2 + 0.8�)5

t2�+1

Γ(2� + 2)

+
9

r5
(5.2 + 0.8�)7

t3�+1

Γ(3� + 2)

+
225

r7
(5.2 + 0.8�)9

t4�+1

Γ(4� + 2)
+⋯

(31)

�̃(r, t;�, 1) = (1.8 − 0.8�)r2 + (6.8 − 0.8�)rt

+ 4(1.8 − 0.8�)(6.8 − 0.8�)2
t�

Γ(� + 1)

+
1

r
(6.8 − 0.8�)3

t�+1

Γ(� + 2)

+
1

r3
(6.8 − 0.8�)5

t2�+1

Γ(2� + 2)

+
9

r5
(6.8 − 0.8�)7

t3�+1

Γ(3� + 2)

+
225

r7
(6.8 − 0.8�)9

t4�+1

Γ(4� + 2)
+⋯

Case 2: Here we consider �(r) = r and �(r) = 1 . In a 
similar way as above, we get the solution as

By plugging � = 0 and � = 1 into Eq. (32), we get the 
lower and upper bounds of the fuzzy solution as

and

The crisp result of Yildirim et al. [6] at � = 2 matches 
the obtained result for c = 6 and � = 1.

Case 3: Let us take now, �(r) =
√
r and �(r) = 1√

r
 , and 

then in double parametric form, the solution can be 
expressed as

(32)

�̃(r, t;�, �) = (�(1.6 − 1.6�) + (5.2 + 0.8�))t

+ (�(1.6 − 1.6�) + (0.2 + 0.8�))r

+ (�(1.6 − 1.6�) + (0.2 + 0.8�))(�(1.6 − 1.6�)

+(5.2 + 0.8�))2
t�

rΓ(� + 1)

+ (�(1.6 − 1.6�) + (0.2 + 0.8�))(�(1.6 − 1.6�)

+(5.2 + 0.8�))4
t2�

r3Γ(2� + 1)

+ 9(�(1.6 − 1.6�) + (0.2 + 0.8�))(�(1.6 − 1.6�)

+(5.2 + 0.8�))6
t3�

r5Γ(3� + 1)

+ 225(�(1.6 − 1.6�) + (0.2 + 0.8�))(�(1.6 − 1.6�)

+(5.2 + 0.8�))8
t4�

r7Γ(4� + 1)
+⋯

(33)

�̃(r, t;�, 0) = (0.2 + 0.8�)r + (5.2 + 0.8�)t

+ (0.2 + 0.8�)(5.2 + 0.8�)2
t�

rΓ(� + 1)

+ (0.2 + 0.8�)(5.2 + 0.8�)4
t2�

r3Γ(2� + 1)

+ 9(0.2 + 0.8�)(5.2 + 0.8�)6
t3�

r5Γ(3� + 1)

+ 225(0.2 + 0.8�)(5.2 + 0.8�)8
t4�

r7Γ(4� + 1)
+⋯

(34)

�̃(r, t;�, 1) = (1.8 − 0.8�)r + (6.8 − 0.8�)t

+ (1.8 − 0.8�)(6.8 − 0.8�)2
t�

rΓ(� + 1)

+ (1.8 − 0.8�)(6.8 − 0.8�)4
t2�

r3Γ(2� + 1)

+ 9(1.8 − 0.8�)(6.8 − 0.8�)6
t3�

r5Γ(3� + 1)

+ 225(1.8 − 0.8�)(6.8 − 0.8�)8
t4�

r7Γ(4� + 1)
+⋯
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The lower and upper fuzzy solution of the present case 
is obtained as

(35)

�̃(r, t;�, �) = (�(1.6 − 1.6�) + (0.2 + 0.8�))
√
r

+ (�(1.6 − 1.6�) + (5.2 + 0.8�))
t√
r

+ (�(1.6 − 1.6�) + (0.2 + 0.8�))

(�(1.6 − 1.6�) + (5.2 + 0.8�))2

1

4r
3

2

t�

Γ(� + 1)

+ (�(1.6 − 1.6�) + (5.2 + 0.8�))3

1

4r
5

2

t�+1

Γ(� + 2)

+ (�(1.6 − 1.6�) + (0.2 + 0.8�))

(�(1.6 − 1.6�) + (5.2 + 0.8�))4

9

16r
7

2

t2�

Γ(2� + 1)

+ (�(1.6 − 1.6�) + (5.2 + 0.8�))5

25

16r
9

2

t2�+1

Γ(2� + 2)

+ (�(1.6 − 1.6�) + (0.2 + 0.8�))

(�(1.6 − 1.6�) + (5.2 + 0.8�))6

441

64r
11

2

t3�

Γ(3� + 1)

+ (�(1.6 − 1.6�) + (5.2 + 0.8�))7

2025

64r
13

2

t3�+1

Γ(3� + 2)

+ (�(1.6 − 1.6�) + (0.2 + 0.8�))

(�(1.6 − 1.6�) + (5.2 + 0.8�))8

53361

256r
15

2

t4�

Γ(4� + 1)

+ (�(1.6 − 1.6�) + (5.2 + 0.8�))9

342225

256r
17

2

t4�+1

Γ(4� + 2)
+⋯

and

(36)

�̃(r, t;�, 0) = (5.2 + 0.8�)
t√
r

+ (0.2 + 0.8�)
√
r

+ (0.2 + 0.8�)(5.2 + 0.8�)2
1

4r
3

2

t�

Γ(� + 1)

+ (5.2 + 0.8�)3
1

4r
5

2

t�+1

Γ(� + 2)

+ (0.2 + 0.8�)(5.2 + 0.8�)4
9

16r
7

2
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Γ(2� + 1)

+ (5.2 + 0.8�)5
25

16r
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2
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2025

64r
13

2

t3�+1

Γ(3� + 2)
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2
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342225

256r
17

2
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Γ(4� + 2)
+⋯

(37)

�̃(r, t;�, 1) = (6.8 − 0.8�)
t√
r

+ (1.8 − 0.8�)
√
r + (1.8 − 0.8�)(6.8 − 0.8�)2

1

4r
3

2

t�

Γ(� + 1)

+ (6.8 − 0.8�)3
1

4r
5

2
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Γ(� + 2)
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9

16r
7
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5

Fig. 2  All cases of fuzzy displacement of membranes at � = 1.5 and r = 25 , red = lower solution, green = upper solution
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5

Fig. 3  All cases of interval solutions for fuzzy displacement at � = 1.5 and r = 25
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5

Fig. 4  All cases of interval solutions for fuzzy displacement at � = 1.5 and t = 1
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respectively.
Case 4: We assume �(r) = r2 and �(r) = 1 , then we 

obtain the solution as

(38)

�̃(r, t;�, �) = (�(1.6 − 1.6�) + (5.2 + 0.8�))t

+ (�(1.6 − 1.6�) + (0.2 + 0.8�))r2

+ 4(�(1.6 − 1.6�) + (0.2 + 0.8�))

(�(1.6 − 1.6�) + (5.2 + 0.8�))2
t�

Γ(� + 1)

In this case, the lower and upper solutions are as follows:

and

(39)

�̃(r, t;�, 0) = (0.2 + 0.8�)r2

+ (5.2 + 0.8�)t + 4(0.2 + 0.8�)(5.2 + 0.8�)2

t�

Γ(� + 1)

Table 1  Fuzzy and crisp solutions at � = 2 and r = 25 (for case 1)

Fuzzy displacement �̃(t)

t 2nd term 3rd term 4th term 5th term Yildirim et al. [6]

0.2  [151.4401391, 
657.8915200, 
1165.675330]

 [151.4401397, 
657.8915212, 
1165.675332]

 [151.4401397, 
657.8915212, 
1165.675332]

 [151.4401397, 
657.8915212, 
1165.675332]

 657.8915213

0.4  [178.7905528, 
696.6121600, 
1219.768398]

 [178.7905735, 
696.6122025, 
1219.768477]

 [178.7905735, 
696.6122025, 
1219.768477]

 [178.7905735, 
696.6122025, 
1219.768477]

 696.6122026

0.6  [207.0962355, 
741.2310400, 
1287.379822]

 [207.0963932, 
741.2313625, 
1287.380425]

 [207.0963937, 
741.2313638, 
1287.380429]

 [207.0963937, 
741.2313638, 
1287.380429]

741.2313639

0.8  [236.4021820, 
791.8172800, 
1368.610221]

 [236.4028464, 
791.8186388, 
1368.612762]

 [236.4028504, 
791.8186494, 
1368.612788]

 236.4028504, 791.8186494, 
1368.612788

791.8186497

1  [266.7533867, 
848.4400000, 
1463.560213]

 [266.7554144, 
848.4441475, 
1463.567968]

 [266.7554336, 
848.4441988, 
1463.568094]

 [266.7554336, 
848.4442000, 
1463.568094]

848.4441986

Table 2  Fuzzy and crisp solutions at � = 2 and r = 25 (for case 2)

Fuzzy displacement �̃(t)

t 2nd term 3rd term 4th term 5th term Yildirim et al. [6]

0.2  [6.044326400, 
26.22880000, 
46.42658560]

 [6.044327024, 
26.22880553, 
46.42660202]

 [6.044327024, 
26.22880553, 
46.42660203]

 [6.044327024, 
26.22880553, 
46.42660203]

26.22880553

0.4  [7.097305600, 
27.51520000, 
47.98634240]

 [7.097315583, 
27.51528847, 
47.98660513]

 [7.097315604, 
27.51528871, 
47.98660606]

 [7.097315604, 
27.51528871, 
47.98660606]

27.51528871

0.6  [8.158937600, 
28.85920000, 
49.67927040]

 [8.158988138, 
28.85964790, 
49.68060049]

 [8.158988374, 
28.85965069, 
49.68061112]

 [8.158988376, 
28.85965072, 
49.68061125]

28.85965072

0.8  [9.229222400, 
30.26080000, 
51.50536960]

 [9.229382125, 
30.26221558, 
51.50957335]

 [9.229383452, 
30.26223124, 
51.50963306]

 [9.229383468, 
30.26223150, 
51.50963432]

30.26223150

1  [10.30816000, 
31.72000000, 
53.46464000]

 [10.30854995, 
31.72345600, 
53.47490306]

 [10.30855501, 
31.72351572, 
53.47513085]

 [10.30855511, 
31.72351726, 
53.47513837]

31.72351726
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Case 5: Let us consider �(r) = r2 and �(r) = r2 , then we 
have

(40)

�̃(r, t;�, 1) = (1.8 − 0.8�)r2

+ (6.8 − 0.8�)t + 4(1.8 − 0.8�)(6.8 − 0.8�)2

t�

Γ(� + 1)

(41)

�̃(r, t;�, �)

= (�(1.6 − 1.6�) + (5.2 + 0.8�))r2t

+ (�(1.6 − 1.6�) + (0.2 + 0.8�))r2

+ 4(�(1.6 − 1.6�) + (0.2 + 0.8�))

(�(1.6 − 1.6�) + (5.2 + 0.8�))2
t�

Γ(� + 1)

+ 4(�(1.6 − 1.6�) + (5.2 + 0.8�))3

t�+1

Γ(� + 2)

Table 3  Fuzzy and crisp solutions at � = 2 and r = 25 (for case 3)

Fuzzy displacement �̃(t)

t 2nd term 3rd term 4th term 5th term Yildirim et al. [6]

0.2  [1.208231318, 
5.241463040, 
9.275362820]

 [1.208231318, 
5.241463040, 
9.275362820]

 [1.208231318, 
5.241463040, 
9.275362820]

 [1.208231318, 
5.241463040, 
9.275362820]

5.241463675

0.4  [1.416985266, 
5.485944320, 
9.557585435]

 [1.416986648, 
5.485954805, 
9.557615985]

 [1.416986652, 
5.485954845, 
9.557616135]

 [1.416986652, 
5.485954845, 
9.557616135]

5.485954840

0.6  [1.626351831, 
5.733582080, 
9.846869085]

 [1.626359488, 
5.733636500, 
9.847026255]

 [1.626359538, 
5.733636965, 
9.847027980]

 [1.626359539, 
5.733636970, 
9.847028005]

5.733636970

0.8  [1.836421004, 
5.984514560, 
10.14341500]

 [1.836447278, 
5.984690800, 
10.14391968]

 [1.836447592, 
5.984693500, 
10.14392956]

 [1.836447598, 
5.984693550, 
10.14392981]

5.984693545

1  [2.047282774, 
6.238880000, 
10.44742442]

 [2.047351990, 
6.239320640, 
10.44867595]

 [2.047353294, 
6.239331225, 
10.44871429]

 [2.047353325, 
6.239331555, 
10.44871583]

6.239331555

Table 4  Fuzzy and crisp solutions at � = 2 and r = 25 (for cases 4 and 5)

(a) Case 4

Fuzzy displacement �̃(t)

t 2nd term Yildirim et al. [6]

0.2 [126.4726400, 629.0800000, 1133.018560]  629.08
0.4 [128.8105600, 638.9200000, 1154.354240]  638.92
0.6 [132.0137600, 654.5200000, 1189.007040]  654.52
0.8 [136.0822400, 675.8800000, 1236.976960]  675.88
1 [141.0160000, 703.0000000, 1298.264000]  703.00

(b) Case 5

Fuzzy displacement �̃(t)

t 2nd term Yildirim et al. [6]

0.2 [776.1825493, 1379.032000, 1983.335531]  1379.032000
0.4 [1432.729835, 2145.736000, 2865.050005]  2145.736000
0.6 [2099.141312, 2932.024000, 3780.205248]  2932.024000
0.8 [2779.916437, 3744.808000, 4738.863083]  3744.808000
1 [3479.554667, 4591.000000, 5751.085333]  4591.000000
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Solution sets for the lower and upper bounds are

and

Inverse Problem

In order to look at the inverse case, let us suppose that 
we know the wave displacement �̃ from the numerical or 
experiment procedure and the given fuzzy displacement is 
�̃ = [�

l
,�

c
,�

u
] for particular � and � values. The unknown 

wave velocity c̃ is required to obtain. It is possible to create 
a discrete, double-parametric form of the provided fuzzy 
displacement as

where �
l
 = fuzzy lower displacement, �

c
 = fuzzy center 

displacement, �
u
 = fuzzy upper displacement. The TFN’s 

fuzziness, �̃ = [�
l
,�

c
,�

u
] , is determined by the values of 

� and �.
It is possible to obtain a nonlinear algebraic equation in 

terms of �̃(�, �) by inserting Eq. (44) into Eq. (28). There-
fore, the algebraic equation for obtaining the wave velocity 
in double parametric form can be solved using any efficient 
numerical approach. Once again, the desired results can be 
attained by converting the double parametric form of the 
wave velocity acquired to TFN. In this case, the desired wave 
velocity was determined using an approximation based on 
five terms of fuzzy displacement. Substituting Eq. (44) into 
Eq. (23) and solving the resulting equation yields the kth-
term approximation for wave velocity. This procedure may 
be repeated for every case.

(42)

�̃(r, t;�, 0) = (0.2 + 0.8�)r2 + (5.2 + 0.8�)r2t

+ 4(0.2 + 0.8�)(5.2 + 0.8�)2
t�

Γ(� + 1)

+ 4(5.2 + 0.8�)3
t�+1

Γ(� + 2)

(43)

�̃(r, t;�, 1) = (1.8 − 0.8�)r2 + (6.8 − 0.8�)r2t

+ 4(1.8 − 0.8�)(6.8 − 0.8�)2
t�

Γ(� + 1)

+ 4(6.8 − 0.8�)3
t�+1

Γ(� + 2)

(44)

�̃ = [�
l
,�

c
,�

u
]

= �(�
u
− �

l
)(1 − �) + �

l

+ (�
c
− �

l
), �, � ∈ [0, 1]
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Numerical results and discussions

Firstly, we will discuss the forward problem of approximate 
solutions for FFVE of large membranes using ADM. The 
validity of the present study is shown by comparing the solu-
tions found with those found in the work of Yildirim et al. 
[6]. The calculated results are shown graphically in Figs. 2, 
3, and 4. We found the numerical solutions to Eqs. (30), 
(31), (33), (34), (36), (37), (39), (40), (42), and (43) by limit-
ing the infinite series to the first five terms. The series ends 
after the second term in cases 4 and 5. Particular cases 1–5 
illustrate the lower and upper bounds of fuzzy solutions to 
the problem outlined in the title by varying t from 0 to 2 
while maintaining the membrane radius constant at r = 25 . 
Subsequently, Fig. 2a–e illustrate interval solutions for vari-
ous scenarios, where �-cut is any of 0.2, 0.4, 0.6, 0.8, and 
1, time t 0–8, and r equals 25. The interval solutions are all 
located on either side of the exact result (� = 1) , as illus-
trated in Fig. 3a–e. Similarly, Fig. 4a–e represent the interval 
solutions for various r values at time t = 1 . For all cases, 
it is important to observe that the present results at � = 1 
coincide precisely with the solution proposed by Yildirim 
et al. [6]. Tables 1, 2, 3 and 4 show that when � = 1 , the 
results obtained match the solution of Yildirim et al. [6], 
with the upper and lower limits being the same for each of 
the five cases. The left and right boundaries of the unknown 
displacement expand with time for various values of � and 
r, as presented in Fig. 3a–e. Additionally, for cases 1–3, as 
shown in Fig. 4a–c for various values of � and t, the fuzzy 

displacement decreases initially and then rises as r increases. 
The depiction of the behaviour as r increases may be seen in 
Fig. 4d and e, corresponding to cases 4 and 5, respectively.

In the inverse case, we have to calculate fuzzy velocity. 
For these, known parameters are �̃(t),� and � to use in dif-
ferent cases, that is, what are five possible cases used in 
forward cases that we are also operating in the inverse case, 
which are named cases 6–10. Here, the Fuzzy displacement 
�̃(t) is known for the particular values r = 25 and � = 2 , 
respectively. The required fuzzy velocity for the given fuzzy 
displacement has been computed using the procedure dis-
cussed in “Inverse Problem”. That information is shown in 
Tables 5, 6, 7 and 8. To find the velocity for �̃(0.2), r = 25 , 
and � = 2 , look at the first row of Table 5. The second row 
shows the same thing for �̃(0.4), r = 25, and � = 2, and so 
on. From the last column of Table 5, it may be observed that 
every row of the table converges to the same fuzzy veloc-
ity �̃ = [5.2 + 0.8�, 6.8 − 0.8�] ; if � = 0 , we get a lower 
solution as 5.2 and upper solution as 6.8 if � = 1 then we get 
the center solution as 6. So, our targeted fuzzy velocity is 
�̃ = [5.2, 6, 6.8] . We also observed the needed fuzzy veloc-
ity in Tables 5, 6, 7 and 8. We got a result that is very close 
to the targeted inverse solution for fuzzy velocity, which 
can be seen in Fig. 5. This is the required TFN for case 6 at 
t = 0.2, t = 0.4, t = 0.6, t = 0.8 , and t = 1 . We also get cases 
7–10 in the same way.

Table 8  Fuzzy velocity at � = 2 and r = 25 (cases 9 and 10)

(a) Case 9

Fuzzy velocity c̃

t 2nd term

0.2 [5.200000039335223, 6.000000000140202, 6.800000024485032]
0.4 [5.200000465516732, 6.000000000979211, 6.799999999999979]
0.6 [5.200000000000137, 6.000000001766836, 6.800000000000001]
0.8 [5.200000000000441, 6.000000002412443, 6.800000000000003]
1 [5.200000000000906, 6.000000000000002, 6.800000000000002]

(b) Case 10

Fuzzy velocity c̃

t 2nd term

0.2 [5.199999999736098, 6.000000000002276, 6.800000002613608]
0.4 [5.200000001304304, 5.999999999988872, 6.799999998721328]
0.6 [5.200000000000016, 6.000000000001855, 6.800000000000001]
0.8 [5.199999999380800, 6.000000000013038, 6.800000000594132]
1 [5.200000000481011, 5.999999999990014, 6.799999999551413]
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Fig. 5  Fuzzy velocity for case 6
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Conclusion

In this paper, the forward and inverse problems of the 
time-fractional vibration equation of large membranes in 
an uncertain environment have been successfully solved by 
the Adomian decomposition method. In this approach, the 
double parametric form of a fuzzy number has been imple-
mented successfully. This approach is simple because it 
takes FFVE and turns it into a crisp form with two param-
eters that control the uncertainty. When the results are 
compared with Yildirim et al. [6] in every forward case, 
they are in perfect agreement. As the number of terms in 
the approximate series solution by ADM goes up, it has 
also been seen that the fuzzy displacement grows closer 
together. Five-term approximations have been utilized to 
converge the obtained results. Furthermore, along with 
the known � and � , the converged fuzzy displacement has 
been used to investigate the inverse case of velocity deter-
mination. Also presented in tabular format is convergence 
for the inverse problem. The observed fuzzy velocity is 
sufficiently close to the target value. This concept could 
determine the unknown parameter if experimental results 
are known.
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